肥胖状态对呼吸机相关肺炎患者1年死亡率的影响及其列线图预测模型构建
The Impact of Obesity on the 1-Year Mortality Risk of Patients with Ventilator-Associated Pneumonia and the Construction of Its Nomogram Prediction Model
DOI: 10.12677/acm.2025.153730, PDF, HTML, XML,   
作者: 张梦琦, 王导新*:重庆医科大学附属第二医院呼吸与危重症医学科,重庆
关键词: 肥胖呼吸机相关肺炎列线图预测模型Obesity Ventilator-Associated Pneumonia Nomogram Prediction Model
摘要: 背景:本研究主要探索肥胖对呼吸机相关肺炎(Ventilator-Associated Pneumonia, VAP)患者1年全因死亡率的影响,构建呼吸机相关肺炎的肥胖患者长期死亡风险模型,进一步探究“肥胖悖论”对呼吸机相关肺炎的影响。方法:我们使用大型公共数据库提取进入重症监护室(Intensive Care Unit, ICU)内的合适的患者,将患者根据BMI分为肥胖和非肥胖两类。首先,调节协变量后进行倾向性匹配评分(Propensity Score Matching, PSM)减少选择偏差,探究肥胖状态与VAP不良预后的具体关系。其次,为了进一步研究VAP肥胖患者1年全因死亡率的风险因素,我们通过套索回归分析(Least Absolute Shrinkage and Selection Operator, LASSO)联合多因素逻辑回归分析选择特征变量来构建VAP肥胖患者长期死亡率的列线图预测模型。最后,通过绘制校准曲线以评估模型的准确性和可靠性。结果:最终,我们提取到资料齐全的1506名VAP患者,其中肥胖患者有665名。调整一切混杂变量后,进行PSM后发现肥胖状态并不影响VAP患者短期死亡率,无明显统计学差异(P > 0.05);而在1年死亡率中,肥胖患者的死亡风险显著低于非肥胖患者(P < 0.05)。于是在通过LASSO回归分析联合多因素逻辑回归分析选择特征变量后,我们构建了肥胖患者1年全因死亡率的列线图预测模型,发现年龄、CCI、是否气管插管及RRT是影响死亡率的最重要的三大因素。结论:我们的研究发现,在呼吸机相关肺炎中肥胖悖论仍然存在。较高的年龄、CCI以及住院期间进行RRT的患者,可能具有较高的长期死亡风险。
Abstract: Background: This study primarily explores the impact of obesity on the 1-year all-cause mortality rate in patients with Ventilator-Associated Pneumonia (VAP). It aims to construct a long-term mortality risk model for obese patients with VAP and further investigate the effect of “obesity paradox” on VAP. Methods: We extracted data from a large public database for patients admitted to the Intensive Care Unit (ICU) and categorized them into obese and non-obese groups based on BMI. Initially, Propensity Score Matching (PSM) was used after adjusting for covariates to reduce selection bias and explore the relationship between obesity and adverse outcomes in VAP. Subsequently, to further investigate the risk factors for 1-year all-cause mortality in obese VAP patients, we applied Least Absolute Shrinkage and Selection Operator (LASSO) regression combined with multivariate logistic regression analysis to select feature variables and constructed a nomogram prediction model for predicting long-term mortality in obese patients with VAP. Finally, we assessed the accuracy and reliability of the model through calibration curves. Results: A total of 1506 VAP patients with complete data were included, of whom 665 were obese. After adjusting for all confounding variables and performing PSM, it was found that obesity status did not affect the short-term mortality of VAP patients, with no statistically significant difference (P > 0.05). However, in terms of 1-year mortality, obese patients exhibited a significantly lower risk of death compared to non-obese patients (P < 0.05). Thus, after selecting characteristic variables by LASSO regression combined with multivariate logistic regression, we constructed a nomogram prediction model to predict the 1-year all-cause mortality in obese VAP patients, and found that the most important factors influencing mortality were age, Charlson Comorbidity Index (CCI), whether or not tracheal intubation, and renal replacement therapy (RRT). Conclusion: Our study found that the obesity paradox still exists in VAP. Older age, higher CCI, and the need for RRT during hospitalization may be associated with a higher long-term mortality risk in these patients.
文章引用:张梦琦, 王导新. 肥胖状态对呼吸机相关肺炎患者1年死亡率的影响及其列线图预测模型构建[J]. 临床医学进展, 2025, 15(3): 1207-1216. https://doi.org/10.12677/acm.2025.153730

1. 引言

呼吸机相关肺炎(Ventilator-Associated Pneumonia, VAP)是指机械通气48小时后至拔管后48小时内出现的肺炎[1]。VAP是重症监护病房(ICU)中最常见的院内感染之一[2],由多种病原微生物所致,临床上以发热、咳嗽、咳痰、呼吸困难为主要表现[3],是一种与危重症患者密切相关的严重的肺部疾病。

肥胖患者由于其特定的生理特征,如胸壁脂肪堆积、肺顺应性下降以及可能存在的气道狭窄等[4] [5],导致在机械通气过程中面临更高的插管率和较高的通气压力需求,以确保足够的氧合[6]。这些因素可能增加气道损伤和通气不充分的风险,从而使得肥胖患者在接受机械通气时更易发生肺部感染等[7]。此外,研究表明,肥胖不仅增加了对呼吸机依赖的时间,还可能导致呼吸机设置的调整更加复杂,从而进一步提高了感染的风险[8]

“肥胖悖论”(Obesity Paradox)是指在一些疾病状态下肥胖患者与非肥胖患者相比反而具有较低的死亡率,尽管肥胖被认为是多种不良结果的危险因素[9]。这一现象在临床中多见,例如进行机械通气的患者、患有急性呼吸窘迫综合征的患者中[10] [11]。具体而言,肥胖患者在患病或住院期间的死亡风险反而较低,或者在疾病的恢复过程中表现得更好,这与传统的健康观念相悖[12]

在临床实践中,医生应充分考虑肥胖患者的特殊生理状态及风险因素,制定针对性的治疗方案,以期优化治疗效果,改善患者预后。而关于呼吸机相关肺炎的不良预后与肥胖之间的关系仍不清晰,因此本研究主要探索肥胖与呼吸机相关肺炎死亡率的关系,旨在进一步探究肥胖与VAP长期死亡率之间的关系,并构建死亡预测风险模型。

2. 方法

2.1. 数据来源、提取及处理

MIMIC (Medical Information Mart for Intensive Care Database)是一个大型的公共数据库,由美国麻省理工学院计算生理学实验室、美国哈佛医学院贝斯以色列女执事医疗中心(BIDMC)和飞利浦医疗公司共同建立。数据库中所有患者的信息都经过脱敏处理,以保护患者隐私,因此不需要伦理审查。

我们使用以下纳入、排除标准诊断筛选合适的患者:纳入标准:1) 首次住院且首次入住ICU的患者;2) 符合ICD编码诊断的VAP患者。排除标准:1) 年龄小于18岁;2) 身高或者体重数据缺失以及身高 < 100 cm、体重 < 10 kg的患者。本次研究的主要结局为1年全因死亡率,次要结局为住院死亡率、28天死亡率。死亡统计是从住院日当天开始直至1年所计算的。体重指数(Body Mass Index, BMI)是是国际上广泛采用的衡量人体胖瘦程度及健康状况的一个重要指标[1],BMI = 体重(kg)/身高(m)2。根据WHO标准,我们将肥胖患者定义为BMI ≥ 30 kg/m2

我们从MIMIC-IV 3.1中提取各项指标,包括性别、年龄、体重、身高、生命体征、实验室检查指标、疾病评分、合并症以及是否进行肾替代治疗(Renal Replacement Therapy, RRT)。所有指标均收集于入住ICU 24小时内首次测定时的值。此外,我们删除缺失值大于10%的指标,并对缺失部分采用R语言的“mice”包进行简单的多重插补。

2.2. 统计分析

所有的统计分析均采用R 4.4.1进行。对于连续性变量,我们首先使用Shapiro-Wilk检验进行正态性检验。符合正态分布的连续性变量以均值 ± 标准差(SD)表示,并使用t检验进行组间差异分析;而非正态分布的连续性变量则以中位数(伴四分位数间距)表示,并采用Mann-Whitney U检验进行组间差异分析。分类变量则以频数和百分比(%)表示,组间差异分析则采用卡方检验或Fisher精确检验。所有统计分析中,以双侧P < 0.05作为判定差异具有统计学意义的标准。

2.3. 倾向性匹配评分(Propensity Score Matching, PSM)

PSM是一种常用于观察性研究中的统计方法,旨在通过匹配具有相似特征的个体,来减少因混杂因素引起的偏倚,进而估计处理(或干预)效应的因果关系。我们将提取的患者分为肥胖组和非肥胖组进行统计分析。在调节一切可能影响死亡率的混杂因素后进行PSM,以分组变量为因变量,协变量为自变量,构建逻辑回归模型。采用无放回的采样,使用1:1比例匹配对照组和处理组。卡尺值设定为20%的两组倾向得分标准差。我们通过标准化方差检验以及协变量均值差异检验确保匹配后的处理组和对照组在协变量上无显著差异。

2.4. 模型构建以验证

首先,为了选择特征变量防止模型过拟合,保证模型的准确性,我们进行套索回归分析(Least Absolute Shrinkage and Selection Operator, LASSO),然后通过多因素逻辑回归分析再次筛选变量,进而使用R语言中的“rms”包来构建列线图。最后,绘制该列线图模型的校准曲线以评估模型预测的准确性。

3. 结果

3.1. 基线数据

我们最终得到1506名VAP患者。如表1所示,在PSM前,有852名非肥胖患者,有655名肥胖患者,而在PSM后共匹配479对患者。在PSM前,肥胖患者进行机械通气时可能具有更高的呼吸频率、二氧化碳分压、PEEP水平、吸氧浓度,更长的机械通气时长,以及更低的氧合指数。

Table 1. Baseline indicators before and after propensity score matching

1. 倾向性匹配评分前后的基线指标

变量

匹配前

匹配后

非肥胖组

肥胖组

P

非肥胖组

肥胖组

P

N = 852

N = 655

N = 479

N = 479

年龄,岁

65.9 [53.2; 76.9]

61.0 [51.4; 70.9]

<0.001

62.6 [52.1; 74.2]

63.1 [52.3; 72.4]

0.666

性别

0.317

0.945

272 (31.9%)

226 (34.5%)

155 (32.4%)

157 (32.8%)

580 (68.1%)

429 (65.5%)

324 (67.6%)

322 (67.2%)

BMI, kg/m2

25.2 [22.5; 27.4]

35.1 [32.1; 39.6]

<0.001

25.5 [22.9; 27.6]

34.6 [31.7; 38.4]

<0.001

心率,次/分

88.0 [75.0; 104]

89.0 [76.0; 104]

0.300

90.0 [75.0; 105]

89.0 [75.0; 104]

0.961

呼吸频率, 次/分

19.0 [16.0; 24.0]

21.0 [17.0; 25.0]

<0.001

20.0 [16.0; 24.0]

20.0 [16.0; 24.0]

0.637

收缩压,mmHg

123 [106; 142]

124 [108; 143]

0.198

126 [106; 144]

124 [108; 143]

0.917

舒张压,mmHg

69.0 [58.0; 82.0]

68.0 [58.0; 82.0]

0.820

70.0 [60.0; 83.0]

69.0 [58.0; 83.0]

0.605

pH值

7.34 [7.28; 7.41]

7.33 [7.25; 7.40]

0.014

7.34 [7.27; 7.39]

7.34 [7.26; 7.40]

0.590

二氧化碳分压,mmHg

41.0 [36.0; 50.0]

45.0 [38.0; 53.5]

<0.001

43.0 [36.0; 51.5]

43.0 [37.0; 51.0]

0.572

氧分压,mmHg

120 [76.0; 201]

96.0 [69.0; 153]

<0.001

104 [64.5; 174]

101 [73.0; 165]

0.794

呼吸末正压值,mmHg

5.00 [5.00; 8.00]

6.20 [5.00; 10.6]

<0.001

5.10 [5.00; 10.0]

5.00 [5.00; 10.0]

0.801

吸氧浓度,%

50.0 [50.0; 100]

60.0 [50.0; 100]

<0.001

60.0 [50.0; 100]

60.0 [50.0; 100]

0.657

氧合指数,mmHg

212 [110; 373]

156 [91.7; 255]

<0.001

163 [95.0; 286]

172 [106; 272]

0.514

机械通气 时长,小时

206 [106; 367]

225 [116; 383]

0.038

208 [111; 366]

210 [107; 379]

0.824

乳酸,mmol/L

1.70 [1.20; 2.60]

1.70 [1.20; 2.80]

0.506

1.70 [1.20; 2.60]

1.70 [1.20; 2.85]

0.665

葡萄糖,mg/dL

134 [108; 175]

148 [118; 196]

<0.001

136 [108; 186]

144 [114; 184]

0.194

血红蛋白,g/dL

11.1 [9.30; 12.9]

11.3 [9.60; 13.2]

0.038

11.2 [9.25; 13.1]

11.2 [9.40; 13.1]

0.533

红细胞,m/uL

3.66 [3.09; 4.24]

3.92 [3.24; 4.43]

<0.001

3.74 [3.16; 4.32]

3.80 [3.14; 4.32]

0.669

血小板,m/uL

190 [130; 259]

201 [144; 268]

0.029

191 [129; 263]

197 [138; 256]

0.585

白细胞,m/uL

11.7 [8.10; 15.7]

12.1 [8.50; 16.2]

0.414

11.8 [7.80; 16.0]

12.1 [8.60; 16.0]

0.536

血尿素,mg/dL

19.0 [13.0; 31.2]

22.0 [15.0; 38.5]

0.001

21.0 [14.0; 34.0]

21.0 [14.0; 32.0]

0.995

血肌酐,mg/dL

1.00 [0.70; 1.42]

1.10 [0.80; 1.90]

<0.001

1.00 [0.80; 1.60]

1.10 [0.80; 1.65]

0.287

血清钾,mg/dL

4.10 [3.70; 4.53]

4.30 [3.80; 4.80]

<0.001

4.10 [3.80; 4.60]

4.20 [3.75; 4.70]

0.593

血清钠,mg/dL

139 [136; 142]

139 [135; 142]

0.041

139 [136; 142]

139 [136; 142]

0.394

血清钙,mg/dL

9.40 [8.90; 9.90]

9.60 [9.10; 10.1]

<0.001

9.50 [9.00; 10.0]

9.50 [9.00; 10.0]

0.910

GCS评分

15.0 [15.0; 15.0]

15.0 [15.0; 15.0]

0.653

15.0 [15.0; 15.0]

15.0 [15.0; 15.0]

0.355

SOFA评分

1.00 [0.00; 3.00]

1.00 [0.00; 4.00]

0.127

1.00 [0.00; 4.00]

1.00 [0.00; 4.00]

0.574

APS III评分

50.0 [37.0; 66.0]

53.0 [40.0; 69.0]

0.010

51.0 [38.0; 68.0]

51.0 [39.0; 66.0]

0.941

查尔森合 并症指数

5.00 [3.00; 7.00]

4.00 [2.00; 6.00]

0.043

4.00 [3.00; 7.00]

4.00 [2.00; 6.50]

0.638

高血压

0.516

0.794

507 (59.5%)

378 (57.7%)

274 (57.2%)

269 (56.2%)

345 (40.5%)

277 (42.3%)

205 (42.8%)

210 (43.8%)

糖尿病

<0.001

0.890

661 (77.6%)

391 (59.7%)

325 (67.8%)

328 (68.5%)

191 (22.4%)

264 (40.3%)

154 (32.2%)

151 (31.5%)

气管插管

0.722

0.878

653 (76.6%)

508 (77.6%)

369 (77.0%)

366 (76.4%)

199 (23.4%)

147 (22.4%)

110 (23.0%)

113 (23.6%)

透析治疗

<0.001

0.348

710 (83.3%)

476 (72.7%)

368 (76.8%)

381 (79.5%)

142 (16.7%)

179 (27.3%)

111 (23.2%)

98 (20.5%)

注:BMI:体重指数;GCS:哥斯拉评分;SOFA:序贯(性)多器官功能衰竭评分;APS III:急性生理与慢性健康评分系统III。

3.2. 肥胖与死亡率的关系

表2所示,在PSM后,两组之间的差距除了BMI具有显著差异外,其他指标均进行倾向匹配处理,结果发现,与非肥胖患者对比,肥胖患者在短期死亡率中并无明显差距,而可能具有更低的1年死亡风险。由于调节混杂变量后,我们发现肥胖状态与VAP的1年死亡率密切相关,因此,我们构建了VAP患者的1年全因死亡风险预测的列线图模型。

3.3. 模型构建及解释

图1所示,LASSO回归分析后,我们最终筛查出年龄、查尔森合并症指数(Charlson Comorbidity Index, CCI)、气管插管以及RRT状态共4个变量进行多因素逻辑回归分析。如表3所示,多因素逻辑回归分析显示,这些变量均与死亡风险明显相关(P < 0.05)。我们使用这4个变量构建列线图,正如图2所示,年龄越大,合并指数越高,进行RRT操作,患者1年全因死亡风险可能就越高。然而,进行气管插管的患者似乎1年死亡风险更低。如图3所示,为了验证模型的稳定性及准确性,我们绘制了列线图模型的校准曲线。

Table 2. Prognostic outcomes before and after propensity score matching

2. 倾向性匹配评分前后的预后情况

变量

匹配前

匹配后

非肥胖组

肥胖组

P

非肥胖组

肥胖组

P

N = 852

N = 655

N = 479

N = 479

住院死亡率

0.086

0.173

存活

631 (74.1%)

511 (78.0%)

355 (74.1%)

374 (78.1%)

死亡

221 (25.9%)

144 (22.0%)

124 (25.9%)

105 (21.9%)

28天死亡率

0.020

0.056

存活

654 (76.8%)

536 (81.8%)

367 (76.6%)

392 (81.8%)

死亡

198 (23.2%)

119 (18.2%)

112 (23.4%)

87 (18.2%)

90天死亡率

0.009

0.295

存活

555 (65.1%)

469 (71.6%)

322 (67.2%)

338 (70.6%)

死亡

297 (34.9%)

186 (28.4%)

157 (32.8%)

141 (29.4%)

1年死亡率

<0.001

0.034

存活

476 (55.9%)

427 (65.2%)

274 (57.2%)

307 (64.1%)

死亡

376 (44.1%)

228 (34.8%)

205 (42.8%)

172 (35.9%)

Figure 1. Least absolute shrinkage and selection operator regression (LASSO Regression): (A) A sequence of log Lambda is plotted on the coefficient profile graph; (B) The cross-validation plot, where we have selected 4 potential predictor variables

1. 最小绝对收缩和选择算子回归(LASSO回归):(A) 对数Lambda序列在系数剖面图上绘制;(B) 交叉验证图,我们选择了4个潜在的预测变量

Table 3. Multivariate logistic regression between selected variables and mortality rate

3. 筛选后变量与死亡率之间的多因素逻辑回归

变量

标准误

P值

OR

95% CI

年龄

0.005

<0.001

1.031

1.021~1.041

查尔森指数

0.027

<0.001

1.168

1.109~1.231

气管插管

0.147

<0.001

0.491

0.367~0.653

肾透析

0.14

<0.001

2.167

1.647~2.856

注:Age:年龄;CCI:查尔森合并症指数(Charlson Comorbidity Index);RRT:肾脏替代治疗(Renal Replacement Therapy);Tube:气管插管(Endotracheal Intubation)。

Figure 2. A Nomogram prediction model for the 1-year mortality risk in obese patients with ventilator-associated pneumonia

2. 呼吸机相关肺炎的肥胖患者1年死亡风险列线图预测模型

Figure 3. Calibration curve of the nomogram

3. 列线图的校准曲线

4. 讨论

本研究通过大型公共数据库提取了1506名VAP患者的数据,旨在探究肥胖状态与VAP不良预后的关系,并构建了肥胖VAP患者1年全因死亡率的列线图预测模型。结果显示,与非肥胖患者相比,肥胖的VAP患者1年全因死亡率更低,且年龄、CCI、气管插管及RRT状态是影响肥胖VAP患者长期死亡率的重要因素。

首先,肥胖悖论在VAP这一疾病中仍然存在。尽管肥胖通常被认为与多种不良健康结果相关,但在VAP患者中,肥胖状态并未增加短期死亡率,反而在一定程度上降低了患者的长期死亡率。这一结果与先前的一些研究相一致,Aretha等指出[13],与非肥胖患者相比,罹患VAP的肥胖患者似乎具有更低的90天全因死亡风险。这一现象在一定程度上符合“肥胖悖论”的描述,提示肥胖状态可能与VAP (呼吸机相关性肺炎)患者的短期和长期预后存在不同的关联。其潜在的生物学机制可能包括以下几个方面:首先,肥胖患者的脂肪组织分泌脂联素和瘦素,前者通过抑制NF-κB通路减轻全身炎症反应,后者可增强巨噬细胞吞噬功能,从而降低脓毒症风险,减轻炎症反应对机体的损伤[14] [15];此外,这可能与其较高的代谢储备和能量供应能力有关[16],肥胖患者的高脂肪储备在急性感染期可提供额外能量,减少蛋白质分解代谢,维持器官功能[17]。这些机制与非肥胖患者相比,可能为肥胖VAP患者提供了更优的免疫–代谢代偿基础,进而解释了肥胖患者在VAP预后中表现出的“肥胖悖论”现象。

其次,年龄、CCI、气管插管状态及RRT状态对肥胖VAP患者长期死亡率的影响不容忽视。在多种疾病中,年龄越大,合并症越多,患者死亡风险则越大[18] [19]。而进行RRT的患者可能存在更高的死亡风险,多项研究结果与本次研究结果相似[20] [21]。此外,我们的研究发现,在呼吸机相关肺炎的肥胖患者中进行气管插管似乎能降低其死亡风险,这似乎与传统观念存在一定矛盾。然而,两项Meta分析支持本研究的结果,即与超重或正常体重患者相比,有创通气肥胖患者的结局更好[9] [22]。其可能的机制为可视化喉镜、纤维支气管镜等技术的应用显著提高了肥胖患者的插管成功率,降低了气道损伤风险[23]。且肥胖患者插管后可能更注重气囊压力监测和声门下分泌物引流,可减少分泌物渗漏和误吸,从而降低VAP复发率和继发感染风险,表现为一定的保护性效应[24]。此外,肥胖患者常需更高水平的呼气末正压(PEEP)以维持肺泡开放,减少肺不张和呼吸机相关性肺损伤[25],此类个体化通气策略可能改善氧合状态,间接降低多器官衰竭的风险。

最后,本研究采用PSM减少选择偏差,以及使用LASSO回归分析联合多因素逻辑回归分析选择特征变量构建预测模型,提高了研究的准确性和可靠性。然而,本研究也存在一定的局限性。例如,样本量有限以及未动态研究相关指标,可能影响研究结果;同时,可能存在未测量的混杂因素,如遗传背景、生活方式等。因此,在未来的研究中,需要进一步扩大样本量,动态研究指标,并考虑更多的潜在混杂因素。

总之,本次研究结果可能对临床实践具有一定的指导意义。我们利用公共数据库提取合适的VAP患者数据进行统计分析,期望能够增加对VAP肥胖患者长期死亡风险因素的识别能力,并为VAP的个性化诊疗提供新的见解和依据。这不仅有助于优化VAP患者的治疗策略,还可能为理解肥胖在疾病预后中的复杂作用提供新的线索。

5. 结论

综上所述,肥胖的VAP患者可能具有更低的1年全因死亡率,且在我们构建的肥胖患者预测模型中发现,较大的年龄、较高的CCI水平以及需要进行RRT的患者,其1年死亡风险更高,而进行气管插管的患者似乎具有更低的死亡风险。

NOTES

*通讯作者。

参考文献

[1] Modi, A.R. and Kovacs, C.S. (2020) Hospital-Acquired and Ventilator-Associated Pneumonia: Diagnosis, Management, and Prevention. Cleveland Clinic Journal of Medicine, 87, 633-639.
https://doi.org/10.3949/ccjm.87a.19117
[2] Spalding, M.C., Cripps, M.W. and Minshall, C.T. (2017) Ventilator-Associated Pneumonia: New Definitions. Critical Care Clinics, 33, 277-292.
https://doi.org/10.1016/j.ccc.2016.12.009
[3] Kalanuria, A.A., Ziai, W. and Mirski, M. (2016) Erratum to: Ventilator-Associated Pneumonia in the ICU. Critical Care, 20, Article No. 29.
https://doi.org/10.1186/s13054-016-1206-8
[4] De Jong, A., Wrigge, H., Hedenstierna, G., Gattinoni, L., Chiumello, D., Frat, J., et al. (2020) How to Ventilate Obese Patients in the ICU. Intensive Care Medicine, 46, 2423-2435.
https://doi.org/10.1007/s00134-020-06286-x
[5] Kacmarek, R.M., Wanderley, H.V., Villar, J. and Berra, L. (2021) Weaning Patients with Obesity from Ventilatory Support. Current Opinion in Critical Care, 27, 311-319.
https://doi.org/10.1097/mcc.0000000000000823
[6] Ojeda Castillejo, E., de Lucas Ramos, P., López Martin, S., Resano Barrios, P., Rodríguez Rodríguez, P., Morán Caicedo, L., et al. (2015) Noninvasive Mechanical Ventilation in Patients with Obesity Hypoventilation Syndrome. Long-Term Outcome and Prognostic Factors. Archivos de Bronconeumología, 51, 61-68.
https://doi.org/10.1016/j.arbres.2014.02.015
[7] El Labban, M., Zeid Daou, M.A., Smaily, H., Hammoud, A., Hassan, G., Khan, S., et al. (2024) The Impact of Obesity on Ventilator-Associated Pneumonia, a US Nationwide Study. BMC Pulmonary Medicine, 24, Article No. 104.
https://doi.org/10.1186/s12890-024-02924-y
[8] Shao, D., Straub, J. and Matrka, L. (2020) Obesity as a Predictor of Prolonged Mechanical Ventilation. OtolaryngologyHead and Neck Surgery, 163, 750-754.
https://doi.org/10.1177/0194599820923601
[9] Zhao, Y., Li, Z., Yang, T., Wang, M. and Xi, X. (2018) Is Body Mass Index Associated with Outcomes of Mechanically Ventilated Adult Patients in Intensive Critical Units? A Systematic Review and Meta-Analysis. PLOS ONE, 13, e0198669.
https://doi.org/10.1371/journal.pone.0198669
[10] Sasabuchi, Y., Yasunaga, H., Matsui, H., Lefor, A.T., Horiguchi, H., Fushimi, K., et al. (2015) The Dose-Response Relationship between Body Mass Index and Mortality in Subjects Admitted to the ICU with and without Mechanical Ventilation. Respiratory Care, 60, 983-991.
https://doi.org/10.4187/respcare.03694
[11] Guo, Z., Wang, X., Wang, Y., et al. (2016) “Obesity Paradox” in Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. PLOS ONE, 11, e0163677.
https://doi.org/10.1371/journal.pone.0163677
[12] Simati, S., Kokkinos, A., Dalamaga, M. and Argyrakopoulou, G. (2023) Obesity Paradox: Fact or Fiction? Current Obesity Reports, 12, 75-85.
https://doi.org/10.1007/s13679-023-00497-1
[13] Aretha, D. and Kiekkas, P. (2021) Obesity and the Incidence of Ventilator-Associated Pneumonia in Critically Ill Patients with Shock: The Paradox Persists. Chest, 159, 2135-2136.
https://doi.org/10.1016/j.chest.2021.03.018
[14] Ouchi, N., Kihara, S., Arita, Y., Okamoto, Y., Maeda, K., Kuriyama, H., et al. (2000) Adiponectin, an Adipocyte-Derived Plasma Protein, Inhibits Endothelial NF-kappaB Signaling through a cAMP-Dependent Pathway. Circulation, 102, 1296-1301.
https://doi.org/10.1161/01.cir.102.11.1296
[15] Khanna, D., Khanna, S., Khanna, P., Kahar, P. and Patel, B.M. (2022) Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus, 14, e22711.
https://doi.org/10.7759/cureus.22711
[16] Frat, J., Gissot, V., Ragot, S., Desachy, A., Runge, I., Lebert, C., et al. (2008) Impact of Obesity in Mechanically Ventilated Patients: A Prospective Study. Intensive Care Medicine, 34, 1991-1998.
https://doi.org/10.1007/s00134-008-1245-y
[17] Yao, S., Zeng, L., Wang, F. and Chen, K. (2023) Obesity Paradox in Lung Diseases: What Explains It? Obesity Facts, 16, 411-426.
https://doi.org/10.1159/000531792
[18] Patel, B.M., Reilly, J.P., Bhalla, A.K., Smith, L.S., Khemani, R.G., Jones, T.K., et al. (2024) Association between Age and Mortality in Pediatric and Adult Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 209, 871-878.
https://doi.org/10.1164/rccm.202310-1926oc
[19] Tang, W., Tang, R., Zhao, Y., Peng, J. and Wang, D. (2022) Comparison of Clinical Characteristics and Predictors of Mortality between Direct and Indirect ARDS. Medicina, 58, Article No. 1563.
https://doi.org/10.3390/medicina58111563
[20] Adukauskiene, D., Ciginskiene, A., Adukauskaite, A., Koulenti, D. and Rello, J. (2022) Clinical Features and Outcomes of Monobacterial and Polybacterial Episodes of Ventilator-Associated Pneumonia Due to Multidrug-Resistant Acinetobacter baumannii. Antibiotics, 11, Article No. 892.
https://doi.org/10.3390/antibiotics11070892
[21] Gamberini, L., Tonetti, T., Spadaro, S., Zani, G., Mazzoli, C.A., Capozzi, C., et al. (2020) Factors Influencing Liberation from Mechanical Ventilation in Coronavirus Disease 2019: Multicenter Observational Study in Fifteen Italian ICUs. Journal of Intensive Care, 8, Article No. 80.
https://doi.org/10.1186/s40560-020-00499-4
[22] Ni, Y., Luo, J., Yu, H., Wang, Y., Hu, Y., Liu, D., et al. (2017) Can Body Mass Index Predict Clinical Outcomes for Patients with Acute Lung Injury/Acute Respiratory Distress Syndrome? A Meta-Analysis. Critical Care, 21, Article No. 36.
https://doi.org/10.1186/s13054-017-1615-3
[23] Hoshijima, H., Denawa, Y., Tominaga, A., Nakamura, C., Shiga, T. and Nagasaka, H. (2018) Video Laryngoscope versus Macintosh Laryngoscope for Tracheal Intubation in Adults with Obesity: A Systematic Review and Meta-Analysis. Journal of Clinical Anesthesia, 44, 69-75.
https://doi.org/10.1016/j.jclinane.2017.11.008
[24] 莫旻龙, 刘端绘, 梁振杰, 等. 动态调控气囊压力与声门下吸引联合应用于预防呼吸机相关性肺炎的价值分析[J]. 临床和实验医学杂志, 2018, 17(8): 841-844.
[25] Fumagalli, J., Santiago, R.R.S., Teggia Droghi, M., Zhang, C., Fintelmann, F.J., Troschel, F.M., et al. (2019) Lung Recruitment in Obese Patients with Acute Respiratory Distress Syndrome. Anesthesiology, 130, 791-803.
https://doi.org/10.1097/aln.0000000000002638