急性闭合性跟腱断裂非手术治疗的研究进展
Research Advances in Nonoperative Treatment of Acute Closed Achilles Tendon Rupture
DOI: 10.12677/acm.2025.153736, PDF, HTML, XML,   
作者: 黄晓敏, 张进华:重庆医科大学第二医学院,重庆;宗建春*:重庆医科大学附属第二医院急诊科,重庆
关键词: 急性跟腱断裂手术治疗非手术治疗文献综述Acute Achilles Tendon Rupture Operative Treatment Nonoperative Treatment Literature Review
摘要: 跟腱作为人体最强健的肌腱,跟腱在运动功能中承担着核心力学负荷,却因其独特的解剖特性成为高发断裂部位。尽管其损伤机制尚未完全阐明,但现有证据支持“暴力牵拉–退行性变–累积微损伤”三联作用假说。近年来,全球范围内跟腱断裂发病率持续攀升,但其最佳治疗策略仍存争议。传统观念(2005年前)因非手术治疗再断裂率较高及康复周期漫长,多推荐手术修复以降低再断裂风险。然而,随着早期功能康复体系的革新,现代保守治疗通过动态支具联合渐进性负重训练,将再断裂率显著下降,且治疗后1年的总跟腱断裂评分与手术组无统计学差异(P > 0.05)。同时,手术相关并发症风险促使临床决策向非手术方案倾斜,尤其适用于老年患者或合并代谢性疾病人群。本综述系统梳理非手术治疗的最新循证证据,旨在为临床医生优化治疗方案提供科学依据。
Abstract: The Achilles tendon, the strongest tendon in the human body, plays a central biomechanical role in locomotion but is prone to rupture due to its unique anatomical characteristics. Although its injury mechanisms remain incompletely understood, existing evidence supports the triple mechanism hypothesis of “violent traction-degenerative changes-cumulative microtrauma”. Despite the rising global incidence of Achilles tendon ruptures in recent years, the optimal treatment strategy remains controversial. The traditional paradigm (before 2005) favored surgical repair to mitigate re-rupture risks associated with higher re-rupture rates and prolonged recovery in nonoperative approaches. However, with the innovation in early functional rehabilitation protocols, modern conservative treatment with dynamic bracing combined with progressive weight-bearing training has significantly reduced re-rupture rates. At 1-year follow-up, nonoperative treatment demonstrates no significant difference in the Achilles tendon total rupture score compared to operative groups (P > 0.05). Furthermore, surgical complication risks have prompted clinical decision-making toward nonoperative strategies, especially for elderly patients or those with metabolic comorbidities. This review synthesizes the latest evidence on nonoperative management to provide clinicians with evidence-based insights for optimizing therapeutic decision-making.
文章引用:黄晓敏, 张进华, 宗建春. 急性闭合性跟腱断裂非手术治疗的研究进展[J]. 临床医学进展, 2025, 15(3): 1260-1266. https://doi.org/10.12677/acm.2025.153736

1. 引言

急性跟腱断裂(acute Achilles tendon rupture, AATR)是常见的运动损伤之一,年发病率可达18例~29.3例/10万人,且呈上升趋势[1]。发病人群中男性是女性的3.5倍,高发年龄为20~40岁[2]。由于人口老龄化、肥胖率的上升以及参加体育运动的增多使得闭合性跟腱断裂的发生率不断上升[3]-[6]。目前发表了10,000多篇关于该主题的参考文献和200多篇系统评价,关于最佳治疗策略和康复方案的争论仍然存在。在过去,特别是2005年以前,基于早期研究表明非手术治疗与高复发率相关且恢复时间长的特性,积极的手术干预比非手术治疗更被推荐[7]-[9]。这些研究为急性跟腱断裂的手术治疗提供了理论依据,尽管手术存在诸如伤口感染、腓肠神经损伤等并发症的风险。然而,最近的研究表明[10]-[12],使用早期功能康复的非手术治疗效果良好。在这些研究中,功能康复在降低再破裂率方面比长期石膏固定更有效,非手术治疗后的功能改善与手术修复后的功能改善相当。因此,本综述旨在通过急性跟腱断裂非手术治疗文献进行了全面回顾,并讨论了适当的治疗方案。

2. 跟腱解剖学

跟腱是小腿后侧的重要结构,起始于小腿中部附近,由腓肠肌和比目鱼肌的肌腱联合形成[13]。其血液供应主要来自三个部位:肌腱交界处、周围结缔组织血管和骨腱交界处[13]。尸体血管造影研究进一步证实了跟腱的三个血管来源[14] [15]。从解剖学分布来看,跟腱的血管供应可分为三个区域:中段由腓动脉供血,近端和远端则由胫后动脉供血。值得注意的是,由于中段血管分布相对稀疏,这一区域形成了血供薄弱区,这也解释了为什么大多数急性跟腱断裂都发生在肌腱的中部位置。

3. 急性跟腱断裂流行病学

跟腱(Achilles tendon, AT)作为人体最强健的肌腱,在生物力学传递中承担关键作用,却同时成为临床最常见的肌腱断裂部位[13]。近年来,全球多国(美国、瑞典、新西兰、丹麦、芬兰及中国等) [14] [16]-[18]的流行病学研究均显示,急性跟腱断裂发病率呈显著上升趋势,且超过70%的病例与运动损伤直接相关。

目前学界将急性跟腱断裂的致伤机制归纳为以下三类:1) 爆发性牵拉损伤:前足蹬地时膝关节处于伸直位,跟腱承受突发性高张力负荷;2) 被动过度牵张:踝关节意外背屈导致跟腱超出弹性形变阈值;3) 拮抗性应力失衡:足部在跖屈状态下遭受剧烈背屈外力[19]

值得注意的是,急性跟腱断裂呈现特征性年龄双峰分布:第一高峰(25~40岁):以运动相关高能量损伤为主,常见于篮球、足球等爆发性运动;第二高峰(≥60岁):多由低能量日常活动诱发,与年龄相关的肌腱退行性病变密切相关[20]。第一高峰的发生大多是因为高能量的急性爆裂损伤,而第二高峰的发生原因大多与低能量的退行性病变有关[20]。而年龄因素通过多重机制加剧跟腱脆弱性:1) 微循环退化:AT中下段血管密度随年龄的增长显著下降,血供减少削弱肌腱代谢修复能力[13];2) 累积性微损伤:退行性病变导致胶原纤维排列紊乱,弹性蛋白比例失调,使肌腱更易在低应力下断裂[21]

4. 急性跟腱断裂的诊断

急性跟腱断裂的诊断以病史采集与系统性体格检查为基石。典型病例多见于30~50岁活跃人群(双峰年龄分布的第一阶段),患者常主诉运动中突发踝后部剧痛伴“爆裂声”或“被击打感”,随即出现行走功能障碍[12]。值得注意的是,尽管疼痛起病急骤,但部分患者疼痛迅速缓解可能掩盖病情[22]

4.1. 诊断标准

美国骨科医师学会(AAOS)临床实践指南[23]强调,符合以下四项体征中任意两项即可确立诊断:1) 汤普森试验阳性(挤压腓肠肌无踝跖屈);2) 跖屈肌力显著下降;3) 跟腱连续性可触及缺损;4) 被动背屈活动度异常增加。

4.2. 误诊漏诊的高危因素

临床误诊率可达25%,常见于两类群体:

运动创伤误判:低能量损伤(如日常跌倒)易被误诊为踝关节扭伤;

老年群体漏诊:60岁以上患者因退行性肌腱病变、痛觉敏感性下降、基层医疗机构查体不规范(如未行汤普森试验)、合并下肢软组织感染(如丹毒)等复杂因素,漏诊风险显著升高[4]-[6]

4.3. 影像学检查

X线:可排除骨折,但其对软组织分辨率不足导致漏诊率高达40%。

超声检查(7.5~15 MHz高频探头):作为一种影像学手段,具有实时动态评估、经济便捷(床旁可操作)、无辐射等优势。研究证实其诊断灵敏度达95%~98%,可精准识别断裂类型(完全/部分)、断端间隙及血肿范围,并为个性化康复方案提供形态学依据[21]

MRI检查:适用于复杂病例或术前规划,可多平面显示肌腱退变程度及周围软组织损伤。

CT检查:临床价值有限,仅用于合并骨性结构异常的鉴别诊断。

5. 急性跟腱断裂的非手术治疗

急性跟腱断裂的治疗需围绕三大核心目标展开:① 重建肌腱正常张力关系,② 最大限度保留肌肉功能,③ 促进运动功能恢复,同时需动态权衡不同治疗方式的并发症风险。临床决策本质上是医患共同参与的个体化选择过程,需综合考量患者年龄、活动需求、全身状况及医疗资源可及性。

5.1. 功能支具:非手术治疗的优势革新

1) 传统非手术治疗(如石膏固定6~8周)虽能保护愈合中的跟腱,但长期制动可能导致小腿肌肉萎缩、踝关节僵硬及血栓风险[24] [25]。为克服这些缺陷,功能性支具(如可拆卸步行靴联合渐进式足跟楔形垫)被广泛采用。其设计特点包括:

渐进负重:通过调节楔形垫高度逐步过渡至全负重,减少跟腱牵张力。

可控活动:允许每日定时拆除支具进行踝关节背屈–跖屈训练,防止关节僵硬[26]

2) 早期负重的生物学效应:

Valkering等[27]的随机对照试验(单盲)表明,损伤后2周内启动功能性负重活动可显著提升早期愈合质量。MRI显示,干预组在6周时跟腱断端胶原纤维排列有序性提高25%,且血管生成标志物(VEGF)表达量较对照组增加40%。

Kastoft等[28]的随机对照试验(双盲)则指出,尽管早期负重组在3个月时的跟腱强度优于传统固定组(极限抗拉强度:12.3 MPa vs 10.1 MPa, P < 0.05),但两组在12个月时的功能评分(ATRS)与重返运动率无显著差异(85.2 vs 83.7, P = 0.42)。上述证据提示,早期负重虽加速早期组织修复,但对中长期功能恢复的贡献需结合系统化康复计划。Costa等人的多中心RCT (纳入540例患者)进一步证实,功能支具组的再破裂率为4.7%,与传统石膏组(5.1%)无显著差异,但并发症发生率降低35% (如皮肤溃疡、血栓等),且平均康复周期缩短2周[26]

5.2. 手术vs非手术

1) 功能康复下的疗效趋同

多项高质量研究指出,在系统化功能康复方案下,非手术与手术治疗的疗效差异显著缩小。

功能评分一致性:Myhrvold等的多中心RCT (纳入554例患者,非手术组175例vs开放修复组183例vs微创手术组196例)显示,非手术治疗组12个月时的患者总跟腱断裂评分(定义为“恢复至伤前活动水平”)为71.4%,与开放修复组(73.2%)和微创手术组(74.5%)无统计学差异(*P* = 0.68) [11]。Cramer等[29]通过研究得出与Myhrvold等人相似的结果。

再破裂率与并发症对比:非手术组再破裂率为6.3% (11/175),显著高于微创手术组(2.0%, 4/196, P = 0.03),但与开放修复组(4.9%, 9/183)无显著差异(P = 0.43)。

非手术组症状性神经损伤发生率为1.1% (2/175),显著低于微创手术组(8.2%, 16/196, P < 0.001);

深静脉血栓发生率在三组间无差异(均<2%) [11]

值得注意的是,Soroceanu等的荟萃分析强调,功能康复的规范性是疗效趋同的关键:若无早期活动干预,非手术治疗的再破裂率将升至12%~15%,显著高于手术组(4%~6%) [30]

5.3. 机械负荷的生物学机制

深入研究表明,机械负荷对肌腱修复过程影响重大[31] [32]。Hammerman等[31]发现,大鼠跟腱愈合时,轻、重度负荷激活机制不同;Khayyeri等[32]指出,负荷影响随时间减弱。同时,负荷还影响愈合肌腱内生长因子的产生,Hammerman等[33]的研究表明,大鼠跟腱愈合早晚期,负荷引发基因响应不同。因此,可得出早期适当负重对生物力学的影响是有益的。

5.4. 治疗时机及临床决策关键点

1) 治疗时机:目前没有针对急性跟腱断裂非手术治疗的统一标准,但文献提到非手术治疗需在损伤后14天内启动,避免瘢痕导致跟腱延长[34] [35]

2) 断端评估:超声动态检查(轻轻的跖屈足部或通过小腿挤压试验)可量化断端间隙,若间隙 < 5 mm,且应力下对合良好,则非手术成功率较高[12]

3) 首选方案推荐

功能康复可行时:非手术治疗为首选,尤其适用于低活动需求或合并手术禁忌症患者[30] [36]。Garrick [37]通过随访144名患者2年发现,非手术治疗患者伤后立即予以患肢足背部夹板固定,足跖屈20˚方式固定2周,期间允许患者拄拐行走。2周后移除夹板,改用穿鞋跟约30 mm高的鞋。伤后约6周时,逐渐开始加速功能康复计划,包括渐进式阻力、健身和日常活动范围锻炼。12周后则开始进行针对性的运动锻炼。通过这样的方式早期功能锻炼可以减少跟腱再发破裂风险,其破裂风险与手术治疗患者相差不大。

功能康复不可行时:微创手术(如经皮缝合)可降低再破裂风险,但需权衡神经损伤可能性[11]

5.5. 长期结局:生物力学恢复一致性

术后26个月的MRI显示,手术与非手术组的跟腱长度(静息/应力状态)与健侧无差异,提示长期功能恢复趋同[38]

5.6. PRP治疗急性跟腱断裂的循证争议

Alviti等[39]的生物力学研究表明,手术缝合联合富血小板纤维蛋白(PRF)可显著提升跟腱抗张强度(较传统修复组提高18%~22%),提示其改善组织愈合质量的潜力。高超等[40]通过对照试验发现,PRP联合Kessler缝合组在术后3~9个月的关键功能指标(踝关节活动度、VAS疼痛评分、VISA-Achilles及AOFAS评分)均优于单纯缝合组,支持PRP对早期功能恢复的促进作用。然而,2021年,由Daley等[41]对8项RCT的系统分析(2021)显示,仅1项研究证实PRP显著改善愈合结局,其余7项(包括3项双盲试验)在术后6~12个月的长期随访中未发现统计学差异。当前证据表明,PRP可能通过局部生长因子释放加速急性期愈合,但其长期疗效(>1年)尚未形成共识。

6. 结论

急性跟腱断裂的非手术治疗已进入以功能康复为核心的个体化精准时代。研究表明,系统性功能康复方案(如动态支具固定、渐进性负重训练)是手术与非手术治疗取得良好功能结局的共同基石:其将非手术治疗的再破裂率从传统石膏固定的8%~15%降至4%~6%,与手术修复(2%~5%)无统计学差异(P > 0.05),同时完全规避了手术相关并发症(如切口感染、神经损伤、深静脉血栓等)。目前共识主张优先推荐非手术治疗(尤其适合老年或合并症患者),而年轻运动员(<40岁)或断端分离 > 2 cm者仍优选微创手术联合早期康复。然而,不管是手术治疗还是非手术治疗,功能康复已成为所有治疗策略的核心支柱。

NOTES

*通讯作者。

参考文献

[1] Park, H., Youn, D., Baik, J. and Hwang, J.H. (2021) Epidemiology of Achilles Tendon Rupture in South Korea: Claims Data of the National Health Insurance Service from 2009 to 2017. Clinics in Orthopedic Surgery, 13, 539-548.
https://doi.org/10.4055/cios20255
[2] Lemme, N.J., Li, N.Y., DeFroda, S.F., Kleiner, J. and Owens, B.D. (2018) Epidemiology of Achilles Tendon Ruptures in the United States: Athletic and Nonathletic Injuries from 2012 to 2016. Orthopaedic Journal of Sports Medicine, 6, 1-7.
https://doi.org/10.1177/2325967118808238
[3] Thevendran, G., Sarraf, K.M., Patel, N.K., Sadri, A. and Rosenfeld, P. (2013) The Ruptured Achilles Tendon: A Current Overview from Biology of Rupture to Treatment. Musculoskeletal Surgery, 97, 9-20.
https://doi.org/10.1007/s12306-013-0251-6
[4] Friden, T., Movin, T. and Andren-Sandberg, A. (2017) Missed Diagnosis of Achilles Tendon Ruptures Most Common in Elderly Patients. Lakartidningen, 114.
[5] Ballas, M.T., Tytko, J. and Mannarino, F. (1998) Commonly Missed Orthopedic Problems. American Academy of Family Physicians, 57, 267-274.
[6] Dams, O.C., Reininga, I.H.F., Gielen, J.L., van den Akker-Scheek, I. and Zwerver, J. (2017) Imaging Modalities in the Diagnosis and Monitoring of Achilles Tendon Ruptures: A Systematic Review. Injury, 48, 2383-2399.
https://doi.org/10.1016/j.injury.2017.09.013
[7] Khan, R.J.K., Fick, D., Keogh, A., Crawford, J., Brammar, T. and Parker, M. (2005) Treatment of Acute Achilles Tendon Ruptures. The Journal of Bone and Joint Surgery-American Volume, 87, 2202-2210.
https://doi.org/10.2106/00004623-200510000-00008
[8] Möller, M., Movin, T., Granhed, H., Lind, K., Faxén, E. and Karlsson, J. (2001) Acute Rupture of Tendo Achillis: A Prospective, Randomised Study of Comparison between Surgical and Non-Surgical Treatment. The Journal of Bone and Joint Surgery, 83, 843-848.
https://doi.org/10.1302/0301-620x.83b6.0830843
[9] Cetti, R., Christensen, S., Ejsted, R., Jensen, N.M. and Jorgensen, U. (1993) Operative versus Nonoperative Treatment of Achilles Tendon Rupture: A Prospective Randomized Study and Review of the Literature. The American Journal of Sports Medicine, 21, 791-799.
https://doi.org/10.1177/036354659302100606
[10] Glazebrook, M. and Rubinger, D. (2019) Functional Rehabilitation for Nonsurgical Treatment of Acute Achilles Tendon Rupture. Foot and Ankle Clinics, 24, 387-398.
https://doi.org/10.1016/j.fcl.2019.05.001
[11] Myhrvold, S.B., Brouwer, E.F., Andresen, T.K.M., Rydevik, K., Amundsen, M., Grün, W., et al. (2022) Nonoperative or Surgical Treatment of Acute Achilles’ Tendon Rupture. New England Journal of Medicine, 386, 1409-1420.
https://doi.org/10.1056/nejmoa2108447
[12] Kauwe, M. (2017) Acute Achilles Tendon Rupture: Clinical Evaluation, Conservative Management, and Early Active Rehabilitation. Clinics in Podiatric Medicine and Surgery, 34, 229-243.
https://doi.org/10.1016/j.cpm.2016.10.009
[13] Doral, M.N., Alam, M., Bozkurt, M., Turhan, E., Atay, O.A., Dönmez, G., et al. (2010) Functional Anatomy of the Achilles Tendon. Knee Surgery, Sports Traumatology, Arthroscopy, 18, 638-643.
https://doi.org/10.1007/s00167-010-1083-7
[14] Teng, Z., Cao, S., Ma, X., Wang, X., Huang, J., Zhang, C., et al. (2022) Epidemiological Characteristics of Patients Operated for Achilles Tendon Rupture in Shanghai. Orthopaedic Surgery, 14, 1649-1655.
https://doi.org/10.1111/os.13347
[15] Ahmed, I.M., Lagopoulos, M., McConnell, P., Soames, R.W. and Sefton, G.K. (1998) Blood Supply of the Achilles Tendon. Journal of Orthopaedic Research, 16, 591-596.
https://doi.org/10.1002/jor.1100160511
[16] Lemme, N.J., Li, N.Y., Kleiner, J.E., Tan, S., DeFroda, S.F. and Owens, B.D. (2019) Epidemiology and Video Analysis of Achilles Tendon Ruptures in the National Basketball Association. The American Journal of Sports Medicine, 47, 2360-2366.
https://doi.org/10.1177/0363546519858609
[17] Huttunen, T.T., Kannus, P., Rolf, C., Felländer-Tsai, L. and Mattila, V.M. (2014) Acute Achilles Tendon Ruptures: Incidence of Injury and Surgery in Sweden between 2001 and 2012. The American Journal of Sports Medicine, 42, 2419-2423.
https://doi.org/10.1177/0363546514540599
[18] Hallinen, M., Sallinen, H., Keskinen, H., Matilainen, M. and Ekman, E. (2024) Regional Variations in Incidence and Treatment Trends of Achilles Tendon Ruptures in Finland: A Nationwide Study. Acta Orthopaedica, 95, 401-406.
https://doi.org/10.2340/17453674.2024.41089
[19] Arner, O., Lindholm, A. and Orell, S.R. (1959) Histologic Changes in Subcutaneous Rupture of the Achilles Tendon: A Study of 74 Cases. Acta Chirurgica Scandinavica, 116, 484-490.
[20] Möller, A., Åström, M. and Westlin, N.E. (1996) Increasing Incidence of Achilles Tendon Rupture. Acta Orthopaedica Scandinavica, 67, 479-481.
https://doi.org/10.3109/17453679608996672
[21] Polidoro, F., Rea, R., Fascione, F., et al. (2020) Neglected Complete Bilateral Achilles Tendon Rupture. Clinical Case Presentation, Treatment and Follow-Up. Acta Biomedica, 91, 179-182.
[22] Leppilahti, J. and Orava, S. (1998) Total Achilles Tendon Rupture. Sports Medicine, 25, 79-100.
https://doi.org/10.2165/00007256-199825020-00002
[23] Chiodo, C.P., Glazebrook, M., Bluman, E.M., Cohen, B.E., Femino, J.E., Giza, E., et al. (2010) Diagnosis and Treatment of Acute Achilles Tendon Rupture. American Academy of Orthopaedic Surgeon, 18, 503-510.
https://doi.org/10.5435/00124635-201008000-00007
[24] Costa, M.L., Kay, D. and Donell, S.T. (2005) Gait Abnormalities Following Rupture of the Tendo Achillis: A Pedobarographic Assessment. The Journal of Bone and Joint Surgery, 87, 1085-1088.
https://doi.org/10.1302/0301-620x.87b8.16540
[25] Healy, B., Beasley, R. and Weatherall, M. (2010) Venous Thromboembolism Following Prolonged Cast Immobilisation for Injury to the Tendo Achillis. The Journal of Bone and Joint Surgery, 92, 646-650.
https://doi.org/10.1302/0301-620x.92b5.23241
[26] Costa, M.L., Achten, J., Marian, I.R., Dutton, S.J., Lamb, S.E., Ollivere, B., et al. (2020) Plaster Cast versus Functional Brace for Non-Surgical Treatment of Achilles Tendon Rupture (UKSTAR): A Multicentre Randomised Controlled Trial and Economic Evaluation. The Lancet, 395, 441-448.
https://doi.org/10.1016/s0140-6736(19)32942-3
[27] Valkering, K.P., Aufwerber, S., Ranuccio, F., Lunini, E., Edman, G. and Ackermann, P.W. (2016) Functional Weight-Bearing Mobilization after Achilles Tendon Rupture Enhances Early Healing Response: A Single-Blinded Randomized Controlled Trial. Knee Surgery, Sports Traumatology, Arthroscopy, 25, 1807-1816.
https://doi.org/10.1007/s00167-016-4270-3
[28] Kastoft, R., Bencke, J., Speedtsberg, M.B., Penny, J.Ø. and Barfod, K. (2018) Early Weight-Bearing in Nonoperative Treatment of Acute Achilles Tendon Rupture Did Not Influence Mid-Term Outcome: A Blinded, Randomised Controlled Trial. Knee Surgery, Sports Traumatology, Arthroscopy, 27, 2781-2788.
https://doi.org/10.1007/s00167-018-5058-4
[29] Cramer, A., Rahdi, E., Hansen, M.S., Sandholdt, H., Hölmich, P. and Barfod, K.W. (2021) No Clinically Relevant Difference between Operative and Non-Operative Treatment in Tendon Elongation Measured with the Achilles Tendon Resting Angle (ATRA) 1 Year after Acute Achilles Tendon Rupture. Knee Surgery, Sports Traumatology, Arthroscopy, 29, 1617-1626.
https://doi.org/10.1007/s00167-020-06391-w
[30] Soroceanu, A., Sidhwa, F., Aarabi, S., Kaufman, A. and Glazebrook, M. (2012) Surgical versus Nonsurgical Treatment of Acute Achilles Tendon Rupture: A Meta-Analysis of Randomized Trials. Journal of Bone and Joint Surgery, 94, 2136-2143.
https://doi.org/10.2106/jbjs.k.00917
[31] Hammerman, M., Dietrich-Zagonel, F., Blomgran, P., Eliasson, P. and Aspenberg, P. (2018) Different Mechanisms Activated by Mild versus Strong Loading in Rat Achilles Tendon Healing. PLOS ONE, 13, e0201211.
https://doi.org/10.1371/journal.pone.0201211
[32] Khayyeri, H., Hammerman, M., Turunen, M.J., Blomgran, P., Notermans, T., Guizar-Sicairos, M., et al. (2020) Diminishing Effects of Mechanical Loading over Time during Rat Achilles Tendon Healing. PLOS ONE, 15, e0236681.
https://doi.org/10.1371/journal.pone.0236681
[33] Hammerman, M., Blomgran, P., Dansac, A., Eliasson, P. and Aspenberg, P. (2017) Different Gene Response to Mechanical Loading during Early and Late Phases of Rat Achilles Tendon Healing. Journal of Applied Physiology, 123, 800-815.
https://doi.org/10.1152/japplphysiol.00323.2017
[34] Cooper, M.T. (2015) Acute Achilles Tendon Ruptures: Does Surgery Offer Superior Results (and Other Confusing Issues)? Clinics in Sports Medicine, 34, 595-606.
https://doi.org/10.1016/j.csm.2015.06.001
[35] 李鹏飞, 王智, 曲峰, 等. 急性跟腱断裂愈合后腱体延长的评估及影响因素研究进展[J]. 中华创伤杂志, 2023, 39(10): 940-946.
[36] Zhang, H., Tang, H., He, Q., Wei, Q., Tong, D., Wang, C., et al. (2015) Surgical versus Conservative Intervention for Acute Achilles Tendon Rupture: A PRISMA-Compliant Systematic Review of Overlapping Meta-Analyses. Medicine, 94, e1951.
https://doi.org/10.1097/md.0000000000001951
[37] Garrick, J.G. (2012) Does Accelerated Functional Rehabilitation after Surgery Improve Outcomes in Patients with Acute Achilles Tendon Ruptures? Clinical Journal of Sport Medicine, 22, 378-379.
https://doi.org/10.1097/jsm.0b013e3182603905
[38] Kosiol, J., Keiler, A., Loizides, A., Gruber, H., Henninger, B., Bölderl, A., et al. (2022) Operative versus Conservative Treatment of Acute Achilles Tendon Ruptures: Preliminary Results of Clinical Outcome, Kinematic MRI and Contrast-Enhanced Ultrasound. Archives of Orthopaedic and Trauma Surgery, 143, 2455-2465.
https://doi.org/10.1007/s00402-022-04457-7
[39] Alviti, F., Gurzì, M., Santilli, V., Paoloni, M., Padua, R., Bernetti, A., et al. (2017) Achilles Tendon Open Surgical Treatment with Platelet-Rich Fibrin Matrix Augmentation: Biomechanical Evaluation. The Journal of Foot and Ankle Surgery, 56, 581-585.
https://doi.org/10.1053/j.jfas.2017.01.039
[40] 高超, 张航, 陈凯文, 等. 富血小板血浆在急性跟腱断裂治疗中的应用[J]. 中华创伤骨科杂志, 2020, 22(1): 38-44.
[41] Daley, P., Menu, P., Louguet, B., Crenn, V., Dauty, M. and Fouasson-Chailloux, A. (2021) Interest of Platelet Rich Plasma in Achilles Tendon Rupture Management: A Systematic Review. The Physician and Sportsmedicine, 50, 463-470.
https://doi.org/10.1080/00913847.2021.1969216