[1]
|
(2024) Global Cancer Observatory: Cancer Today. https://gco.iarc.who.int/today/en
|
[2]
|
(2022) Number of New Cases and Deaths from Liver Cancer Predicted to Rise by More than 55% by 2040. https://www.iarc.who.int/pressrelease/number-of-new-cases-and-deaths-from-liver-cancer-predicted-to-rise-by-more-than-55-by-2040/
|
[3]
|
Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53. https://doi.org/10.1016/j.jncc.2024.01.006
|
[4]
|
Villanueva, A. (2019) Hepatocellular Carcinoma. New England Journal of Medicine, 380, 1450-1462. https://doi.org/10.1056/nejmra1713263
|
[5]
|
Llovet, J.M., Montal, R., Sia, D. and Finn, R.S. (2018) Molecular Therapies and Precision Medicine for Hepatocellular Carcinoma. Nature Reviews Clinical Oncology, 15, 599-616. https://doi.org/10.1038/s41571-018-0073-4
|
[6]
|
Murphy, J.M., Farhan, H. and Eyers, P.A. (2017) Bio-Zombie: The Rise of Pseudoenzymes in Biology. Biochemical Society Transactions, 45, 537-544. https://doi.org/10.1042/bst20160400
|
[7]
|
Eyers, P.A., Keeshan, K. and Kannan, N. (2017) Tribbles in the 21st Century: The Evolving Roles of Tribbles Pseudokinases in Biology and Disease. Trends in Cell Biology, 27, 284-298. https://doi.org/10.1016/j.tcb.2016.11.002
|
[8]
|
Salazar, M., Lorente, M., García-Taboada, E., Hernández-Tiedra, S., Davila, D., Francis, S.E., et al. (2013) The Pseudokinase Tribbles Homologue-3 Plays a Crucial Role in Cannabinoid Anticancer Action. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1831, 1573-1578. https://doi.org/10.1016/j.bbalip.2013.03.014
|
[9]
|
Velasco, G. and Link, W. (2023) Pseudokinases, Tribbles Proteins and Cancer. Cancers, 15, Article No. 3547. https://doi.org/10.3390/cancers15143547
|
[10]
|
Hammarén, H.M., Virtanen, A.T. and Silvennoinen, O. (2016) Nucleotide-Binding Mechanisms in Pseudokinases. Bioscience Reports, 36, e00282. https://doi.org/10.1042/bsr20150226
|
[11]
|
Eyers, P.A. and Murphy, J.M. (2016) The Evolving World of Pseudoenzymes: Proteins, Prejudice and Zombies. BMC Biology, 14, Article No. 98. https://doi.org/10.1186/s12915-016-0322-x
|
[12]
|
Nauman, C.E. (2020) Structure-Function Analysis of the Tribbles Pseudokinase. University of Missouri-Kansas City.
|
[13]
|
Dobens, L.L., Nauman, C., Fischer, Z. and Yao, X. (2021) Control of Cell Growth and Proliferation by the Tribbles Pseudokinase: Lessons from Drosophila. Cancers, 13, Article No. 883. https://doi.org/10.3390/cancers13040883
|
[14]
|
Sunami, Y., Yoshino, S., Yamazaki, Y., Iwamoto, T. and Nakamura, T. (2024) Rapid Increase of C/EBPα P42 Induces Growth Arrest of Acute Myeloid Leukemia (AML) Cells by Cop1 Deletion in Trib1-Expressing AML. Leukemia, 38, 2585-2597. https://doi.org/10.1038/s41375-024-02430-4
|
[15]
|
Fang, Y., Zekiy, A.O., Ghaedrahmati, F., Timoshin, A., Farzaneh, M., Anbiyaiee, A., et al. (2021) Tribbles Homolog 2 (Trib2), a Pseudo Serine/Threonine Kinase in Tumorigenesis and Stem Cell Fate Decisions. Cell Communication and Signaling, 19, Article No. 41. https://doi.org/10.1186/s12964-021-00725-y
|
[16]
|
Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K. and Hayashi, H. (2005) TRB3, a Novel ER Stress-Inducible Gene, Is Induced via ATF4-CHOP Pathway and Is Involved in Cell Death. The EMBO Journal, 24, 1243-1255. https://doi.org/10.1038/sj.emboj.7600596
|
[17]
|
McMillan, H.D., Keeshan, K., Dunbier, A.K. and Mace, P.D. (2021) Structure vs. Function of Trib1—Myeloid Neoplasms and Beyond. Cancers, 13, Article No. 3060. https://doi.org/10.3390/cancers13123060
|
[18]
|
Yokoyama, T. and Nakamura, T. (2011) Tribbles in Disease: Signaling Pathways Important for Cellular Function and Neoplastic Transformation. Cancer Science, 102, 1115-1122. https://doi.org/10.1111/j.1349-7006.2011.01914.x
|
[19]
|
Du, K., Herzig, S., Kulkarni, R.N. and Montminy, M. (2003) TRB3: A tribbles Homolog That Inhibits Akt/PKB Activation by Insulin in Liver. Science, 300, 1574-1577. https://doi.org/10.1126/science.1079817
|
[20]
|
Ye, Y., Wang, G., Wang, G., Zhuang, J., He, S., Song, Y., et al. (2017) The Oncogenic Role of Tribbles 1 in Hepatocellular Carcinoma Is Mediated by a Feedback Loop Involving MicroRNA-23a and p53. Frontiers in Physiology, 8, Article No. 789. https://doi.org/10.3389/fphys.2017.00789
|
[21]
|
Huang, D., Cao, L. and Zheng, S. (2017) CAPZA1 Modulates EMT by Regulating Actin Cytoskeleton Remodelling in Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research, 36, Article No. 13. https://doi.org/10.1186/s13046-016-0474-0
|
[22]
|
Huang, X., Xiang, L., Wang, B., Hu, J., Liu, C., Ren, A., et al. (2021) CMTM6 Promotes Migration, Invasion, and EMT by Interacting with and Stabilizing Vimentin in Hepatocellular Carcinoma Cells. Journal of Translational Medicine, 19, Article No. 120. https://doi.org/10.1186/s12967-021-02787-5
|
[23]
|
Singh, K., Showalter, C.A., Manring, H.R., Haque, S.J. and Chakravarti, A. (2024) “Oh, Dear We Are in Tribble”: An Overview of the Oncogenic Functions of Tribbles 1. Cancers, 16, Article No. 1889. https://doi.org/10.3390/cancers16101889
|
[24]
|
Keeshan, K. (2021) Superenhancing AML with Trib1. Blood, 137, 8-9. https://doi.org/10.1182/blood.2020008315
|
[25]
|
Liu, Z., Wu, K., Gu, S., Wang, W., Xie, S., Lu, T., et al. (2021) A Methyltransferase‐Like 14/mir‐99a‐5p/Tribble 2 Positive Feedback Circuit Promotes Cancer Stem Cell Persistence and Radioresistance via Histone Deacetylase 2-Mediated Epigenetic Modulation in Esophageal Squamous Cell Carcinoma. Clinical and Translational Medicine, 11, e545. https://doi.org/10.1002/ctm2.545
|
[26]
|
Mayoral-Varo, V., Jiménez, L. and Link, W. (2021) The Critical Role of TRIB2 in Cancer and Therapy Resistance. Cancers, 13, Article No. 2701. https://doi.org/10.3390/cancers13112701
|
[27]
|
Leung, R.W.H. and Lee, T.K.W. (2022) Wnt/β-Catenin Signaling as a Driver of Stemness and Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers, 14, Article No. 5468. https://doi.org/10.3390/cancers14215468
|
[28]
|
Lohitesh, K., Chowdhury, R. and Mukherjee, S. (2018) Resistance a Major Hindrance to Chemotherapy in Hepatocellular Carcinoma: An Insight. Cancer Cell International, 18, Article No. 44. https://doi.org/10.1186/s12935-018-0538-7
|
[29]
|
Guo, S., Chen, Y., Xue, X., Yang, Y., Wang, Y., Qiu, S., et al. (2021) TRIB2 Desensitizes Ferroptosis via βTrCP-Mediated TFRC Ubiquitiantion in Liver Cancer Cells. Cell Death Discovery, 7, Article No. 196. https://doi.org/10.1038/s41420-021-00574-1
|
[30]
|
Guo, S., Chen, Y., Yang, Y., Zhang, X., Ma, L., Xue, X., et al. (2021) TRIB2 Modulates Proteasome Function to Reduce Ubiquitin Stability and Protect Liver Cancer Cells against Oxidative Stress. Cell Death & Disease, 12, Article No. 42. https://doi.org/10.1038/s41419-020-03299-8
|
[31]
|
Wang, X., Li, F., Zhang, Y., Jiang, M. and Ren, W. (2020) TRIB3 Promotes Hepatocellular Carcinoma Growth and Predicts Poor Prognosis. Cancer Biomarkers, 29, 307-315. https://doi.org/10.3233/cbm-201577
|
[32]
|
Li, J., Tan, Q.F., Huang, Q., et al. (2021) Effectiveness of TRB3 on Human Hepatocellular Carcinoma Cells Proliferation, Apoptosis and Migration. Chinese Journal of Hepatology, 29, 439-445.
|
[33]
|
Yu, J., Liu, T., Liu, M., Jin, H. and Wei, Z. (2024) RBCK1 Overexpression Is Associated with Immune Cell Infiltration and Poor Prognosis in Hepatocellular Carcinoma. Aging, 16, 538-549. https://doi.org/10.18632/aging.205393
|
[34]
|
Wang, R., He, F., Meng, Q., Lin, W., Dong, J., Yang, H., et al. (2021) Tribbles Pseudokinase 3 (TRIB3) Contributes to the Progression of Hepatocellular Carcinoma by Activating the Mitogen-Activated Protein Kinase Pathway. Annals of Translational Medicine, 9, 1253-1253. https://doi.org/10.21037/atm-21-2820
|
[35]
|
Zhou, S., Xu, H. and Wei, T. (2023) Inhibition of Stress Proteins TRIB3 and STC2 Potentiates Sorafenib Sensitivity in Hepatocellular Carcinoma. Heliyon, 9, e17295. https://doi.org/10.1016/j.heliyon.2023.e17295
|
[36]
|
Pavlović, N. and Heindryckx, F. (2021) Exploring the Role of Endoplasmic Reticulum Stress in Hepatocellular Carcinoma through Mining of the Human Protein Atlas. Biology, 10, Article No. 640. https://doi.org/10.3390/biology10070640
|
[37]
|
Batel, A., Polović, M., Glumac, M., Šuman, O., Jadrijević, S., Lozić, B., et al. (2023) SPRTN Is Involved in Hepatocellular Carcinoma Development through the ER Stress Response. Cancer Gene Therapy, 31, 376-386. https://doi.org/10.1038/s41417-023-00708-w
|
[38]
|
Örd, T., Örd, D., Kaikkonen, M.U. and Örd, T. (2021) Pharmacological or Trib3-Mediated Suppression of ATF4 Transcriptional Activity Promotes Hepatoma Cell Resistance to Proteasome Inhibitor Bortezomib. Cancers, 13, Article No. 2341. https://doi.org/10.3390/cancers13102341
|
[39]
|
Chen, S., Jiao, Y., Lai, Y., et al. (2024) TRIB3 As an Emerging Biomarker and Potential Target for Cholangiocarcinoma: Evidence from Experiments and Bioinformatics.
|
[40]
|
Sangineto, M., Villani, R., Cavallone, F., Romano, A., Loizzi, D. and Serviddio, G. (2020) Lipid Metabolism in Development and Progression of Hepatocellular Carcinoma. Cancers, 12, Article No. 1419. https://doi.org/10.3390/cancers12061419
|
[41]
|
Mayengbam, S.S., Singh, A., Yaduvanshi, H., Bhati, F.K., Deshmukh, B., Athavale, D., et al. (2023) Cholesterol Reprograms Glucose and Lipid Metabolism to Promote Proliferation in Colon Cancer Cells. Cancer & Metabolism, 11, Article No. 15. https://doi.org/10.1186/s40170-023-00315-1
|
[42]
|
Li, C., Wang, F., Cui, L., Li, S., Zhao, J. and Liao, L. (2023) Association between Abnormal Lipid Metabolism and Tumor. Frontiers in Endocrinology, 14, Article ID: 1134154. https://doi.org/10.3389/fendo.2023.1134154
|