[1]
|
Durante, C., Grani, G., Lamartina, L., Filetti, S., Mandel, S.J. and Cooper, D.S. (2018) The Diagnosis and Management of Thyroid Nodules: A Review. JAMA, 319, 914-924. https://doi.org/10.1001/jama.2018.0898
|
[2]
|
Pitoia, F. and Trimboli, P. (2023) New Insights in Thyroid Diagnosis and Treatment. Reviews in Endocrine and Metabolic Disorders, 25, 1-3. https://doi.org/10.1007/s11154-023-09859-5
|
[3]
|
Haugen, B.R., Alexander, E.K., Bible, K.C., Doherty, G.M., Mandel, S.J., Nikiforov, Y.E., et al. (2016) 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 26, 1-133. https://doi.org/10.1089/thy.2015.0020
|
[4]
|
Boucai, L., Zafereo, M. and Cabanillas, M.E. (2024) Thyroid Cancer: A Review. JAMA, 331, 425-435. https://doi.org/10.1001/jama.2023.26348
|
[5]
|
Chen, D.W., Lang, B.H.H., McLeod, D.S.A., Newbold, K. and Haymart, M.R. (2023) Thyroid Cancer. The Lancet, 401, 1531-1544. https://doi.org/10.1016/s0140-6736(23)00020-x
|
[6]
|
Petranović Ovčariček, P., Görges, R. and Giovanella, L. (2024) Autoimmune Thyroid Diseases. Seminars in Nuclear Medicine, 54, 219-236. https://doi.org/10.1053/j.semnuclmed.2023.11.002
|
[7]
|
Tywanek, E., Michalak, A., Świrska, J. and Zwolak, A. (2024) Autoimmunity, New Potential Biomarkers and the Thyroid Gland—The Perspective of Hashimoto’s Thyroiditis and Its Treatment. International Journal of Molecular Sciences, 25, Article 4703. https://doi.org/10.3390/ijms25094703
|
[8]
|
Grani, G., Sponziello, M., Pecce, V., Ramundo, V. and Durante, C. (2020) Contemporary Thyroid Nodule Evaluation and Management. The Journal of Clinical Endocrinology & Metabolism, 105, 2869-2883. https://doi.org/10.1210/clinem/dgaa322
|
[9]
|
Martinez Quintero, B., Yazbeck, C. and Sweeney, L.B. (2021) Thyroiditis: Evaluation and Treatment. American Family Physician, 104, 609-617.
|
[10]
|
Gruson, D., Stankovic, S., Macq, B., Bernardini, S., Gouget, B., Homsak, E., et al. (2022) Artificial Intelligence and Thyroid Disease Management: Considerations for Thyroid Function Tests. Biochemia Medica, 32, 182-188. https://doi.org/10.11613/bm.2022.020601
|
[11]
|
Zhou, L., Luo, J., Sun, A., Yang, H., Lin, Y. and Han, L. (2024) Clinical Efficacy and Molecular Mechanism of Chinese Medicine in the Treatment of Autoimmune Thyroiditis. Journal of Ethnopharmacology, 323, Article ID: 117689. https://doi.org/10.1016/j.jep.2023.117689
|
[12]
|
Cameselle-Teijeiro, J.M., Eloy, C. and Sobrinho-Simões, M. (2020) Pitfalls in Challenging Thyroid Tumors: Emphasis on Differential Diagnosis and Ancillary Biomarkers. Endocrine Pathology, 31, 197-217. https://doi.org/10.1007/s12022-020-09638-x
|
[13]
|
Zhao, H., Zheng, C., Zhang, H., Rao, M., Li, Y., Fang, D., et al. (2023) Diagnosis of Thyroid Disease Using Deep Convolutional Neural Network Models Applied to Thyroid Scintigraphy Images: A Multicenter Study. Frontiers in Endocrinology, 14, Article 1224191. https://doi.org/10.3389/fendo.2023.1224191
|
[14]
|
Chen, J., Ye, D., Lv, S., Li, X., Ye, F., Huang, Y., et al. (2024) Benign Thyroid Nodules Classified as ACR TI-RADS 4 or 5: Imaging and Histological Features. European Journal of Radiology, 175, Article ID: 111261. https://doi.org/10.1016/j.ejrad.2023.111261
|
[15]
|
Pishdad, R., Treglia, G., Mehta, A. and Santhanam, P. (2024) Somatostatin Receptor Imaging of Thyroid Tissue and Differentiated Thyroid Cancer Using Gallium-68-Labeled Radiotracers—A Review of Clinical Studies. Endocrine, 85, 566-575. https://doi.org/10.1007/s12020-024-03779-3
|
[16]
|
Mehanna, H., Sidhu, P.S., Madani, G., Woolley, R., Boelaert, K., Nankivell, P., et al. (2024) Evaluation of US Elastography in Thyroid Nodule Diagnosis: The Elation Randomized Control Trial. Radiology, 313, e240705. https://doi.org/10.1148/radiol.240705
|
[17]
|
Tessler, F.N., Middleton, W.D., Grant, E.G., Hoang, J.K., Berland, L.L., Teefey, S.A., et al. (2017) ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. Journal of the American College of Radiology, 14, 587-595. https://doi.org/10.1016/j.jacr.2017.01.046
|
[18]
|
Liang, J., Huang, X., Hu, H., Liu, Y., Zhou, Q., Cao, Q., et al. (2018) Predicting Malignancy in Thyroid Nodules: Radiomics Score versus 2017 American College of Radiology Thyroid Imaging, Reporting and Data System. Thyroid, 28, 1024-1033. https://doi.org/10.1089/thy.2017.0525
|
[19]
|
Luo, P., Fang, Z., Zhang, P., Yang, Y., Zhang, H., Su, L., et al. (2021) Radiomics Score Combined with ACR TI-RADS in Discriminating Benign and Malignant Thyroid Nodules Based on Ultrasound Images: A Retrospective Study. Diagnostics, 11, Article 1011. https://doi.org/10.3390/diagnostics11061011
|
[20]
|
Wu, G., Lv, W., Yin, R., Xu, J., Yan, Y., Chen, R., et al. (2021) Deep Learning Based on ACR TI-RADS Can Improve the Differential Diagnosis of Thyroid Nodules. Frontiers in Oncology, 11, Article 575166. https://doi.org/10.3389/fonc.2021.575166
|
[21]
|
Yoon, J., Lee, E., Kang, S., Han, K., Park, V.Y. and Kwak, J.Y. (2021) Implications of US Radiomics Signature for Predicting Malignancy in Thyroid Nodules with Indeterminate Cytology. European Radiology, 31, 5059-5067. https://doi.org/10.1007/s00330-020-07670-3
|
[22]
|
Lee, J.H., Baek, J.H., Kim, J.H., Shim, W.H., Chung, S.R., Choi, Y.J., et al. (2018) Deep Learning-Based Computer-Aided Diagnosis System for Localization and Diagnosis of Metastatic Lymph Nodes on Ultrasound: A Pilot Study. Thyroid, 28, 1332-1338. https://doi.org/10.1089/thy.2018.0082
|
[23]
|
Agyekum, E.A., Ren, Y., Wang, X., Cranston, S.S., Wang, Y., Wang, J., et al. (2022) Evaluation of Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma Using Clinical-Ultrasound Radiomic Machine Learning-Based Model. Cancers, 14, Article 5266. https://doi.org/10.3390/cancers14215266
|
[24]
|
Abbasian Ardakani, A., Reiazi, R. and Mohammadi, A. (2018) A Clinical Decision Support System Using Ultrasound Textures and Radiologic Features to Distinguish Metastasis from Tumor‐Free Cervical Lymph Nodes in Patients with Papillary Thyroid Carcinoma. Journal of Ultrasound in Medicine, 37, 2527-2535. https://doi.org/10.1002/jum.14610
|
[25]
|
Wen, Q., Wang, Z., Traverso, A., Liu, Y., Xu, R., Feng, Y., et al. (2022) A Radiomics Nomogram for the Ultrasound-Based Evaluation of Central Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma. Frontiers in Endocrinology, 13, Article 1064434. https://doi.org/10.3389/fendo.2022.1064434
|
[26]
|
Chang, L., Zhang, Y., Zhu, J., Hu, L., Wang, X., Zhang, H., et al. (2023) An Integrated Nomogram Combining Deep Learning, Clinical Characteristics and Ultrasound Features for Predicting Central Lymph Node Metastasis in Papillary Thyroid Cancer: A Multicenter Study. Frontiers in Endocrinology, 14, Article 964047. https://doi.org/10.3389/fendo.2023.964074
|
[27]
|
Jiang, M., Li, C., Tang, S., Lv, W., Yi, A., Wang, B., et al. (2020) Nomogram Based on Shear-Wave Elastography Radiomics Can Improve Preoperative Cervical Lymph Node Staging for Papillary Thyroid Carcinoma. Thyroid, 30, 885-897. https://doi.org/10.1089/thy.2019.0780
|
[28]
|
Yu, J., Deng, Y., Liu, T., Zhou, J., Jia, X., Xiao, T., et al. (2020) Lymph Node Metastasis Prediction of Papillary Thyroid Carcinoma Based on Transfer Learning Radiomics. Nature Communications, 11, Article No. 4807. https://doi.org/10.1038/s41467-020-18497-3
|
[29]
|
Fang, M., Lei, M., Chen, X., Cao, H., Duan, X., Yuan, H., et al. (2023) Radiomics-Based Ultrasound Models for Thyroid Nodule Differentiation in Hashimoto’s Thyroiditis. Frontiers in Endocrinology, 14, Article 1267886. https://doi.org/10.3389/fendo.2023.1267886
|
[30]
|
Jin, P., Chen, J., Dong, Y., Zhang, C., Chen, Y., Zhang, C., et al. (2022) Ultrasound-Based Radiomics Nomogram Combined with Clinical Features for the Prediction of Central Lymph Node Metastasis in Papillary Thyroid Carcinoma Patients with Hashimoto’s Thyroiditis. Frontiers in Endocrinology, 13, Article 993564. https://doi.org/10.3389/fendo.2022.993564
|
[31]
|
Xu, H., Wang, X., Guan, C., Tan, R., Yang, Q., Zhang, Q., et al. (2022) Value of Whole-Thyroid CT-Based Radiomics in Predicting Benign and Malignant Thyroid Nodules. Frontiers in Oncology, 12, Article 828259. https://doi.org/10.3389/fonc.2022.828259
|
[32]
|
Lin, S., Gao, M., Yang, Z., Yu, R., Dai, Z., Jiang, C., et al. (2024) CT-Based Radiomics Models for Differentiation of Benign and Malignant Thyroid Nodules: A Multicenter Development and Validation Study. American Journal of Roentgenology, 223, e2431077. https://doi.org/10.2214/ajr.24.31077
|
[33]
|
Valizadeh, P., Jannatdoust, P., Ghadimi, D.J., Bagherieh, S., Hassankhani, A., Amoukhteh, M., et al. (2025) Predicting Lymph Node Metastasis in Thyroid Cancer: Systematic Review and Meta-Analysis on the CT/MRI-Based Radiomics and Deep Learning Models. Clinical Imaging, 119, Article ID: 110392. https://doi.org/10.1016/j.clinimag.2024.110392
|
[34]
|
de Koster, E.J., Noortman, W.A., Mostert, J.M., Booij, J., Brouwer, C.B., de Keizer, B., et al. (2022) Quantitative Classification and Radiomics of [18F]FDG-PET/CT in Indeterminate Thyroid Nodules. European Journal of Nuclear Medicine and Molecular Imaging, 49, 2174-2188. https://doi.org/10.1007/s00259-022-05712-0
|
[35]
|
付汝倩, 邓诗, 胡宇婷, 等. 基于影像组学和临床特征的机器学习术前评估桥本甲状腺炎合并甲状腺乳头状癌颈部淋巴结转移的初步研究[J]. 四川大学学报(医学版), 2024, 55(4): 1026-1033.
|
[36]
|
Dai, Z., Wei, R., Wang, H., Hu, W., Sun, X., Zhu, J., et al. (2022) Multimodality MRI-Based Radiomics for Aggressiveness Prediction in Papillary Thyroid Cancer. BMC Medical Imaging, 22, Article No. 54. https://doi.org/10.1186/s12880-022-00779-5
|
[37]
|
Wei, R., Wang, H., Wang, L., Hu, W., Sun, X., Dai, Z., et al. (2021) Radiomics Based on Multiparametric MRI for Extrathyroidal Extension Feature Prediction in Papillary Thyroid Cancer. BMC Medical Imaging, 21, Article No. 20. https://doi.org/10.1186/s12880-021-00553-z
|
[38]
|
Qin, H., Que, Q., Lin, P., Li, X., Wang, X., He, Y., et al. (2021) Magnetic Resonance Imaging (MRI) Radiomics of Papillary Thyroid Cancer (PTC): A Comparison of Predictive Performance of Multiple Classifiers Modeling to Identify Cervical Lymph Node Metastases before Surgery. La radiologia medica, 126, 1312-1327. https://doi.org/10.1007/s11547-021-01393-1
|
[39]
|
王庆军, 程流泉, 符永瑰, 等. 桥本甲状腺炎性结节与甲状腺微小乳头状癌鉴别诊断: 基于MRI影像组学机器学习的应用[J]. 中国医学影像学杂志, 2023, 31(3): 213-219.
|