创伤性脑损伤继发凝血病的相关研究进展
Research Progress of Coagulopathy Secondary to Traumatic Brain Injury
DOI: 10.12677/acm.2025.153745, PDF, HTML, XML,   
作者: 贺一雄*:右江民族医学院研究生学院,广西 百色;沈 印#:广西骨伤医院,广西 南宁
关键词: 创伤性脑损伤凝血功能紊乱纤维蛋白原内皮糖萼Traumatic Brain Injury Coagulation Disorders Fibrinogen Endothelial Glycocalyx
摘要: 创伤性脑损伤(Traumatic Brain Injury, TBI)是指外力对大脑造成的损伤,由直接创伤因素以及间接创伤因素构成,直接创伤是以车祸、摔倒等外伤为主所导致,而间接创伤因素则是以运动、娱乐等造成大脑反复的变速运动所导致。TBI是我国创伤主要的致残、致死原因之一,尤其是以青、中年男性以及儿童为主的群体。TBI后,纤维蛋白溶解的亢进以及血小板功能的异常等过程,都将导致凝血功能发生紊乱,凝血功能紊乱不只是出血时间的延长和出血增多的低凝血功能障碍,还包含有静脉血栓形成风险增大的高凝血功能障碍。由于TBI引起的继发性脑损伤机制的复杂性以及高、低凝血功能障碍的矛盾性,都使得临床医师对患者治疗的方案及时机难以统一,因此本文旨在将TBI继发性凝血病的发生机制、检测方式和治疗进行综述,为临床治疗方法提供参考并改善患者预后。
Abstract: Traumatic Brain Injury (TBI) refers to the injury to the brain caused by external forces, which is composed of direct traumatic factors and indirect trauma factors. Direct traumatic factors are mainly caused by traumatic injuries such as car accidents and falls, while indirect trauma factors are caused by repeated variable speed movements of the brain caused by sports and entertainment. TBI is one of the main causes of disability and death in China, especially among young and middle-aged men and children. After TBI, hyperfibrinolysis and abnormal platelet function will lead to coagulation disorders, which are not only hypocoagulant dysfunction due to prolonged bleeding time and increased bleeding, but also hypercoagulant dysfunction with increased risk of venous thrombosis. Due to the complexity of the mechanism of secondary brain injury caused by TBI and the contradiction between high and low coagulation dysfunction, it is difficult for clinicians to unify the treatment plan and timing of patients, so this article aims to review the mechanism, detection and treatment of coagulation disease secondary to TBI, so as to provide a reference for clinical treatment methods and improve the prognosis of patients.
文章引用:贺一雄, 沈印. 创伤性脑损伤继发凝血病的相关研究进展[J]. 临床医学进展, 2025, 15(3): 1323-1329. https://doi.org/10.12677/acm.2025.153745

1. 引言

TBI患者初步评估是由格拉斯哥昏迷量表(Glasgow Coma Scale, GCS)按睁眼反应、言语反应、运动反应将疾病的严重程度分为轻度、中度和重度,入院后则建议除了GCS外,根据头颅计算机断层扫描、头颅磁共振成像、精神意识改变时长、创伤后失去意识时长等临床病情进行综合评估来划分严重程度。当脑组织受到创伤时会拉扯和损伤神经轴索,当有多处神经轴索损伤时,就造成了弥漫性轴索损伤,同时会发生弥漫性神经元损伤以及血脑屏障的破坏,之后随着疾病的进展,将有可能引起继发性损伤,此时会发生炎症反应、凝血功能障碍等损害,继发性损伤发病机制极为复杂,目前已知的就包括有离子通道、活性氧、兴奋毒性神经递质信号、间隙连接信号等不同机制的相互作用。其中的炎症反应与凝血功能障碍是双向奔赴的相互促进关系,神经炎症反应可以通过中性粒细胞、小胶质细胞等多种细胞介导神经功能损伤[1],并刺激凝血酶原表达,激活凝血系统,而血小板又能与中性粒细胞相互作用,促进神经炎症的进展[2],造成恶性循环,病情加重。与创伤性凝血病(Trauma-Induced Coagulopathy, TIC)相比,TBI继发性凝血病往往伴有血脑屏障的损伤,使得凝血酶原及凝血因子更容易进入脑组织中促进炎症反应,损伤患者的神经功能,从而影响患者的预后。在一项TBI疾病前瞻性研究的试验中发现,凝血病的发生率有47.1%,在TBI后6小时内出血进展的概率为43.5% [3],此外,研究发现凝血病的死亡率高达17%~55%不等[4] [5]。下面将从多个方面阐述TBI后凝血病的机制。

2. 创伤性脑损伤继发凝血病的发病机制

2.1. 凝血过程

正常人体的血液凝固过程中有内源性凝血途径(Intrinsic Pathway)与外源性凝血途径(Extrinsic Pathway)两条主要的途径,两条途径多数是相互独立运行,特定情况下也能相互协作,共同促进血液的凝固。其中,APTT常在临床中用于监测内源性凝血途径,PT常用于协助监测外源性凝血途径[6]-[8]

内源性凝血途径是正常人身体血液凝固中不可或缺的环节之一,其与多种凝血因子的相互作用有关。当血管壁受到损伤时,凝血因子XII与负电荷异物接触后开始激活为凝血因子XIIa,从而启动内源性凝血途径,XIIa激活因子XI生成XIa,XIa在钙离子的帮助下激活IX生成IXa,单独的凝血因子IXa激活能力较差,需要与因子VIII、血小板第3因子(PF3)、钙离子一起形成复合物,这样才能将因子X激活为Xa。此激活途径由于凝血因子均来源于血液内部,因此被称为内源性凝血途径。

外源性凝血途径中的凝血因子除了血液内部,还包括血管外部的因子。组织受到损伤时,组织细胞会产生并释放组织因子(因子III),组织因子会与血液中的因子VII结合,形成高效的VIIa-钙离子–组织因子复合物,进一步将因子X激活为Xa。外源性凝血途径涉及的凝血因子更少、反应更快,但由于激活开始时需要组织因子的释放,因此其受到组织因子途径抑制物(TFPI)的调节。TFPI是人体重要的抗凝蛋白,能通过结构域抑制因子Xa、因子VIIa的活性,已被证明能有效用于血友病患者的止血治疗[9]-[11]

两条凝血途径的终点都是激活因子Xa,因子Xa在因子V、磷脂、钙离子的相互作用下将凝血酶原(因子II)激活为凝血酶(因子IIa),凝血酶是人体中极其重要的酶,其最主要的作用便是将可溶于血浆的纤维蛋白原(因子I)转化为不溶的纤维蛋白(因子Ia),从而形成血液凝固,达到止血的效果。

2.2. 纤维蛋白原在凝血病中的作用

纤维蛋白原(Fibrinogen, FIB)由肝脏合成以及分泌,是血液凝固过程中不可或缺的重要蛋白质之一。当纤维蛋白原转化为高度不溶性的纤维蛋白后,相互扭结重叠成网并交织缠绕血细胞,凝固成血凝块,纤维蛋白除了提供了形成血凝块的网络结构,还能与血小板表面GPIIb-IIIa结合,促进血小板聚集[12] [13]。多个研究发现,当发生TBI后,患者损伤后3 h内所检测到的纤维蛋白原浓度显著下降,这可能是由于炎症介质的相互作用生成凝血酶从而将纤维蛋白原转化为纤维蛋白;而同时有研究发现作为纤维蛋白降解产物的特异性标记物D-二聚体在TBI后的3 h内剧烈升高,这表明了纤维蛋白在TBI后大量合成的同时,还伴有过度的分解,而这种分解是溶解掉已形成的纤维蛋白凝块以及消耗凝血因子,从而导致出血的加剧[14] [15]。这也客观证明了TBI的早期伴随有血栓风险较高的高凝状态及纤维蛋白溶解亢进出血增加的高危状态。

纤维蛋白原除了在凝血过程中发挥重要的作用,还是炎症反应和神经组织修复的关键角色[16]-[18]。纤维蛋白原是无法在正常健康机体的中枢神经系统被检查发现的,但当发生中枢神经系统受损时,纤维蛋白原便能通过功能缺失的血脑屏障进入脑组织中,并通过激活少突胶质细胞祖细胞、星形胶质细胞来促进炎症反应的进展,甚至会造成短期记忆的减少。而另一方面,纤维蛋白原还能通过结合特定的神经细胞受体来影响神经细胞的迁移和分化以及协同血管内皮生长因子等多重应用来调控神经组织的修复。

我们能够通过D-二聚体的变化来观察患者凝血系统和纤溶系统的功能情况,研究发现,TBI患者D-二聚体升高与不良预后有密切联系,其机制和纤维蛋白的溶解与颅内血肿扩张有关,TBI患者的纤维蛋白溶解和出血速度约在损伤后的3 h左右达到高峰[1] [19] [20],因此可以在这个时间段避免大型外科干预治疗手段,如无法避免时,也应选择创伤范围较小、手术时长较短的方案。

2.3. 内皮糖萼在凝血病中的作用

内皮糖萼(Endothelial Glycocalyx, EG)位于血管内皮细胞表面,由内外两层糖萼层构成。其中蛋白聚糖当“主干”,糖胺聚糖链当“枝干”,两者共同组成较薄的内层;而外层主要为可溶性血浆蛋白及糖蛋白构成。两层糖萼层形成网格样结构,内部镶嵌有透明质酸、血栓调节蛋白、抗凝血酶III等可溶性物质[21]-[23],因此EG在抑制血栓形成、阻抗凝血过程、调节血管通透性方面具有重要作用,除此之外,EG还有隔离有毒物质、节制血管表面炎症等生理功能。

TBI后炎症反应的数小时内,会发生糖萼的损伤,EG丧失对内皮细胞的保护,血小板和白细胞粘附于内皮、纤维蛋白沉积,形成微血栓,并消耗凝血因子及血小板,造成过度激活凝血过程以及病理性纤溶亢进,导致弥散性血管内凝血(DIC)。这个过程可能需要5~7天的时间才能恢复,因此通过抑制炎症反应来保护EG以及促进EG功能的恢复是一种可行的办法。临床中常使用的糖皮质激素及TNF-α抑制剂(如单克隆抗体)可以减少EG内部成分的脱落以及凝血功能、血管通透性的紊乱[24]。其作用机制是相关“脱落蛋白酶”与EG成分进行选择性作用,因此在不同的机体环境下,“脱落蛋白酶”对EG产生的影响也不相同。研究发现,在TBI时,大部分的“脱落蛋白酶(如ADAM家族蛋白酶、基质金属蛋白酶)”较前明显活跃于炎症反应过程与神经损伤的修复过程[25]-[27],研究人员根据这一结果推测使用特异性“脱落蛋白酶”的抑制剂来阻止EG、内皮细胞表面的分解以及直接对脱落的EG成分进行补充也不失为一种可行办法。随着EG被重新定义为扩大的神经血管单元的重要构成部分,也说明它越来越受到科研人员的重视。

2.4. 血小板在凝血病中的作用

血小板是由巨核细胞产生,存在于血液中的圆盘形物质,通过血液循环流动至身体各处。止血过程需要足够数量且功能正常的血小板,当血管内皮受到损伤时,血小板会迅速地汇集到伤口,直接粘附于血管壁,并释放血栓素A2、三磷酸腺苷(ATP)、二磷酸腺苷(ADP)、肾上腺素、凝血酶等生物活性物质,促进血液凝固[28]。TBI患者受到创伤后,身体发生应激反应产生的儿茶酚胺类因子及肿瘤坏死因子、白介素等各种炎症因子都会影响血小板功能,Daley等人使用血栓弹力图对创伤性脑损伤(头部AIS ≥ 3)患者进行的凝血功能检测,发现59%的患者表现出ADP通路血小板功能障碍[29]。而TBI后凝血病的几种主要病因中就包括有血小板的功能障碍,不论是这次直接损伤导致的还是之前就已经存在血小板功能障碍(如尿毒症所致),进行检测对治疗都具有重要的意义,并且发生血小板功能障碍时往往表示预后不佳[30] [31]。血小板功能测定方法仍然推荐由Born和O’Brien使用的光透射聚集测定法(Light Transmission Aggregometry, LTA),通过光线透射的清晰程度来反映血小板功能[32],原理为血小板聚集越多,就会有更多的光线透过,样本的清晰度也就越高,但因为方法没有完全的统一标准且试验步骤繁琐,导致该方法并未广泛使用于住院检测。除了LTA外还有使用血小板功能分析仪、流式细胞术检测仪、血小板聚集仪等方法来测定血小板功能,但都各有其局限性。当发现TBI患者出现血小板功能障碍时,除了立即对血小板抑制剂进行干预外,已被证明有效的治疗方法就是进行血小板输注[33] [34]

2.5. 抗凝血酶III在凝血病中的作用

抗凝血酶III (AT-III)是人体中十分重要的抗凝蛋白,由肝脏合成,主要功能是通过和IXa、Xa、XIa、XIIa等多种凝血因子形成共价复合物,使凝血因子失去活性,从而达到抗凝作用。TBI患者因组织损伤以及炎症反应都会造成人体AT-III的减少,凝血因子灭活减少,增加患者发生血栓的可能。除此以外,AT-III还被发现可以TBI后神经功能的恢复并改善学习方面的功能[35]。因此,越来越多的医院开始进行单独的AT-III检验项目,检验发现AT-III缺乏的患者也需要更多的重症监护以及更频繁的检测。

除了AT-III的降低以及炎症因子的释放,血液循环不良、通气不佳、酸中毒以及低体温状态都会加重凝血病。

2.6. 相互作用

研究显示,TBI后内皮糖萼的破坏和降解会显著增加血管通透性,促使纤维蛋白原与暴露的内皮细胞表面结合,进而引发血栓形成和炎症反应;纤维蛋白原及其代谢产物(如纤维蛋白肽)能够进一步刺激内皮细胞,诱导炎症介质的释放,从而加重内皮糖萼的损伤[36]。此外,内皮糖萼表面的硫酸肝素等成分能够与抗凝血酶III结合,从而抑制凝血酶的活性并减少血小板的激活,而TBI引发的内皮糖萼损伤会削弱这一抗凝功能,使得血小板更容易被激活。当糖萼脱落后,内皮细胞表面暴露出更多的黏附分子(如vWF),这些分子通过与血小板上的受体(如GP Ib-IX-V)结合[37],进一步增强了血小板的黏附和聚集。

TBI后,内皮糖萼、纤维蛋白原与血小板之间的相互作用构成了一个复杂的正反馈机制,协同促进了凝血病的进展;通过针对这些相互作用的关键环节,例如保护内皮糖萼的完整性、抑制血小板的异常活化或调控纤维蛋白原的功能,可能为改善TBI患者的临床预后提供潜在的治疗方向。

3. 治疗

对于TBI患者,无论有无发生凝血功能障碍,均应该对凝血五项(PT, APTT, TT, FIB, D-二聚体)、血小板计数、血钙等指标进行常规监测,患者发现凝血障碍后,还可以监测血小板功能、血栓弹力图等检验。当患者发生TBI时,需立刻停用抗血栓、抗凝血等药物并检测血药浓度,病情严重时可以使用凝血酶原复合物(PCC)、维生素K1来抵消抗凝药物的作用。研究发现,氨甲环酸(TXA)可以通过抑制纤溶酶原激活,减少纤维蛋白降解,从而控制出血,且其血栓风险较低,副作用较少,能有效提高生存率。当患者发生创伤性脑损伤后立刻使用TXA可以有效降低患者死亡风险,每延迟15分钟治疗,患者生存获益率就将降低10%,3小时后再注射就和未注射无明显生存率差异了[38] [39]。之后根据病情及时给予凝血酶原复合物(PCC)、新鲜冰冻血浆(FFP)、冷沉淀、纤维蛋白原浓缩物等纠正凝血功能,除此以外,低钙血症及血小板减少时还需要及时补充钙离子及输注血小板。当使用以上治疗措施后仍有难以扭转的凝血功能障碍及无法抑制的大出血时,可以谨慎地使用重组活化凝血因子VII (rFVIIa),rFVIIa可以不依赖组织因子,在损伤部位直接激活FX,使大量的凝血酶原转化为凝血酶,从而迅速地纠正凝血功能障碍[40] [41]

4. 总结与展望

创伤性脑损伤继发凝血病是尚未被完全攻克的难题,其机制有待进一步发现与阐述。一方面是现状的TBI患者的致死、致残率居高不下,另一方面是目前对创伤性脑损伤继发凝血病的研究、治疗指导少之又少。为了优化创伤性脑损伤继发凝血病的治疗,还需要科研人员和临床医师更多的研究和重视,以期待为患者提供更多有效的治疗措施。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Silvestre-Roig, C., Braster, Q., Ortega-Gomez, A. and Soehnlein, O. (2020) Neutrophils as Regulators of Cardiovascular Inflammation. Nature Reviews Cardiology, 17, 327-340.
https://doi.org/10.1038/s41569-019-0326-7
[2] Caillon, A., Trimaille, A., Favre, J., Jesel, L., Morel, O. and Kauffenstein, G. (2022) Role of Neutrophils, Platelets, and Extracellular Vesicles and Their Interactions in COVID-19-Associated Thrombopathy. Journal of Thrombosis and Haemostasis, 20, 17-31.
https://doi.org/10.1111/jth.15566
[3] Nakae, R., Murai, Y., Morita, A. and Yokobori, S. (2022) Coagulopathy and Traumatic Brain Injury: Overview of New Diagnostic and Therapeutic Strategies. Neurologia Medico-Chirurgica (Tokyo), 62, 261-269.
https://doi.org/10.2176/jns-nmc.2022-0018
[4] van Gent, J.A.N., van Essen, T.A., Bos, M.H.A., Cannegieter, S.C., van Dijck, J.T.J.M. and Peul, W.C. (2019) Coagulopathy after Hemorrhagic Traumatic Brain Injury, an Observational Study of the Incidence and Prognosis. Acta Neurochirurgica, 162, 329-336.
https://doi.org/10.1007/s00701-019-04111-z
[5] Epstein, D.S., Mitra, B., O’Reilly, G., Rosenfeld, J.V. and Cameron, P.A. (2014) Acute Traumatic Coagulopathy in the Setting of Isolated Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Injury, 45, 819-824.
https://doi.org/10.1016/j.injury.2014.01.011
[6] Maegele, M., Schöchl, H., Menovsky, T., Maréchal, H., Marklund, N., Buki, A. and Stanworth, S. (2017) Coagulopathy and Haemorrhagic Progression in Traumatic Brain Injury: Advances in Mechanisms, Diagnosis, and Management. The Lancet Neurology, 16, 630-647.
https://doi.org/10.1016/S1474-4422(17)30197-7
[7] Maegele, M. (2021) Coagulopathy and Progression of Intracranial Hemorrhage in Traumatic Brain Injury: Mechanisms, Impact, and Therapeutic Considerations. Neurosurgery, 89, 954-966.
https://doi.org/10.1093/neuros/nyab358
[8] Winter, W.E., Flax, S.D. and Harris, N.S. (2017) Coagulation Testing in the Core Laboratory. Laboratory Medicine, 48, 295-313.
https://doi.org/10.1093/labmed/lmx050
[9] Mast, A.E. and Ruf, W. (2022) Regulation of Coagulation by Tissue Factor Pathway Inhibitor: Implications for Hemophilia Therapy. Journal of Thrombosis and Haemostasis, 20, 1290-1300.
https://doi.org/10.1111/jth.15697
[10] Sajadi, S., Ezekowitz, M.D., Dhond, A. and Netrebko, P. (2003) Tissue Factor Pathway Inhibitors as a Novel Approach to Antithrombotic Therapy. Drug News & Perspectives, 16, 363-369.
https://doi.org/10.1358/dnp.2003.16.6.829308
[11] Kobayashi, H., Matsubara, S. and Imanaka, S. (2023) The Role of Tissue Factor Pathway Inhibitor 2 in the Coagulation and Fibrinolysis System. The Journal of Obstetrics and Gynaecology Research, 49, 1677-1683.
https://doi.org/10.1111/jog.15660
[12] Hoppe, B. (2014) Fibrinogen and Factor XIII at the Intersection of Coagulation, Fibrinolysis and Inflammation. Thrombosis and Haemostasis, 112, 649-658.
https://doi.org/10.1160/TH14-01-0085
[13] Bennett, J.S. (2001) Platelet-Fibrinogen Interactions. Annals of the New York Academy of Sciences, 936, 340-354.
https://doi.org/10.1111/j.1749-6632.2001.tb03521.x
[14] Nakae, R., Fujiki, Y., Takayama, Y., Kanaya, T., Igarashi, Y., Suzuki, G., Naoe, Y. and Yokobori, S. (2020) Age-Related Differences in the Time Course of Coagulation and Fibrinolytic Parameters in Patients with Traumatic Brain Injury. International Journal of Molecular Sciences, 21, Article 5613.
https://doi.org/10.3390/ijms21165613
[15] Nakae, R., Takayama, Y., Kuwamoto, K., Naoe, Y., Sato, H. and Yokota, H. (2016) Time Course of Coagulation and Fibrinolytic Parameters in Patients with Traumatic Brain Injury. Journal of Neurotrauma, 33, 688-695.
https://doi.org/10.1089/neu.2015.4039
[16] Ebrahimi, S., Jaberi, N., Avan, A., Ryzhikov, M., Keramati, M.R., Parizadeh, M.R. and Hassanian, S.M. (2017) Role of Thrombin in the Pathogenesis of Central Nervous System Inflammatory Diseases. Journal of Cellular Physiology, 232, 482-485.
https://doi.org/10.1002/jcp.25501
[17] Luyendyk, J.P., Schoenecker, J.G. and Flick, M.J. (2019) The Multifaceted Role of Fibrinogen in Tissue Injury and Inflammation. Blood, 133, 511-520.
https://doi.org/10.1182/blood-2018-07-818211
[18] Petersen, M.A., Ryu, J.K. and Akassoglou, K. (2018) Fibrinogen in Neurological Diseases: Mechanisms, Imaging and Therapeutics. Nature Reviews Neuroscience, 19, 283-301.
https://doi.org/10.1038/nrn.2018.13
[19] Hosseininejad, S.M., Bozorgi, F., Jahanian, F., Mohammadian Amiri, M., Mohammadpour, R.A. and Hajiaghaei, G. (2023) C-Reactive Protein and D-Dimer as Prognostic Markers for Clinical Outcomes in Patients with Mild Traumatic Brain Injury: A Cross-Sectional Study. Bulletin of Emergency and Trauma, 11, 119-124.
[20] Zhang, J., He, M., Song, Y. and Xu, J. (2018) Prognostic Role of D-Dimer Level upon Admission in Patients with Traumatic Brain Injury. Medicine (Baltimore), 97, e11774.
https://doi.org/10.1097/MD.0000000000011774
[21] Jedlicka, J., Becker, B.F. and Chappell, D. (2020) Endothelial Glycocalyx. Critical Care Clinics, 36, 217-232.
https://doi.org/10.1016/j.ccc.2019.12.007
[22] Foote, C.A., Soares, R.N., Ramirez-Perez, F.I., Ghiarone, T., Aroor, A., Manrique-Acevedo, C., Padilla, J. and Martinez-Lemus, L. (2022) Endothelial Glycocalyx. Comprehensive Physiology, 12, 3781-3811.
https://doi.org/10.1002/cphy.c210029
[23] Rahbar, E., Cardenas, J.C., Baimukanova, G., Usadi, B., Bruhn, R., Pati, S., Ostrowski, S.R., Johansson, P.I., Holcomb, J.B. and Wade, C.E. (2015) Endothelial Glycocalyx Shedding and Vascular Permeability in Severely Injured Trauma Patients. Journal of Translational Medicine, 13, Article No. 117.
https://doi.org/10.1186/s12967-015-0481-5
[24] Nieuwdorp, M., Meuwese, M.C., Mooij, H.L., van Lieshout, M.H., Hayden, A., Levi, M., Meijers, J.C., Ince, C., Kastelein, J.J., Vink, H. and Stroes, E.S. (2009) Tumor Necrosis Factor-Alpha Inhibition Protects against Endotoxin-Induced Endothelial Glycocalyx Perturbation. Atherosclerosis, 202, 296-303.
https://doi.org/10.1016/j.atherosclerosis.2008.03.024
[25] Hall, A.A., Mendoza, M.I., Zhou, H., Shaughness, M., McCarron, R.M. and Ahlers, S.T. (2019) Corrigendum: Repeated Low Intensity Blast Exposure Is Associated with Damaged Endothelial Glycocalyx and Downstream Behavioral Deficits. Frontiers in Behavioral Neuroscience, 13, Article 251.
https://doi.org/10.3389/fnbeh.2019.00251
[26] Washington, P.M., Lee, C., Dwyer, M.K.R., Konofagou, E.E., Kernie, S.G. and Morrison, B. (2020) Hyaluronidase Reduced Edema after Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow & Metabolism, 40, 2026-2037.
https://doi.org/10.1177/0271678X19882780
[27] Yu, J., Zhu, H., Taheri, S., Monday, W.L., Perry, S. and Kindy, M.S. (2019) Reduced Neuroinflammation and Improved Functional Recovery after Traumatic Brain Injury by Prophylactic Diet Supplementation in Mice. Nutrients, 11, Article 299.
https://doi.org/10.3390/nu11020299
[28] Tomaiuolo, M., Brass, L.F. and Stalker, T.J. (2017) Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interventional Cardiology Clinics, 6, 1-12.
https://doi.org/10.1016/j.iccl.2016.08.001
[29] Daley, M.J., Enright, Z., Nguyen, J., Ali, S., Clark, A., Aydelotte, J.D., Teixeira, P.G., Coopwood, T.B. and Brown, C.V. (2017) Adenosine Diphosphate Platelet Dysfunction on Thromboelastogram Is Independently Associated with Increased Morality in Traumatic Brain Injury. European Journal of Trauma and Emergency Surgery, 43, 105-111.
https://doi.org/10.1007/s00068-016-0643-z
[30] Brown, L.M., Call, M.S., Margaret Knudson, M., Cohen, M.J. the Trauma Outcomes Group (2011) A Normal Platelet Count May Not Be Enough: The Impact of Admission Platelet Count on Mortality and Transfusion in Severely Injured Trauma Patients. The Journal of Trauma: Injury, Infection, and Critical Care, 71, S337-S342.
https://doi.org/10.1097/TA.0b013e318227f67c
[31] Van Beek, J.G., Mushkudiani, N.A., Steyerberg, E.W., Butcher, I., McHugh, G.S., Lu, J., Marmarou, A., Murray, G.D. and Maas, A.I. (2007) Prognostic Value of Admission Laboratory Parameters in Traumatic Brain Injury: Results from the IMPACT Study. Journal of Neurotrauma, 24, 315-328.
https://doi.org/10.1089/neu.2006.0034
[32] Sun, P., McMillan-Ward, E., Mian, R. and Israels, S.J. (2019) Comparison of Light Transmission Aggregometry and Multiple Electrode Aggregometry for the Evaluation of Patients with Mucocutaneous Bleeding. International Journal of Laboratory Hematology, 41, 133-140.
https://doi.org/10.1111/ijlh.12937
[33] Riojas, C.M., Ekaney, M.L., Ross, S.W., Cunningham, K.W., Furay, E.J., Brown, C.V.R. and Evans, S.L. (2021) Platelet Dysfunction after Traumatic Brain Injury: A Review. Journal of Neurotrauma, 38, 819-829.
https://doi.org/10.1089/neu.2020.7301
[34] Campbell, P.G., Sen, A., Yadla, S., Jabbour, P. and Jallo, J. (2010) Emergency Reversal of Antiplatelet Agents in Patients Presenting with an Intracranial Hemorrhage: A Clinical Review. World Neurosurgery, 74, 279-285.
https://doi.org/10.1016/j.wneu.2010.05.030
[35] ElSaadani, M., Ahmed, S.M., Jacovides, C., Lopez, A., Johnson, V.E., Kaplan, L.J., Smith, D.H. and Pascual, J.L. (2021) Post-Traumatic Brain Injury Antithrombin III Recovers Morris Water Maze Cognitive Performance, Improving Cued and Spatial Learning. Journal of Trauma and Acute Care Surgery, 91, 108-113.
https://doi.org/10.1097/TA.0000000000003112
[36] Lipowsky, H.H. (2012) The Endothelial Glycocalyx as a Barrier to Leukocyte Adhesion and Its Mediation by Extracellular Proteases. Annals of Biomedical Engineering, 40, 840-848.
https://doi.org/10.1007/s10439-011-0427-x
[37] Zou, Z., Li, L., Schäfer, N., Huang, Q., Maegele, M. and Gu, Z. (2021) Endothelial Glycocalyx in Traumatic Brain Injury Associated Coagulopathy: Potential Mechanisms and Impact. Journal of Neuroinflammation, 18, Article No. 134.
https://doi.org/10.1186/s12974-021-02192-1
[38] Gayet-Ageron, A., Prieto-Merino, D., Ker, K., Shakur, H., Ageron, F.X. and Roberts, I. (2018) Effect of Treatment Delay on the Effectiveness and Safety of Antifibrinolytics in Acute Severe Haemorrhage: A Meta-Analysis of Individual Patient-Level Data from 40138 Bleeding Patients. The Lancet, 391, 125-132.
https://doi.org/10.1016/S0140-6736(17)32455-8
[39] The CRASH-2 Collaborators (2011) The Importance of Early Treatment with Tranexamic Acid in Bleeding Trauma Patients: An Exploratory Analysis of the CRASH-2 Randomised Controlled Trial. The Lancet, 377, 1101.e1-1101.e2.
https://doi.org/10.1016/S0140-6736(11)60278-X
[40] Joseph, B., Hadjizacharia, P., Aziz, H., Kulvatunyou, N., Tang, A., Pandit, V., Wynne, J., O’Keeffe, T., Friese, R.S. and Rhee, P. (2013) Prothrombin Complex Concentrate: An Effective Therapy in Reversing the Coagulopathy of Traumatic Brain Injury. Journal of Trauma and Acute Care Surgery, 74, 248-253.
https://doi.org/10.1097/TA.0b013e3182788a40
[41] Lombardo, S., Millar, D., Jurkovich, G.J., Coimbra, R. and Nirula, R. (2018) Factor VIIa Administration in Traumatic Brain Injury: An AAST-MITC Propensity Score Analysis. Trauma Surgery & Acute Care Open, 3, e000134.
https://doi.org/10.1136/tsaco-2017-000134