[1]
|
Cook, A.M., Morgan Jones, G., Hawryluk, G.W.J., Mailloux, P., McLaughlin, D., Papangelou, A., et al. (2020) Guidelines for the Acute Treatment of Cerebral Edema in Neurocritical Care Patients. Neurocritical Care, 32, 647-666. https://doi.org/10.1007/s12028-020-00959-7
|
[2]
|
符跃强, 许峰. 儿童颅内压监测研究进展[J]. 中国小儿急救医学, 2017, 24(6): 412-419.
|
[3]
|
封菲, 丁美萍. 创伤性脑水肿的发生机制及研究进展[J]. 心脑血管病防治, 2013, 13(6): 472-474.
|
[4]
|
赵建华, 索爱琴. 缺血性脑水肿的发病机制及研究进展[C]//河南省医学会, 国际继续教育组织. 2006中国(郑州)国际临床神经病学学术研讨会资料汇编. 2006: 298-302.
|
[5]
|
Habgood, M.D., Bye, N., Dziegielewska, K.M., Ek, C.J., Lane, M.A., Potter, A., et al. (2007) Changes in Blood-Brain Barrier Permeability to Large and Small Molecules Following Traumatic Brain Injury in Mice. European Journal of Neuroscience, 25, 231-238. https://doi.org/10.1111/j.1460-9568.2006.05275.x
|
[6]
|
Hudak, A.M., Peng, L., Marquez de la Plata, C., Thottakara, J., Moore, C., Harper, C., et al. (2014) Cytotoxic and Vasogenic Cerebral Oedema in Traumatic Brain Injury: Assessment with FLAIR and DWI Imaging. Brain Injury, 28, 1602-1609. https://doi.org/10.3109/02699052.2014.936039
|
[7]
|
Winkler, E.A., Minter, D., Yue, J.K. and Manley, G.T. (2016) Cerebral Edema in Traumatic Brain Injury: Pathophysiology and Prospective Therapeutic Targets. Neurosurgery Clinics of North America, 27, 473-488. https://doi.org/10.1016/j.nec.2016.05.008
|
[8]
|
宋佳丽. 早期脑水肿形成及发展过程中电阻抗变化研究[D]: [硕士学位论文]. 西安: 第四军医大学, 2017.
|
[9]
|
Raslan, A. and Bhardwaj, A. (2007) Medical Management of Cerebral Edema. Neurosurgical Focus, 22, 1-12. https://doi.org/10.3171/foc.2007.22.5.13
|
[10]
|
Gao, C.P. and Ang, B.T. (2008) Biomechanical Modeling of Decompressive Craniectomy in Traumatic Brain Injury. In: Steiger, H.J., Ed., Acta Neurochirurgica Supplementum, Springer, 279-282. https://doi.org/10.1007/978-3-211-85578-2_52
|
[11]
|
Nehring, S.M., Tadi, P. and Tenny, S. (2024) Cerebral Edema. StatPearls.
|
[12]
|
Obenaus, A. and Badaut, J. (2021) Role of the Non‐invasive Imaging Techniques in Monitoring and Understanding the Evolution of Brain Edema. Journal of Neuroscience Research, 100, 1191-1200. https://doi.org/10.1002/jnr.24837
|
[13]
|
雷盼, 蔡强, 宋平, 等. 脑水肿与颅内压监测的发展与应用[J]. 中国医药, 2022, 17(8): 1264-1267.
|
[14]
|
Padayachy, L.C., Figaji, A.A. and Bullock, M.R. (2009) Intracranial Pressure Monitoring for Traumatic Brain Injury in the Modern Era. Child’s Nervous System, 26, 441-452. https://doi.org/10.1007/s00381-009-1034-0
|
[15]
|
Le Roux, P., Menon, D.K., Citerio, G., et al. (2014) Consensus Summary Statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: A Statement for Healthcare Professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocritical Care, 21, S1-S26.
|
[16]
|
Smith, M. (2008) Monitoring Intracranial Pressure in Traumatic Brain Injury. Anesthesia & Analgesia, 106, 240-248. https://doi.org/10.1213/01.ane.0000297296.52006.8e
|
[17]
|
Miller, C. and Guillaume, D. (2015) Incidence of Hemorrhage in the Pediatric Population with Placement and Removal of External Ventricular Drains. Journal of Neurosurgery: Pediatrics, 16, 662-667. https://doi.org/10.3171/2015.5.peds1563
|
[18]
|
Lang, J., Beck, J., Zimmermann, M., Seifert, V. and Raabe, A. (2003) Clinical Evaluation of Intraparenchymal Spiegelberg Pressure Sensor. Neurosurgery, 52, 1455-1459. https://doi.org/10.1227/01.neu.0000065136.70455.6f
|
[19]
|
Evensen, K.B. and Eide, P.K. (2020) Measuring Intracranial Pressure by Invasive, Less Invasive or Non-Invasive Means: Limitations and Avenues for Improvement. Fluids and Barriers of the CNS, 17, Article No. 34. https://doi.org/10.1186/s12987-020-00195-3
|
[20]
|
Czosnyka, M. (2004) Monitoring and Interpretation of Intracranial Pressure. Journal of Neurology, Neurosurgery & Psychiatry, 75, 813-821. https://doi.org/10.1136/jnnp.2003.033126
|
[21]
|
Aaslid, R., Markwalder, T. and Nornes, H. (1982) Noninvasive Transcranial Doppler Ultrasound Recording of Flow Velocity in Basal Cerebral Arteries. Journal of Neurosurgery, 57, 769-774. https://doi.org/10.3171/jns.1982.57.6.0769
|
[22]
|
Bellner, J., Romner, B., Reinstrup, P., Kristiansson, K., Ryding, E. and Brandt, L. (2004) Transcranial Doppler Sonography Pulsatility Index (PI) Reflects Intracranial Pressure (ICP). Surgical Neurology, 62, 45-51. https://doi.org/10.1016/j.surneu.2003.12.007
|
[23]
|
O’Brien, N.F., Maa, T. and Reuter-Rice, K. (2015) Noninvasive Screening for Intracranial Hypertension in Children with Acute, Severe Traumatic Brain Injury. Journal of Neurosurgery: Pediatrics, 16, 420-425. https://doi.org/10.3171/2015.3.peds14521
|
[24]
|
Zhou, F., Wang, H., Jian, M., Wang, Z., He, Y., Duan, H., et al. (2022) Gray-White Matter Ratio at the Level of the Basal Ganglia as a Predictor of Neurologic Outcomes in Cardiac Arrest Survivors: A Literature Review. Frontiers in Medicine, 9, Article 847089. https://doi.org/10.3389/fmed.2022.847089
|
[25]
|
Esdaille, C.J., Coppler, P.J., Faro, J.W., Weisner, Z.M., Condle, J.P., Elmer, J., et al. (2020) Duration and Clinical Features of Cardiac Arrest Predict Early Severe Cerebral Edema. Resuscitation, 153, 111-118. https://doi.org/10.1016/j.resuscitation.2020.05.049
|
[26]
|
Krieger, D.A. and Dehkharghani, S. (2015) Magnetic Resonance Imaging in Ischemic Stroke and Cerebral Venous Thrombosis. Topics in Magnetic Resonance Imaging, 24, 331-352. https://doi.org/10.1097/rmr.0000000000000067
|
[27]
|
Jöbsis, F.F. (1977) Non-Invasive, Infra-Red Monitoring of Cerebral O2 Sufficiency, Blood Volume, HbO2-Hb Shifts and Blood-Flow. Acta Neurologica Scandinavica, 64, 452-453.
|
[28]
|
Huppert, T.J., Hoge, R.D., Diamond, S.G., Franceschini, M.A. and Boas, D.A. (2006) A Temporal Comparison of BOLD, ASL, and NIRS Hemodynamic Responses to Motor Stimuli in Adult Humans. NeuroImage, 29, 368-382. https://doi.org/10.1016/j.neuroimage.2005.08.065
|
[29]
|
张林, 张建平, 江才明, 等. 基于功能性近红外光谱的学龄前孤独症谱系障碍儿童脑功能特征研究[J/OL]. 中国儿童保健杂志, 2025: 1-7. http://kns.cnki.net/kcms/detail/61.1346.R.20250115.1132.002.html, 2025-03-11.
|
[30]
|
牛雅楠, 陈宇, 薛芙霞, 等. 功能性近红外光谱技术应用于孤独症领域的知识图谱可视化分析[J]. 神经损伤与功能重建, 2024: 1-6. https://doi.org/10.16780/j.cnki.sjssgncj.20240545, 2025-03-11.
|
[31]
|
熊桃, 李阳, 崔丽君, 等. 功能性近红外光谱应用于脑认知领域的可视化分析[J]. 中国康复, 2024, 39(1): 46-51.
|
[32]
|
侯新琳, 周丛乐, 黄岚, 等. 近红外光谱技术对新生儿缺氧缺血性脑病脑氧合及组织灌注的评价探讨[J]. 中国儿童保健杂志, 2006(1): 8-10.
|
[33]
|
Shah, J., Solanki, S., Adhvaryu, N.S., Patel, D.G., Solanki, P.K. and Sanghavi, H.P. (2023) Advancing Edema Detection: Harnessing the Power of Machine Learning and near Infrared Spectroscopy for Cerebral and Cerebellar Edema Assessment. Journal of Clinical Neuroscience, 116, 50-54. https://doi.org/10.1016/j.jocn.2023.08.018
|
[34]
|
Strangman, G.E., Li, Z. and Zhang, Q. (2013) Depth Sensitivity and Source-Detector Separations for Near Infrared Spectroscopy Based on the Colin27 Brain Template. PLOS ONE, 8, e66319. https://doi.org/10.1371/journal.pone.0066319
|
[35]
|
Ostojic, D., Jiang, J., Isler, H., Kleiser, S., Karen, T., Wolf, M., et al. (2020) Impact of Skull Thickness on Cerebral NIRS Oximetry in Neonates: An in Silico Study. In: Ryu, P.D., LaManna, J., Harrison, D. and Lee, S.S., Eds., Oxygen Transport to Tissue XLI, Springer, 33-38. https://doi.org/10.1007/978-3-030-34461-0_5
|
[36]
|
Mirhoseini, M., Rezanejad Gatabi, Z., Das, S., Joveini, S. and Rezanezhad Gatabi, I. (2022) Applications of Electrical Impedance Tomography in Neurology. Basic and Clinical Neuroscience Journal, 13, 595-608. https://doi.org/10.32598/bcn.2021.3087.1
|
[37]
|
Li, Y., Wang, N., Fan, L., Zhao, P., Li, J., Huang, L., et al. (2023) Robust Electrical Impedance Tomography for Biological Application: A Mini Review. Heliyon, 9, e15195. https://doi.org/10.1016/j.heliyon.2023.e15195
|
[38]
|
Qu, S., Dai, M., Wu, S., Lv, Z., Ti, X. and Fu, F. (2021) System Introduction and Evaluation of the First Chinese Chest EIT Device for ICU Applications. Scientific Reports, 11, Article No. 19273. https://doi.org/10.1038/s41598-021-98793-0
|
[39]
|
Witkowska-Wrobel, A., Aristovich, K., Faulkner, M., Avery, J. and Holder, D. (2018) Feasibility of Imaging Epileptic Seizure Onset with EIT and Depth Electrodes. NeuroImage, 173, 311-321. https://doi.org/10.1016/j.neuroimage.2018.02.056
|
[40]
|
Song, J., Chen, R., Yang, L., Zhang, G., Li, W., Zhao, Z., et al. (2018) Electrical Impedance Changes at Different Phases of Cerebral Edema in Rats with Ischemic Brain Injury. BioMed Research International, 2018, Article ID: 9765174. https://doi.org/10.1155/2018/9765174
|
[41]
|
Yang, B., Li, B., Xu, C., Hu, S., Dai, M., Xia, J., et al. (2019) Comparison of Electrical Impedance Tomography and Intracranial Pressure during Dehydration Treatment of Cerebral Edema. NeuroImage: Clinical, 23, Article ID: 101909. https://doi.org/10.1016/j.nicl.2019.101909
|
[42]
|
He, L.Y., Wang, J., Luo, Y., Dong, W.W. and Liu, L.X. (2010) Application of Non-Invasive Cerebral Electrical Impedance Measurement on Brain Edema in Patients with Cerebral Infarction. Neurological Research, 32, 770-774. https://doi.org/10.1179/016164109x12478302362572
|
[43]
|
Lou, J.H., Wang, J., Liu, L.X., He, L.Y., Yang, H. and Dong, W.W. (2012) Measurement of Brain Edema by Noninvasive Cerebral Electrical Impedance in Patients with Massive Hemispheric Cerebral Infarction. European Neurology, 68, 350-357. https://doi.org/10.1159/000342030
|
[44]
|
Fu, F., Li, B., Dai, M., Hu, S., Li, X., Xu, C., et al. (2014) Use of Electrical Impedance Tomography to Monitor Regional Cerebral Edema during Clinical Dehydration Treatment. PLOS ONE, 9, e113202. https://doi.org/10.1371/journal.pone.0113202
|
[45]
|
Lyons-Reid, J., Ward, L.C., Kenealy, T. and Cutfield, W. (2020) Bioelectrical Impedance Analysis—An Easy Tool for Quantifying Body Composition in Infancy? Nutrients, 12, Article 920. https://doi.org/10.3390/nu12040920
|
[46]
|
王倩, 许欢, 周广敏, 等. 生物阻抗测量技术及其临床应用研究进展[J]. 北京生物医学工程, 2014, 33(2): 185-190.
|
[47]
|
Geeraerts, T., Merceron, S., Benhamou, D., Vigué, B. and Duranteau, J. (2008) Non-Invasive Assessment of Intracranial Pressure Using Ocular Sonography in Neurocritical Care Patients. Intensive Care Medicine, 34, 2062-2067. https://doi.org/10.1007/s00134-008-1149-x
|
[48]
|
Kimberly, H. and Noble, V.E. (2008) Using MRI of the Optic Nerve Sheath to Detect Elevated Intracranial Pressure. Critical Care, 12, Article No. 181. https://doi.org/10.1186/cc7008
|
[49]
|
Tayal, V.S., Neulander, M., Norton, H.J., Foster, T., Saunders, T. and Blaivas, M. (2007) Emergency Department Sonographic Measurement of Optic Nerve Sheath Diameter to Detect Findings of Increased Intracranial Pressure in Adult Head Injury Patients. Annals of Emergency Medicine, 49, 508-514. https://doi.org/10.1016/j.annemergmed.2006.06.040
|
[50]
|
Şık, N., Ulusoy, E., Çitlenbik, H., Öztürk, A., Er, A., Yılmaz, D., et al. (2022) The Role of Sonographic Optic Nerve Sheath Diameter Measurements in Pediatric Head Trauma. Journal of Ultrasound, 25, 957-963. https://doi.org/10.1007/s40477-022-00676-1
|
[51]
|
Laor, L., Sendi, P., Martinez, P. and Totapally, B.R. (2023) Epidemiology and Outcomes of Cerebral Edema in Hospitalized Children. Pediatric Neurology, 147, 148-153. https://doi.org/10.1016/j.pediatrneurol.2023.07.020
|
[52]
|
Arulnathan, E., Manchanda, A., Dixit, R. and Kumar, A. (2023) Temporal Evolution of Signal Alterations in the Deep Gray Nuclei in Term Neonates with Hypoxic-Ischemic Brain Injury: A Comprehensive Review. Journal of Child Neurology, 38, 550-556. https://doi.org/10.1177/08830738231188561
|
[53]
|
Dean, M.J. and McComb, G.J. (1981) Intracranial Pressure Monitoring in Severe Pediatric Near-Drowning. Neurosurgery, 9, 627-630. https://doi.org/10.1227/00006123-198112000-00003
|
[54]
|
Nussbaum, E. and Galant, S.P. (1983) Intracranial Pressure Monitoring as a Guide to Prognosis in the Nearly Drowned, Severely Comatose Child. The Journal of Pediatrics, 102, 215-218. https://doi.org/10.1016/s0022-3476(83)80523-x
|
[55]
|
Wang, W.J., Cui, J., Lv, G.W., Feng, S.Y., Zhao, Y., Zhang, S.L., et al. (2020) Prognostic Values of the Gray‐to‐White Matter Ratio on Brain Computed Tomography Images for Neurological Outcomes after Cardiac Arrest: A Meta‐Analysis. BioMed Research International, 2020, Article ID: 7949516. https://doi.org/10.1155/2020/7949516
|
[56]
|
Lin, J., Hsia, S., Wang, H., Chiang, M. and Lin, K. (2015) Transcranial Doppler Ultrasound in Therapeutic Hypothermia for Children after Resuscitation. Resuscitation, 89, 182-187. https://doi.org/10.1016/j.resuscitation.2015.01.029
|
[57]
|
Shi, X.T., You, F.S., Fu, F., Liu, R.G., You, Y., Dai, M., et al. (2008) Preliminary Research on Monitoring of Cerebral Ischemia Using Electrical Impedance Tomography Technique. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, 20-25 August 2008, 1188-1191. https://doi.org/10.1109/IEMBS.2008.4649375
|
[58]
|
王彩云, 张晔. 小儿病毒性脑炎的MRI影像诊断和鉴别诊断研究[J]. 影像研究与医学应用, 2022, 6(9): 124-126.
|
[59]
|
齐旭升, 王素梅. 小儿病毒性脑炎致多脏器衰竭45例临床分析[J]. 中国实用神经疾病杂志, 2015, 18(23): 125-126.
|
[60]
|
Kiroğlu, Y., Calli, C., Yunten, N., Kitis, O., Kocaman, A., Karabulut, N., et al. (2006) Diffusion-Weighted MR Imaging of Viral Encephalitis. Neuroradiology, 48, 875-880. https://doi.org/10.1007/s00234-006-0143-7
|
[61]
|
龚放, 彭明清, 王世伟, 等. 无创脑水肿动态监测仪在乙型病毒性脑炎患儿治疗过程中的监测分析[J]. 重庆医学, 2013, 42(13): 1462-1465.
|
[62]
|
Donkin, J.J. and Vink, R. (2010) Mechanisms of Cerebral Edema in Traumatic Brain Injury: Therapeutic Developments. Current Opinion in Neurology, 23, 293-299. https://doi.org/10.1097/wco.0b013e328337f451
|