原发性肠淋巴瘤研究进展
Research Advances in Primary Intestinal Lymphoma
DOI: 10.12677/acm.2025.153754, PDF, HTML, XML,    科研立项经费支持
作者: 熊红丽, 尹 娅, 郑瑞燥, 柯腊梅, 邹宇骁, 俞慧宏*:重庆医科大学附属第二医院,消化内科,重庆
关键词: 原发性肠淋巴瘤病因诊断治疗Primary Intestinal Lymphoma Etiology Diagnosis Treatment
摘要: 原发性肠淋巴瘤(primary intestinal lymphoma, PIL)是一种罕见且复杂的非霍奇金淋巴瘤,其发病率低,病理类型复杂,诊断困难,治疗方案尚未完善。近年来,现代影像技术显著提高了疾病的早期检出率和分期准确性,内镜检查结合实时活检技术增强了病理诊断的精确性,免疫组化和分子诊断手段的综合应用进一步提升了对亚型的鉴别能力,尽管化疗和放疗仍为标准治疗手段,但新型疗法如免疫治疗和靶向药物正在改写治疗格局。本文旨在深入探讨PIL的流行病学、病因学、临床特征、诊断标准、最佳治疗方案以及预后因素,以期为PIL患者的临床诊疗提供借鉴与参考。
Abstract: Primary intestinal lymphoma (PIL) is a rare and complex subtype of non-Hodgkin lymphoma, characterized by low incidence, diverse histopathology, diagnostic challenges, and lacking of standardized treatment protocols. Recent advancements in imaging, endoscopic techniques, and molecular diagnostics have significantly improved early detection and subtyping of PIL. Modern imaging modalities, such as CT and MRI, enhance disease identification and staging, while endoscopic techniques combined with real-time biopsy facilitate accurate pathological diagnosis. The integration of immunohistochemistry and molecular diagnostics further refines subtyping and provides valuable prognostic information. While chemotherapy and radiotherapy remain the main treatment for PIL, novel therapies, including immunotherapy and targeted agents, are increasingly contributing to improved outcomes. These advancements, alongside diagnostic innovations significantly alter the treatment landscape for patients with PIL. This review aims to provide a comprehensive overview of PIL, encompassing its epidemiology, etiology, clinical presentation, diagnostic criteria, optimal treatment strategies, and prognostic factors. By synthesizing current knowledge, this review seeks to offer valuable insights into the clinical management of patients with PIL, ultimately contributing to improving their diagnosis, treatment, and outcomes.
文章引用:熊红丽, 尹娅, 郑瑞燥, 柯腊梅, 邹宇骁, 俞慧宏. 原发性肠淋巴瘤研究进展[J]. 临床医学进展, 2025, 15(3): 1386-1396. https://doi.org/10.12677/acm.2025.153754

1. 引言

作为结外淋巴瘤的主要亚型,原发性胃肠道淋巴瘤(primary gastrointestinal lymphoma, PGIL)在非霍奇金淋巴瘤病例中的发病率约为10%~15%,同时占据胃肠道恶性肿瘤总数的1%~4% [1] [2]。原发性肠淋巴瘤(primary intestinal lymphoma, PIL)属于PGIL,其病变主要集中于小肠、回盲部及结直肠区域的黏膜固有层与黏膜下层淋巴组织[3]。PIL主要分为T细胞淋巴瘤和B细胞淋巴瘤,其中B细胞淋巴瘤更为常见,男性患者居多,诊断时的中位年龄为44岁[4]。尽管PIL的发病率呈上升趋势,但由于其起病隐匿,临床、内镜及影像学表现缺乏特异性,容易与其他胃肠道疾病混淆,早期诊断面临挑战。此外,PIL的治疗方案尚未标准化,临床疗效也存在差异。本文旨在探讨PIL的临床病理特征、预后因素以及有效且规范的治疗方法,以期加深对PIL发生发展机制的理解,为临床制定合理的诊疗方案提供科学依据,并为PIL的基础和临床研究提供新的方向。

2. 病因和发病机制

2.1. 慢性炎症和病原菌感染

目前,PIL的具体发病机制尚不明确。自身免疫性疾病和炎症性疾病的反复炎症反应及抗原刺激,可能引发肠道淋巴组织的单克隆增殖,最终导致PIL的发生[5]。肠道菌群紊乱也可能通过诱发慢性炎症和免疫系统功能失调,增加包括PIL在内的多种癌症风险。研究显示,33%的胃肠道大颗粒淋巴细胞来源的癌症和60%的T淋巴细胞来源的癌症伴有慢性炎症。类似地,乳糜泻、炎症性肠病(如克罗恩病和溃疡性结肠炎)以及免疫抑制性疾病也与胃肠道淋巴瘤的发生相关[6]-[8],这表明慢性炎症在PIL的发生发展中起着重要作用。

此外,某些病原体感染,例如幽门螺杆菌、人类免疫缺陷病毒、空肠弯曲菌、EB病毒、乙型肝炎病毒、人类T细胞淋巴细胞病毒-1也可能参与PIL的发病。对于最常见的PIL类型,黏膜相关淋巴组织(mucosa-associated lymphoid tissue, MALT)淋巴瘤,幽门螺杆菌感染是主要的致病因素[9]。虽然幽门螺杆菌常存在于胃中,但它也可能引发肠道慢性炎症,创造适宜肿瘤发展的微环境,例如导致DNA损伤、免疫信号紊乱和促肿瘤生长因子的释放。值得注意的是,抗生素治疗清除幽门螺杆菌感染通常能使MALT淋巴瘤消退,这有力地支持了幽门螺杆菌在PIL发生中的关键作用[10]。空肠弯曲菌也在PIL的发病中扮演一定角色。它持续存在于派尔集合淋巴结和肠系膜淋巴结中,并能够在小肠中诱发强烈的粘膜反应,导致B细胞增殖并产生与免疫增生性小肠疾病(immunoproliferative small intestinal disease, IPSID)相同的IgA单克隆免疫球蛋白[11]。然而,这些病原体感染究竟如何导致PIL发生,仍需进一步研究。

2.2. 基因和分子改变

染色体易位是多种淋巴瘤的常见特征,这些易位涉及染色体片段的交换,导致控制细胞生长和存活的基因发生异常。例如,t(14;18)易位会导致BCL-2基因过表达,抑制细胞凋亡,使肿瘤不受控制地增殖[12]。研究表明,t(11;18) (q21;q21)易位可能与结肠MALT淋巴瘤密切相关[13]。在套细胞淋巴瘤(mantle cell lymphoma, MCL)中,t(11;14) (q13;q32)易位会引起11号染色体上BCL-1基因座重排,并伴随细胞周期蛋白D1抗原过表达,尽管也有少数细胞周期蛋白D1阴性MCL病例报道,其细胞周期蛋白D2或D3上调[14]。microRNA (miRNA)作为基因表达的调节因子,在PIL发生发展中也发挥着重要作用。目前,miRNA对PIL细胞过程的影响正逐渐被揭示[15]。研究表明,不同PIL亚型具有独特的miRNA表达谱,这些miRNA参与调控细胞增殖、凋亡和分化等关键过程。例如,在弥漫性大B细胞淋巴瘤(diffuse large B-cell lymphoma, DLBCL)中经常观察到的miR-155过表达通过靶向肿瘤抑制基因促进淋巴瘤的发生[16] [17]。相反,具有抑癌作用的miRNA (如miR-17-92簇)表达下调则可促进PIL的发展[18]。此外,特定的miRNA表达谱与PIL的预后和治疗反应相关。深入了解这些遗传和分子机制,对于开发针对不同淋巴瘤亚型的靶向疗法和个性化治疗策略至关重要。

2.3. 免疫系统失调

淋巴瘤的发生发展与肿瘤细胞的免疫逃逸密切相关。淋巴瘤细胞可通过多种机制逃避宿主免疫系统的监控和清除。例如,通过下调主要组织相容性复合体分子或抗原呈递相关分子(包括抗原加工和细胞粘附分子)的表达来逃避免疫细胞的识别。此外,淋巴瘤细胞还能抵抗凋亡信号,表达抑制性配体以抑制免疫细胞活性,并构建免疫抑制微环境(包括体液免疫和细胞免疫),从而逃避免疫系统的攻击[19]。目前,免疫检查点抑制剂的研究正在进行中,这类药物旨在阻断通常抑制抗肿瘤免疫反应的免疫检查点。作为重要的免疫检查点分子,细胞毒性T淋巴细胞相关蛋白-4 (cytotoxic T-lymphocyte-associated protein 4, CTLA-4)通过其独特的免疫负调控机制在适应性免疫应答中发挥关键作用。该抑制性受体选择性表达于活化T淋巴细胞膜表面,通过B7配体家族(CD80/CD86)的特异性识别介导共刺激信号传导阻断。其分子机制涉及竞争性抑制CD28共刺激通路,形成T细胞活化的双信号调控枢纽,该发现为MALT淋巴瘤的靶向治疗提供了新思路。基于MALT淋巴瘤病理过程中异常T细胞激活的核心地位,针对CTLA-4的单克隆抗体及其信号通路调节剂已成为免疫治疗研发的重要方向[20]。研究显示,DLBCL中程序性死亡配体-1 (programmed death-ligand 1, PD-L1)的阳性表达与非生发中心来源及预后不良显著相关[21] [22]。抗PD-1和抗CTLA-4抗体已在部分淋巴瘤亚型中显示出良好的临床疗效,但其在PIL中的疗效仍需进一步探索[23]

总之,PIL的发生发展是一个涉及多因素、多机制的复杂过程,深入探究其潜在机制至关重要。通过识别关键的基因变异、免疫失调通路和环境因素,有望为患者制定个体化的精准治疗和预防策略。

3. 临床表现

PIL临床表现缺乏特异性,腹痛最为常见,其次为腹部肿块、恶心、厌食、消化道出血和肠梗阻等[24]。不同组织学亚型的淋巴瘤具有不同的免疫表型和临床特征。约18%~52%的PIL患者可出现发热、体重下降和盗汗等B症状[25]。先前已有报道称成人MALT淋巴瘤引起的小肠肿块可并发肠套叠[26]。少数病例也可以肠瘘为首发表现[27]。在小肠淋巴瘤中,DLBCL和MALT淋巴瘤最常见[5]。肠病相关T细胞淋巴瘤(enteropathy-associated T-cell lymphoma, EATL)是一种特殊的肠道淋巴瘤,其典型首发症状为腹泻,常发生于难治性或未经治疗的乳糜泻患者[28]

4. 诊断和鉴别诊断

PIL的诊断传统上依赖于内镜活检和病理学检查。由于原发性和继发性肠道淋巴瘤在临床表现上难以鉴别,目前Dawson标准被广泛用于PIL的诊断[29]。近年来,随着技术的进步,免疫组化、分子病理学和基因测序等技术已应用于PIL的诊断,显著提高了诊断的效率和准确性,并在鉴别诊断中发挥着重要作用,有助于区分PIL与其他肠道疾病。

4.1. 影像学诊断

PIL的CT影像表现多样,包括肠壁增厚、肠腔动脉瘤样扩张、腔内息肉样肿块(可伴溃疡,通常不引起肠梗阻)以及增强扫描对比度相对较低[30];其中肠壁增厚最为常见。与原发性胃淋巴瘤(primary gastric lymphoma, PGL)相比,PIL的肠壁增厚和肿块形成在CT影像上更为明显[31]。18F-脱氧葡萄糖(18F-FDG) PET-CT作为淋巴瘤诊疗的标准影像学手段,在疾病分期、疗效监测及放疗规划等关键环节具有重要应用价值。其诊断效能显著高于传统CT评估,尤其在代谢活性检测方面具有独特优势。而基于多模态成像原理的PET-MRI技术,通过整合功能代谢信息与解剖结构的精准融合,在病灶检出率、组织分辨率及分子影像可视化方面实现进一步优化,为淋巴瘤的精准影像诊断提供更优解决方案[32]。18F-FDG PET/CT SUVmax (最大标准化摄取值)在一定程度上反映了淋巴瘤的侵袭性,与增殖指数(Ki-67)表达相关,可作为PIL风险分层的参考指标[33]。然而,PIL的影像学表现缺乏特异性,确诊仍需结合临床症状、内镜和病理检查等进行综合评估。

4.2. 内镜诊断

内镜下,PIL主要表现为蕈伞型、溃疡型、浸润型、溃疡蕈伞型和溃疡浸润型五种类型[30],其中以弥漫性浸润性病变(23%)和肿块形成(33%)最为常见[31]。一项国内研究显示,小肠淋巴瘤的内镜下表现主要为隆起性病变,其次为溃疡性病变;而结直肠淋巴瘤则以溃疡性病变为主,其次为隆起性病变,两者病变组织均以脆性增加为特征[34]。EATL的内镜表现多样,包括溃疡型、上皮肿块型、结节型和弥漫浸润型,其中溃疡型最为常见(超过50%),其余类型相对少见。EATL的溃疡通常较大且深,边缘清晰,多数患者伴有肠道狭窄,内镜下表现与临床分期或国际预后指数(international prognostic index, IPI)无相关性[28]。值得注意的是,内镜检查并非PIL的确诊手段,病理学检查仍然是金标准。然而,一项研究显示,仅27.3%的EATL患者能在首次内镜检查中明确诊断[28],因此对于初次钳取活检未明确诊断的患者,重复活检至关重要。尽管如此,相比于手术病理检查,内镜检查具有快速、微创和经济等优势,已成为PIL诊断的首选方法。

4.3. 病理诊断

PIL是一组具有不同病理特征的淋巴肿瘤。其中,DLBCL最为常见,其病理学特点是大量形态异常的大淋巴细胞聚集,细胞核呈泡状,核仁明显,HE染色显示较高的有丝分裂活性[35]。DLBCL的免疫组化特征为表达B细胞标志物(如CD20和CD79a),并可基于CD10、BCL-6和MUM-1的表达情况进一步区分为生发中心B细胞样(GCB)和活化B细胞样(ABC)两个亚型[36]。MALT淋巴瘤的特征性表现为淋巴上皮病变,小淋巴细胞浸润腺上皮,细胞核形态不规则,部分类似中心细胞[37]。MALT淋巴瘤细胞通常表达CD20、CD79a和BCL-2,但不表达CD5、CD10、CD23以及BCL-6,需与滤泡性淋巴瘤(例如,表达CD10和BCL-6)、MCL (例如,表达CD5、Cyclin D1和SOX11)和慢性淋巴细胞白血病(例如,表达CD5、CD23和LEF1)进行鉴别诊断[38]。滤泡性淋巴瘤常由紧密排列的滤泡组成,类似于正常淋巴滤泡,但缺乏套膜区,滤泡排列紧密,主要由中心细胞和中心母细胞构成[39]。MCL的典型形态是大小均一的中小型淋巴细胞,细胞核形状不规则,胞质稀少,Ki-67增殖指数高[40]。MCL表达CD5、CD20、FMC7、Cyclin D1和SOX11,部分病例还表达CD10和胞质CD3 [41]

PIL虽然在形态学和免疫组化方面与相应亚型的结节性淋巴瘤存在相似之处,但其独特的微环境和与潜在炎症的关联可能影响其病理表现。因此,结合组织病理学和分子分析进行准确的亚型分类对制定合适的治疗方案和评估预后至关重要。

4.4. 鉴别诊断

PIL的临床表现、内镜和影像学特征与克罗恩病(Crohn’s disease, CD)和肠结核(intestinal tuberculosis, ITB)等疾病相似,容易造成误诊。一项国内研究对76例确诊的CD、PIL和ITB患者的回顾性分析显示,PIL患者血便和腹部包块发生率显著高于CD和ITB患者,其典型病变集中于回肠和回盲部,CT特征性表现为单层偏心性增厚和淋巴结肿大;相较之下,CD患者腹泻的发生率显著高于PIL和ITB患者,病变多位于回肠和回盲部,CT影像表现为多节段病变和假憩室征;ITB患者发热和盗汗的发生率显著高于PIL和CD患者,病变主要位于回盲部和结肠,CT影像表现为分层增厚和中空淋巴结[42]。胃肠道腺癌在临床和影像学上也可能与PIL类似,需要进行全面的组织病理学评估以明确诊断。其他少见的鉴别诊断包括类癌和间叶肿瘤,需借助免疫组化分析才能确诊。

要将PIL与这些疾病鉴别开来,需要综合临床、内镜、影像学以及重要的组织病理学检查结果,通常还要辅以免疫组化和分子研究,必要时可通过影像学和骨髓活检确定疾病的扩散情况。

5. 分期

目前,PIL的分期系统有多种,包括Ann Arbor分期、Musshoff改良Ann Arbor分期、Lugano分期和Paris分期等。虽然Ann Arbor分期提供了一个初步的框架,但由于其在结外病变分类方面的局限性,我国临床实践中更倾向于使用Lugano分期系统[43]。Lugano分期系统强调特定结节外受累部位及其与膈肌的关系,并区分局部和弥漫性器官受累。准确的分期对疾病的风险评估和制定最佳治疗方案至关重要。

6. 治疗策略

PIL的治疗策略仍存在争议,尤其对于侵袭性PIL,最佳治疗方案尚未达成共识。根据病理类型、疾病分期和患者的整体情况等因素,PIL的治疗方式包括观察、放疗、化疗或化疗联合手术等。但由于PIL的异质性,疗效不尽如人意。近年来,靶向治疗和免疫治疗等新兴疗法为PIL患者带来了新的希望。

6.1. 放疗

对于侵袭性肠淋巴瘤,通常采用全身化疗联合放疗的治疗策略。一项大型前瞻性研究显示,根据分期、组织学类型和手术切除情况调整放疗方案,已成为肠道淋巴瘤的主要治愈方法之一,可以保留器官功能并有效控制肿瘤。在多模式治疗(67.2%接受手术切除,66.4%接受过化疗)的背景下,局部区域放疗可使患者的完全缓解率达到100%,且疾病特异性死亡率较低(11.2%, 15/134) [44]。另一项研究表明,对原发性直肠MALT淋巴瘤患者采用5毫米薄层CT扫描进行靶区勾画,并结合外部束放射治疗(external beam radiation therapy, EBRT),可获得良好疗效,所有患者病灶在5年内得到控制,且未出现严重不良反应[45]。目前,受累野放疗(involved-site radiotherapy, ISRT)结合调强放射治疗(intensity-modulated radiation therapy, IMRT)和图像引导放射治疗(image-guided radiation therapy, IGRT)等现代放疗技术有望进一步改善肠道淋巴瘤患者的预后。这些技术可以更好地保护正常组织,并提高肿瘤的局部控制率。已建立的正常组织并发症概率(normal tissue complication probability, NTCP)模型可用于预测现代靶区勾画和放疗技术应用下正常组织的耐受性[46]

现代放疗技术的发展使放疗成为胃肠道淋巴瘤治疗中一种重要且耐受性良好的选择,并具有治愈潜力。

6.2. 化疗

PIL的化疗方案需根据淋巴瘤的类型、分期、患者的整体状况等个体化制定。CHOP方案是治疗非霍奇金淋巴瘤的标准方案,也常用于PIL的治疗,包括环磷酰胺、多柔比星、长春新碱和泼尼松,疗程通常为6~8个周期,每周期21天。利妥昔单抗联合CHOP方案可改善PIL患者的无进展生存期、无事件生存期、无病生存期和总生存期[47]。EPOCH方案与CHOP方案类似,但使用依托泊苷替代多柔比星,对某些类型的淋巴瘤(如滤泡性淋巴瘤)疗效更佳,且具有更高的应答率和耐受性[48]。MACOP-B方案适用于更高级别的淋巴瘤(如DLBCL),包括美法仑、多柔比星、环磷酰胺、长春新碱、泼尼松和博来霉素。作为一线化疗方案,MACOP-B治疗晚期侵袭性非霍奇金淋巴瘤的完全缓解率为70.5%,9年无复发生存率为66%,9年总生存率为61% [49]

6.3. 手术

在目前的研究中,手术在肠道淋巴瘤治疗中的效用仍存在争议。PIL的传统手术方式主要包括节段性切除和根治性切除,前者不涉及淋巴结清扫,后者则包括血管和淋巴结清扫,手术的优势包括彻底切除局部病灶,提供组织学诊断和亚型鉴定的依据,以及缓解肠梗阻或穿孔等并发症[50]。然而,手术也存在风险,例如出血、感染、吻合口漏等短期并发症,以及大范围切除后可能出现的短肠综合征和吸收不良等长期并发症[51]。对于播散性或多灶性PIL,手术的治愈率低,且可能延误全身化疗的启动,而化疗是PIL的主要治疗手段。大多数接受手术治疗的患者病变部位位于回肠和回盲部[4]。对于小肠局部晚期淋巴瘤,手术切除适用于组织学诊断不明确的肿瘤,或伴有肠梗阻、出血和穿孔等并发症的肿瘤[52]。微创内镜手术创伤较小,但适应症有限,主要用于局部病灶和特定并发症。对于PIL引起的梗阻或穿孔,可采用腹腔镜或机器人辅助手术进行肠段切除或姑息性旁路手术[53]。鉴于PIL的多发性和化疗的有效性,内镜手术的根治性应用仅限于高度选择的局部可切除病灶和组织学亚型良好的病例。Han等报道了一例经内镜黏膜下剥离术成功切除直肠MALT淋巴瘤的病例[54]。研究表明,根治性手术对生存率的提高有限,主要获益人群为B细胞淋巴瘤患者[55] [56]。一项荟萃分析显示,相比单纯化疗,手术联合化疗可显著延长患者的3年和5年生存期及3年无进展生存期[57]。丹麦淋巴瘤研究小组发现,对于局部病灶,手术联合化疗疗效最佳[58]。一项针对1602例原发性DLBCL患者的研究也证实了手术联合化疗的预后优势[59]。因此,PIL的手术决策应基于疾病分期、部位和并发症,优先考虑微创内镜活检和分期,随后进行全身化疗。

6.4. 靶向治疗

PIL的靶向治疗领域正不断发展,其适应症取决于淋巴瘤亚型和临床情况。利妥昔单抗已成为B细胞淋巴瘤(包括DLBCL)化疗方案的常规组成部分,通过靶向CD20抗原发挥作用[60]。利妥昔单抗联合CVAD方案应用于原发性胃肠道B细胞淋巴瘤患者,可获得良好的近期疗效,降低VEGF和β2-微球蛋白水平,降低不良反应发生率,并改善患者的长期生存率[61]。对于MCL等亚型,BTK抑制剂(如伊布替尼)展现出良好疗效[62]。除利妥昔单抗外,其他靶向药物主要用于复发/难治性PIL或特定分子特征的病例。未来需要更多研究以优化不同PIL亚型靶向治疗的应用策略。

6.5. 自体干细胞移植(Autologous Stem Cell Transplantation, ASCT)

ASCT是指将患者自身的造血干细胞收集起来,经过体外处理和储存后,再回输到患者体内,以重建其造血和免疫系统的一种治疗方法。ASCT并非PIL的标准一线治疗,主要用于难治/复发性PIL或早期PIL患者的一线化疗巩固治疗,以提高生存率[63]。有趣的是,PET/CT在ASCT中发挥着重要的作用。一项单中心人群研究显示,PET/CT检测代谢活动的能力使其能早期识别复发,筛选出对化疗敏感且ASCT后效果良好的患者,从而有可能实现早期干预并改善预后[64]。因此,在选择治疗方案时,应根据患者的年龄、体能状态、组织学类型和对初始治疗的反应等因素,个体化决定是否进行ASCT。

6.6. 免疫疗法

嵌合抗原受体T细胞免疫疗法(chimeric antigen receptor T-cell immunotherapy, CAR-T)是指利用基因工程技术改造T细胞,使其表达嵌合抗原受体(chimeric antigen receptor, CAR),靶向肿瘤抗原并杀伤肿瘤细胞[65]。CAR-T疗法具有靶向特异性强、体内持久性好和克服耐药性等优势。临床试验显示,CAR-T疗法对难治/复发性DLBCL的总有效率超过80% [66]。两种靶向B淋巴细胞特异性表达CD19的CAR-T细胞产品,axicabtagene ciloleucel (axi-cel)和tisagenlecleucel,已被证实对难治或复发性B细胞恶性肿瘤有效,具有较高的缓解率和潜在的治愈潜力[67] [68]。CAR-T疗法为PIL患者带来了新的治疗希望,但仍需进一步的临床研究。未来,CAR-T疗法有望成为PIL的重要治疗选择。

7. 预后

PIL的预后受到多种因素的影响,包括淋巴瘤类型、分期、年龄、体能状态以及治疗反应等。一项研究显示,原发性肠道滤泡性淋巴瘤患者的5/10年总生存率分别为92.9%/87.1%,5/10年无事件生存率分别为91.1%/86.9% [69]。Murat Erkut等人的研究显示,肠道受累范围越大、临床分期越晚、高IPI评分越高、CT影像学显示肿块形成越大和肠壁增厚越厚、结外病变以及并发症存在均对生存率有不利影响,其中肠道受累范围和高IPI评分是总生存期和无事件生存期的独立预后因素[31]。多处肠道受累的患者更容易出现高或中高IPI风险[55]。T细胞淋巴瘤预后较B细胞淋巴瘤差[5]。Ra Ri Cha等认为Ann Arbor分期、血红蛋白水平和组织学类型是独立预后因素,而主要病变部位和治疗方法不影响B细胞PIL患者的预后[70]。由于治疗耐药和严重并发症(如脓毒症、穿孔、梗阻、出血),EATL的预后普遍较差,研究显示,EATL患者的中位总生存期和无进展生存期分别为10个月和6个月[71]。分子生物学特征是PIL预后的关键因素。分子生物学特征是PIL预后的关键因素。在DLBCL中,GCB亚型预后优于ABC亚型[72]。一项针对184名原发性肠DLBCL患者的研究表明,BCL-2、BCL-6、MYC和Ki-67是DLBCL的重要预后因素,而肿瘤细胞上BCL-2 (BCL-2 > 50%)和Ki-67 (Ki-67 > 80%)的过表达与患者预后不良相关[73]。以细胞周期蛋白D1过表达为特征的MCL通常预后较差[74]。MALT淋巴瘤通常病程不长,t(11;18) (q21;q21)易位与胃肠道低级别MALT淋巴瘤的发展有关,但需要对大量患者进行进一步研究[13]

8. 展望

PIL的诊治仍存在诸多挑战,尽管近年来对PIL的理解有所进步,但仍缺乏统一的诊疗规范。PIL包含多种亚型,每种亚型具有独特的临床特征,进而影响疾病进展和治疗反应。虽然手术干预对于肠梗阻或穿孔等急性并发症是必要的,但并非所有PIL患者都需要手术治疗。化疗,通常联合利妥昔单抗,仍然是大多数PIL亚型,特别是DLBCL的主要治疗手段。其他治疗手段,包括放疗、靶向治疗和自体干细胞移植,在特定情况下也发挥着重要作用,具体取决于淋巴瘤的亚型、分期和预后因素。准确的淋巴瘤亚型诊断,依赖于全面的病理组织学检查和不断发展的分子分析技术,对于制定个体化治疗方案和预测患者预后至关重要。未来的研究方向应着眼于完善PIL的诊断和预后标准,优化不同亚型的治疗策略,并探索新的治疗方法,以期改善患者的生存率和生活质量。

基金项目

第六批重庆市中青年医学高端人才(委办2020-219)。

NOTES

*通讯作者。

参考文献

[1] Bautista-Quach, M.A., Ake, C.D., Chen, M. and Wang, J. (2012) Gastrointestinal Lymphomas: Morphology, Immunophenotype and Molecular Features. Journal of Gastrointestinal Oncology, 3, 209-225.
[2] Kim, E.K., Jang, M., Yang, W.I. and Yoon, S.O. (2021) Primary Gastrointestinal T/NK Cell Lymphoma. Cancers, 13, Article No. 2679.
https://doi.org/10.3390/cancers13112679
[3] 李胜开, 袁晓丹, 代海洋, 刘国荣, 蓝博文. 原发性胃肠淋巴瘤临床、影像及病理对照研究[J]. 临床放射学杂志, 2020, 39(7): 1347-1350.
[4] Correa, M., Rout, P., Malipatel, R., Patil, M. and Devarbhavi, H. (2021) Primary Intestinal Lymphoma: Clinicopathological Characteristics of 55 Patients. Euroasian Journal of Hepato-Gastroenterology, 11, 71-75.
https://doi.org/10.5005/jp-journals-10018-1345
[5] Chen, Y., Chen, Y., Chen, S., Wu, L., Xu, L., Lian, G., et al. (2015) Primary Gastrointestinal Lymphoma: A Retrospective Multicenter Clinical Study of 415 Cases in Chinese Province of Guangdong and a Systematic Review Containing 5075 Chinese Patients. Medicine (Baltimore), 94, e2119.
https://doi.org/10.1097/md.0000000000002119
[6] Sedai, H., Shrestha, S., Chand, V., Poddar, E., Acharya, S. and Koirala, D. (2023) Diffuse Large B-Cell Lymphoma in a Patient Treated with Azathioprine for Ulcerative Colitis: A Case Report. Annals of Medicine & Surgery, 85, 2059-2063.
https://doi.org/10.1097/ms9.0000000000000562
[7] Russo, M.F., Diddoro, A., Iodice, A., Severi, C., Castagneto-Gissey, L. and Casella, G. (2023) Incidence of Lymphomas in Inflammatory Bowel Disease: Report of an Emblematic Case, Systematic Review, and Meta-Analysis. Frontiers in Medicine, 10, Article ID: 1172634.
https://doi.org/10.3389/fmed.2023.1172634
[8] Phillips, F., Verstockt, B., Ribaldone, D.G., Guerra, I., Teich, N., Katsanos, K., et al. (2021) Diagnosis and Outcome of Extranodal Primary Intestinal Lymphoma in Inflammatory Bowel Disease: An ECCO CONFER Case Series. Journal of Crohns and Colitis, 16, 500-505.
https://doi.org/10.1093/ecco-jcc/jjab164
[9] Pereira, M. (2014) Role of Helicobacter pylori in Gastric Mucosa-Associated Lymphoid Tissue Lymphomas. World Journal of Gastroenterology, 20, 684-698.
https://doi.org/10.3748/wjg.v20.i3.684
[10] Vanagunas, A. (1997) Eradication of Helicobacter Pylori and Regression of B-Cell Lymphoma. Biomedicine & Pharmacotherapy, 51, 156-160.
https://doi.org/10.1016/s0753-3322(97)85583-7
[11] Lecuit, M., Abachin, E., Martin, A., Poyart, C., Pochart, P., Suarez, F., et al. (2004) Immunoproliferative Small Intestinal Disease Associated with Campylobacter jejuni. New England Journal of Medicine, 350, 239-248.
https://doi.org/10.1056/nejmoa031887
[12] Rodríguez-Sevilla, J.J. and Salar, A. (2021) Recent Advances in the Genetic of MALT Lymphomas. Cancers, 14, Article No. 176.
https://doi.org/10.3390/cancers14010176
[13] Nakamura, S., Matsumoto, T., Nakamura, S., Jo, Y., Fujisawa, K., Suekane, H., et al. (2003) Chromosomal Translocation T(11;18)(q21;q21) in Gastrointestinal Mucosa Associated Lymphoid Tissue Lymphoma. Journal of Clinical Pathology, 56, 36-42.
https://doi.org/10.1136/jcp.56.1.36
[14] Fu, K., Weisenburger, D.D., Greiner, T.C., Dave, S., Wright, G., Rosenwald, A., et al. (2005) Cyclin D1-Negative Mantle Cell Lymphoma: A Clinicopathologic Study Based on Gene Expression Profiling. Blood, 106, 4315-4321.
https://doi.org/10.1182/blood-2005-04-1753
[15] Jang, J.H. and Lee, T. (2021) The Role of microRNAs in Cell Death Pathways. Yeungnam University Journal of Medicine, 38, 107-117.
https://doi.org/10.12701/yujm.2020.00836
[16] Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., et al. (2005) Accumulation of miR-155 and BIC RNA in Human B Cell Lymphomas. Proceedings of the National Academy of Sciences, 102, 3627-3632.
https://doi.org/10.1073/pnas.0500613102
[17] Kluiver, J., Poppema, S., de Jong, D., Blokzijl, T., Harms, G., Jacobs, S., et al. (2005) BIC and miR‐155 Are Highly Expressed in Hodgkin, Primary Mediastinal and Diffuse Large B Cell Lymphomas. The Journal of Pathology, 207, 243-249.
https://doi.org/10.1002/path.1825
[18] He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005) A microRNA Polycistron as a Potential Human Oncogene. Nature, 435, 828-833.
https://doi.org/10.1038/nature03552
[19] de Charette, M. and Houot, R. (2018) Hide or Defend, the Two Strategies of Lymphoma Immune Evasion: Potential Implications for Immunotherapy. Haematologica, 103, 1256-1268.
https://doi.org/10.3324/haematol.2017.184192
[20] Velissari, A., Vassilakopoulos, T.P., Angelopoulou, M.K., Korkolopoulou, P., Bamias, G., Daikos, G., et al. (2022) Genetic Polymorphisms and Risk of MALT Lymphoma in Greek Population. Current Research in Translational Medicine, 70, Article ID: 103330.
https://doi.org/10.1016/j.retram.2021.103330
[21] Kiyasu, J., Miyoshi, H., Hirata, A., Arakawa, F., Ichikawa, A., Niino, D., et al. (2015) Expression of Programmed Cell Death Ligand 1 Is Associated with Poor Overall Survival in Patients with Diffuse Large B-Cell Lymphoma. Blood, 126, 2193-2201.
https://doi.org/10.1182/blood-2015-02-629600
[22] Xing, W., Dresser, K., Zhang, R., Evens, A.M., Yu, H., Woda, B.A., et al. (2016) PD-L1 Expression in Ebv-Negative Diffuse Large B-Cell Lymphoma: Clinicopathologic Features and Prognostic Implications. Oncotarget, 7, 59976-59986.
https://doi.org/10.18632/oncotarget.11045
[23] Wojtukiewicz, M.Z., Rek, M.M., Karpowicz, K., Górska, M., Polityńska, B., Wojtukiewicz, A.M., et al. (2021) Inhibitors of Immune Checkpoints—PD-1, PD-L1, Ctla-4—New Opportunities for Cancer Patients and a New Challenge for Internists and General Practitioners. Cancer and Metastasis Reviews, 40, 949-982.
https://doi.org/10.1007/s10555-021-09976-0
[24] Panneerselvam, K., Goyal, S. and Shirwaikar Thomas, A. (2020) Ileo-Colonic Lymphoma: Presentation, Diagnosis, and Management. Current Opinion in Gastroenterology, 37, 52-58.
https://doi.org/10.1097/mog.0000000000000687
[25] Sharma, A., Raina, V., Vora, A., Shukla, N., Deo, S. and Dawar, R. (2006) Primary Gastrointestinal Non-Hodgkin’s Lymphoma Chemotherapy Alone an Effective Treatment Modality: Experience from a Single Centre in India. Indian Journal of Cancer, 43, 30-35.
https://doi.org/10.4103/0019-509x.25773
[26] Da, B., Zhang, J., Zhu, F., Wang, Z. and Diao, Y. (2024) Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue of the Ileum in an Adult Presenting with Intussusception: A Case Report and Literature Review. Frontiers in Oncology, 14, Article ID: 1395144.
https://doi.org/10.3389/fonc.2024.1395144
[27] Zhao, R., Zhang, C., Zhang, Y., Sun, X., Ni, Y., Luo, Y., et al. (2019) Enteral Fistula as Initial Manifestation of Primary Intestinal Lymphoma. Chinese Medical Journal, 133, 101-102.
https://doi.org/10.1097/cm9.0000000000000598
[28] Chen, M., Liu, X., Zhang, Y. and Shi, Y. (2022) Endoscopic Features and Clinical Outcomes of Enteropathy-Associated T-Cell Lymphoma: A Tertiary Center Retrospective Study. Saudi Journal of Gastroenterology, 28, 127-134.
https://doi.org/10.4103/sjg.sjg_100_21
[29] Dawson, I.M.P., Cornes, J.S. and Morson, B.C. (1961) Primary Malignant Lymphoid Tumours of the Intestinal Tract. Report of 37 Cases with a Study of Factors Influencing Prognosis. Journal of British Surgery, 49, 80-89.
https://doi.org/10.1002/bjs.18004921319
[30] 陈虹燕, 杨丽, 凌贤龙. 克罗恩病、肠结核及原发性肠道淋巴瘤的鉴别诊断研究进展[J]. 现代医药卫生, 2021, 37(3): 432-435.
[31] Erkut, M., Erkut, N., Bektas, O., Fidan, S., Cosar, A.M. and Sonmez, M. (2022) Effect of Clinical, Endoscopic, Radiological Findings, and Complications on Survival in Patients with Primary Gastrointestinal Lymphoma. The Turkish Journal of Gastroenterology, 33, 909-917.
https://doi.org/10.5152/tjg.2022.211003
[32] 乔文礼, 赵晋华. 淋巴瘤18F-FDG PET_CT及PET_MR显像临床应用指南(2021版)解读与展望[J]. 中华核医学与分子影像杂志, 2022, 42(4): 193-195.
[33] Zhou, S., Chen, W., Lin, M., Chen, G., Chen, C., Huo, C., et al. (2021) Correlation of 18F-FDG PET/CT Suvmax with Clinical Features, D-Dimer and LDH in Patients with Primary Intestinal Lymphoma. Journal of International Medical Research, 49, 1-11.
https://doi.org/10.1177/03000605211029809
[34] 邵琳琳, 朱思莹, 邢洁, 武珊珊, 朱圣韬, 张澍田. 原发性胃肠道淋巴瘤的临床特征和内镜特点分析[J]. 首都医科大学学报, 2022, 43(2): 205-209.
[35] Swerdlow, S.H., Campo, E., Pileri, S.A., Harris, N.L., Stein, H., Siebert, R., et al. (2016) The 2016 Revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood, 127, 2375-2390.
https://doi.org/10.1182/blood-2016-01-643569
[36] Choi, W.W.L., Weisenburger, D.D., Greiner, T.C., Piris, M.A., Banham, A.H., Delabie, J., et al. (2009) A New Immunostain Algorithm Classifies Diffuse Large B-Cell Lymphoma into Molecular Subtypes with High Accuracy. Clinical Cancer Research, 15, 5494-5502.
https://doi.org/10.1158/1078-0432.ccr-09-0113
[37] Isaacson, P. and Wright, D.H. (1983) Malignant Lymphoma of Mucosa-Associated Lymphoid Tissue. A Distinctive Type of B-Cell Lymphoma. Cancer, 52, 1410-1416.
https://doi.org/10.1002/1097-0142(19831015)52:8<1410::aid-cncr2820520813>3.0.co;2-3
[38] Ishikawa, E., Nakamura, M., Satou, A., Shimada, K. and Nakamura, S. (2022) Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma in the Gastrointestinal Tract in the Modern Era. Cancers, 14, Article No. 446.
https://doi.org/10.3390/cancers14020446
[39] Campo, E., Swerdlow, S.H., Harris, N.L., Pileri, S., Stein, H. and Jaffe, E.S. (2011) The 2008 WHO Classification of Lymphoid Neoplasms and Beyond: Evolving Concepts and Practical Applications. Blood, 117, 5019-5032.
https://doi.org/10.1182/blood-2011-01-293050
[40] McCall, R.K., Pang, C.S. and Pettenati, M.J. (2020) Non-Nodal Cd5-Negative Mantle Cell Lymphoma with Secondary TP53 Deletion. Case Reports in Hematology, 2020, Article ID: 9185432.
https://doi.org/10.1155/2020/9185432
[41] Felten, C.L., Chan, J.A., DeCastro, D.R., Lopategui, J. and Rajurkar, S.P. (2018) Blastoid Variant Mantle Cell Lymphoma Expressing Aberrant CD3 and CD10 with Concurrent Small Lymphocytic Lymphoma: Establishment of a Clonal Relationship by B-and T-Cell Receptor Gene Rearrangements. Case Reports in Hematology, 2018, Article ID: 8303571.
https://doi.org/10.1155/2018/8303571
[42] 颜小杭, 张义. 原发性肠道淋巴瘤、克罗恩病及肠结核的CT影像诊断对比研究[J]. 中国医学前沿杂志(电子版), 2018, 10(1): 108-111.
[43] Rohatiner, A., d’Amore, F., Coiffier, B., Crowther, D., Gospodarowicz, M., Isaacson, P., et al. (1994) Report on a Workshop Convened to Discuss the Pathological and Staging Classifications of Gastrointestinal Tract Lymphoma. Annals of Oncology, 5, 397-400.
https://doi.org/10.1093/oxfordjournals.annonc.a058869
[44] Reinartz, G., Molavi Tabrizi, C., Liersch, R., Ullerich, H., Hering, D., Willborn, K., et al. (2020) Renaissance of Radiotherapy in Intestinal Lymphoma? 10-Year Efficacy and Tolerance in Multimodal Treatment of 134 Patients: Follow-Up of Two German Multicenter Consecutive Prospective Phase II Trials. The Oncologist, 25, e816-e832.
https://doi.org/10.1634/theoncologist.2019-0783
[45] Katano, A., Takeuchi, K. and Yamashita, H. (2022) Radiotherapeutic Outcomes for Localized Primary Rectal Mucosa-Associated Lymphoid Tissue Lymphoma: A Consecutive Case Series of Three Patients. Cureus, 14, e22307.
https://doi.org/10.7759/cureus.22307
[46] Palma, G., Monti, S., Conson, M., Pacelli, R. and Cella, L. (2019) Normal Tissue Complication Probability (NTCP) Models for Modern Radiation Therapy. Seminars in Oncology, 46, 210-218.
https://doi.org/10.1053/j.seminoncol.2019.07.006
[47] Salles, G., Barrett, M., Foà, R., Maurer, J., O’Brien, S., Valente, N., et al. (2017) Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Advances in Therapy, 34, 2232-2273.
https://doi.org/10.1007/s12325-017-0612-x
[48] Straining, R., Foss, F., Schiffer, M., Amin, K., Agarwal, S., Isufi, I., et al. (2025) Real World Data on Efficacy and Safety of EPOCH in T-Cell Lymphoma. Clinical Lymphoma Myeloma and Leukemia, 25, e96-e102.
https://doi.org/10.1016/j.clml.2024.09.005
[49] Zinzani, P.L., Martelli, M., Magagnoli, M., Zaja, F., Storti, S., Pavone, E., et al. (1999) How Do Patients with Aggressive Non-Hodgkin’s Lymphoma Treated with Third-Generation Regimens (MACOP-B and F-MACHOP) Fare in the Long-Term? Haematologica, 84, 996-1001.
[50] Varga, Z., Bálint, A. and Vitályos, T. (2011) Surgical Interventions for Small Bowel Tumors at Our Department in the Last 3 Years. Magyar Sebészet, 64, 18-21.
https://doi.org/10.1556/maseb.64.2011.1.4
[51] Davis, B. and Rivadeneira, D.E. (2013) Complications of Colorectal Anastomoses: Leaks, Strictures, and Bleeding. Surgical Clinics of North America, 93, 61-87.
https://doi.org/10.1016/j.suc.2012.09.014
[52] Iida, T., Nozawa, H., Sonoda, H., Toyama, K., Kawai, K., Hata, K., et al. (2020) Upfront Surgery for Small Intestinal Non-Hodgkin’s Lymphoma. Anticancer Research, 40, 2373-2377.
https://doi.org/10.21873/anticanres.14206
[53] Karadag, M.A., Cecen, K., Demir, A., Bagcioglu, M., Kocaaslan, R. and Kadioglu, T.C. (2015) Gastrointestinal Complications of Laparoscopic/robot-Assisted Urologic Surgery and a Review of the Literature. Journal of Clinical Medicine Research, 7, 203-210.
https://doi.org/10.14740/jocmr2090w
[54] Han, J., Zhu, Z., Zhang, C. and Xie, H. (2021) Successful Endoscopic Resection of Primary Rectal Mucosa-Associated Lymphoid Tissue Lymphoma by Endoscopic Submucosal Dissection: A Case Report. Frontiers in Medicine, 8, Article ID: 715256.
https://doi.org/10.3389/fmed.2021.715256
[55] Kim, S.J., Choi, C.W., Mun, Y., Oh, S.Y., Kang, H.J., Lee, S.I., et al. (2011) Multicenter Retrospective Analysis of 581 Patients with Primary Intestinal Non-Hodgkin Lymphoma from the Consortium for Improving Survival of Lymphoma (CISL). BMC Cancer, 11, Article No. 321.
https://doi.org/10.1186/1471-2407-11-321
[56] Lee, J., Kim, W.S., Kim, K., Ko, Y.H., Kim, J.J., Kim, Y.H., et al. (2004) Intestinal Lymphoma: Exploration of the Prognostic Factors and the Optimal Treatment. Leukemia & Lymphoma, 45, 339-344.
https://doi.org/10.1080/10428190310001593111
[57] Shu, Y., Xu, X., Yang, W. and Xu, L. (2021) Surgery Plus Chemotherapy versus Chemotherapy Alone in Primary Intestinal Lymphoma: A Meta-analysis. Journal of International Medical Research, 49, 1-9.
https://doi.org/10.1177/03000605211056845
[58] d’Amore, F., Brincker, H., Grønbaek, K., Thorling, K., Pedersen, M., Jensen, M.K., et al. (1994) Non-Hodgkin’s Lymphoma of the Gastrointestinal Tract: A Population-Based Analysis of Incidence, Geographic Distribution, Clinicopathologic Presentation Features, and Prognosis. Danish Lymphoma Study Group. Journal of Clinical Oncology, 12, 1673-1684.
https://doi.org/10.1200/jco.1994.12.8.1673
[59] Wang, M., Ma, S., Shi, W., Zhang, Y., Luo, S. and Hu, Y. (2021) Surgery Shows Survival Benefit in Patients with Primary Intestinal Diffuse Large B‐Cell Lymphoma: A Population‐Based Study. Cancer Medicine, 10, 3474-3485.
https://doi.org/10.1002/cam4.3882
[60] Papageorgiou, S.G., Thomopoulos, T.P., Liaskas, A. and Vassilakopoulos, T.P. (2022) Monoclonal Antibodies in the Treatment of Diffuse Large B-Cell Lymphoma: Moving Beyond Rituximab. Cancers, 14, Article No. 1917.
https://doi.org/10.3390/cancers14081917
[61] 张诗彤, 王爱民, 孙智慧, 宋晶晶, 玄小玉, 刘伟, 等. 利妥昔单抗联合CVAD方案对原发性胃肠道B细胞淋巴瘤患者血清VEGF、β2-MG水平的影响[J]. 海南医学院学报, 2019, 25(12): 901-904.
[62] Wen, T., Wang, J., Shi, Y., Qian, H. and Liu, P. (2020) Inhibitors Targeting Bruton’s Tyrosine Kinase in Cancers: Drug Development Advances. Leukemia, 35, 312-332.
https://doi.org/10.1038/s41375-020-01072-6
[63] Wen, Q., Gao, L., Xiong, J., Li, Q., Wang, S., Wang, J., et al. (2021) High-Dose Chemotherapy Combined with Autologous Hematopoietic Stem Cell Transplantation as Frontline Therapy for Intermediate/High-Risk Diffuse Large B Cell Lymphoma. Current Medical Science, 41, 465-473.
https://doi.org/10.1007/s11596-021-2394-2
[64] Noring, K., Carlsten, M., Sonnevi, K. and Wahlin, B.E. (2021) The Value of Complete Remission According to Positron Emission Tomography Prior to Autologous Stem Cell Transplantation in Lymphoma: A Population-Based Study Showing Improved Outcome. BMC Cancer, 21, Article No. 500.
https://doi.org/10.1186/s12885-021-08225-5
[65] Feng, M., Zhao, Z., Yang, M., Ji, J. and Zhu, D. (2021) T-Cell-Based Immunotherapy in Colorectal Cancer. Cancer Letters, 498, 201-209.
https://doi.org/10.1016/j.canlet.2020.10.040
[66] Li, C., Zhang, Y., Zhang, C., Chen, J., Lou, X., Chen, X., et al. (2019) Comparison of CART19 and Autologous Stem-Cell Transplantation for Refractory/Relapsed Non-Hodgkin’s Lymphoma. JCI Insight, 5, e130195.
[67] Schuster, S.J., Bishop, M.R., Tam, C.S., Waller, E.K., Borchmann, P., McGuirk, J.P., et al. (2019) Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. New England Journal of Medicine, 380, 45-56.
https://doi.org/10.1056/nejmoa1804980
[68] Locke, F.L., Ghobadi, A., Jacobson, C.A., Miklos, D.B., Lekakis, L.J., Oluwole, O.O., et al. (2019) Long-Term Safety and Activity of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphoma (ZUMA-1): A Single-Arm, Multicentre, Phase 1-2 Trial. The Lancet Oncology, 20, 31-42.
https://doi.org/10.1016/s1470-2045(18)30864-7
[69] Iwamuro, M., Tanaka, T., Ennishi, D., Matsueda, K., Yoshioka, M., Miyahara, K., et al. (2023) Long-Term Outcomes of Patients with Primary Intestinal Follicular Lymphoma Managed with Watch-and-Wait Strategy. Scientific Reports, 13, Article No. 5858.
https://doi.org/10.1038/s41598-023-32736-9
[70] Cha, R.R., Baek, D.H., Lee, G.W., Park, S.J., Lee, J.H., Park, J.H., et al. (2021) Clinical Features and Prognosis of Patients with Primary Intestinal B-Cell Lymphoma Treated with Chemotherapy with or without Surgery. The Korean Journal of Gastroenterology, 78, 320-327.
https://doi.org/10.4166/kjg.2021.082
[71] Delabie, J., Holte, H., Vose, J.M., Ullrich, F., Jaffe, E.S., Savage, K.J., et al. (2011) Enteropathy-Associated T-Cell Lymphoma: Clinical and Histological Findings from the International Peripheral T-Cell Lymphoma Project. Blood, 118, 148-155.
https://doi.org/10.1182/blood-2011-02-335216
[72] Read, J.A., Koff, J.L., Nastoupil, L.J., Williams, J.N., Cohen, J.B. and Flowers, C.R. (2014) Evaluating Cell-of-Origin Subtype Methods for Predicting Diffuse Large B-Cell Lymphoma Survival: A Meta-Analysis of Gene Expression Profiling and Immunohistochemistry Algorithms. Clinical Lymphoma Myeloma and Leukemia, 14, 460-467.e2.
https://doi.org/10.1016/j.clml.2014.05.002
[73] Fan, X., Zang, L., Zhao, B., Yi, H., Lu, H., Xu, P., et al. (2021) Development and Validation of Prognostic Scoring in Primary Intestinal Diffuse Large B-Cell Lymphoma: A Single-Institution Study of 184 Patients. Annals of Translational Medicine, 9, Article No. 1542.
https://doi.org/10.21037/atm-21-4761
[74] Wang, K., Huang, X., Di Liberto, M. and Chen-Kiang, S. (2020) Cell Cycle Dysregulation in Mantle Cell Lymphoma: Genomics and Therapy. Hematology/Oncology Clinics of North America, 34, 809-823.
https://doi.org/10.1016/j.hoc.2020.05.003