| [1] | Hench, L.L. (2006) The Story of Bioglass. Journal of Materials Science: Materials in Medicine, 17, 967-978.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Al-Harbi, N., Mohammed, H., Al-Hadeethi, Y., Bakry, A.S., Umar, A., Hussein, M.A., et al. (2021) Silica-Based Bioactive Glasses and Their Applications in Hard Tissue Regeneration: A Review. Pharmaceuticals, 14, Article 75.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Filip, D.G., Surdu, V., Paduraru, A.V. and Andronescu, E. (2022) Current Development in Biomaterials—Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. Journal of Functional Biomaterials, 13, Article 248.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Krishnan, L., Chakrabarty, P., Govarthanan, K., Rao, S. and Santra, T.S. (2024) Bioglass and Nano Bioglass: A Next-Generation Biomaterial for Therapeutic and Regenerative Medicine Applications. International Journal of Biological Macromolecules, 277, Article ID: 133073.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Chen, Y., Dai, F., Deng, T., Wang, L., Yang, Y., He, C., et al. (2023) An Injectable MB/BG@LG Sustained Release Lipid Gel with Antibacterial and Osteogenic Properties for Efficient Treatment of Chronic Periodontitis in Rats. Materials Today Bio, 21, Article ID: 100699.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Sánchez-Salcedo, S., García, A., González-Jiménez, A. and Vallet-Regí, M. (2023) Antibacterial Effect of 3D Printed Mesoporous Bioactive Glass Scaffolds Doped with Metallic Silver Nanoparticles. Acta Biomaterialia, 155, 654-666.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Kurtuldu, F., Kaňková, H., Beltrán, A.M., Liverani, L., Galusek, D. and Boccaccini, A.R. (2021) Anti-Inflammatory and Antibacterial Activities of Cerium-Containing Mesoporous Bioactive Glass Nanoparticles for Drug-Free Biomedical Applications. Materials Today Bio, 12, Article ID: 100150.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Zhang, Y., Hu, M., Zhang, W. and Zhang, X. (2022) Construction of Tellurium-Doped Mesoporous Bioactive Glass Nanoparticles for Bone Cancer Therapy by Promoting Ros-Mediated Apoptosis and Antibacterial Activity. Journal of Colloid and Interface Science, 610, 719-730.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Stuart, B.W., Stan, G.E., Popa, A.C., Carrington, M.J., Zgura, I., Necsulescu, M., et al. (2022) New Solutions for Combatting Implant Bacterial Infection Based on Silver Nano-Dispersed and Gallium Incorporated Phosphate Bioactive Glass Sputtered Films: A Preliminary Study. Bioactive Materials, 8, 325-340.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Hu, J., Wang, Z., Miszuk, J.M., Zhu, M., Lansakara, T.I., Tivanski, A.V., et al. (2021) Vanillin-Bioglass Cross-Linked 3D Porous Chitosan Scaffolds with Strong Osteopromotive and Antibacterial Abilities for Bone Tissue Engineering. Carbohydrate Polymers, 271, Article ID: 118440.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Liang, Y., Wang, C., Yu, S., Fan, Y., Jiang, Y., Zhou, R., et al. (2023) IOX1 Epigenetically Enhanced Photothermal Therapy of 3D-Printing Silicene Scaffolds against Osteosarcoma with Favorable Bone Regeneration. Materials Today Bio, 23, Article ID: 100887.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Danewalia, S.S. and Singh, K. (2021) Bioactive Glasses and Glass-Ceramics for Hyperthermia Treatment of Cancer: State-of-Art, Challenges, and Future Perspectives. Materials Today Bio, 10, Article ID: 100100.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Zhang, M., Fan, Z., Zhang, J., Yang, Y., Huang, C., Zhang, W., et al. (2023) Multifunctional Chitosan/Alginate Hydrogel Incorporated with Bioactive Glass Nanocomposites Enabling Photothermal and Nitric Oxide Release Activities for Bacteria-Infected Wound Healing. International Journal of Biological Macromolecules, 232, Article ID: 123445.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Liu, X., Shen, M., Bing, T., Zhang, X., Li, Y., Cai, Q., et al. (2024) A Bioactive Injectable Hydrogel Regulates Tumor Metastasis and Wound Healing for Melanoma via Nir‐Light Triggered Hyperthermia. Advanced Science, 11, e2402208.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Huang, H., Wang, X., Wang, W., Qu, X., Song, X., Zhang, Y., et al. (2022) Injectable Hydrogel for Postoperative Synergistic Photothermal-Chemodynamic Tumor and Anti-Infection Therapy. Biomaterials, 280, Article ID: 121289.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Zhang, Y., Zhang, W., Zhang, X. and Zhou, Y. (2023) Erbium-Ytterbium Containing Upconversion Mesoporous Bioactive Glass Microspheres for Tissue Engineering: Luminescence Monitoring of Biomineralization and Drug Release. Acta Biomaterialia, 168, 628-636.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Pei, P., Hu, H., Chen, Y., Wang, S., Chen, J., Ming, J., et al. (2022) NIR-II Ratiometric Lanthanide-Dye Hybrid Nanoprobes Doped Bioscaffolds for in Situ Bone Repair Monitoring. Nano Letters, 22, 783-791.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Ma, L., Zhou, Y., Zhang, Z., Liu, Y., Zhai, D., Zhuang, H., et al. (2020) Multifunctional Bioactive Nd-Ca-Si Glasses for Fluorescence Thermometry, Photothermal Therapy, and Burn Tissue Repair. Science Advances, 6, eabb1311.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Shearer, A., Montazerian, M., Sly, J.J., Hill, R.G. and Mauro, J.C. (2023) Trends and Perspectives on the Commercialization of Bioactive Glasses. Acta Biomaterialia, 160, 14-31.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Pant, S., Thomas, S., Loganathan, S. and Valapa, R.B. (2022) 3D Bioprinted Poly(Lactic Acid)/Mesoporous Bioactive Glass Based Biomimetic Scaffold with Rapid Apatite Crystallization and In-Vitro Cytocompatability for Bone Tissue Engineering. International Journal of Biological Macromolecules, 217, 979-997.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Plewinski, M., Schickle, K., Lindner, M., Kirsten, A., Weber, M. and Fischer, H. (2013) The Effect of Crystallization of Bioactive Bioglass 45S5 on Apatite Formation and Degradation. Dental Materials, 29, 1256-1264.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Hench, L.L., Splinter, R.J., Allen, W.C. and Greenlee, T.K. (1971) Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials. Journal of Biomedical Materials Research, 5, 117-141.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Özel, C., Çevlik, C.B., Özarslan, A.C., Emir, C., Elalmis, Y.B. and Yücel, S. (2023) Evaluation of Biocomposite Putty with Strontium and ZiNc Co-Doped 45S5 Bioactive Glass and Sodium Hyaluronate. International Journal of Biological Macromolecules, 242, Article ID: 124901.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Zhu, H., Monavari, M., Zheng, K., Distler, T., Ouyang, L., Heid, S., et al. (2022) 3D Bioprinting of Multifunctional Dynamic Nanocomposite Bioinks Incorporating Cu‐Doped Mesoporous Bioactive Glass Nanoparticles for Bone Tissue Engineering. Small, 18, e2104996.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Sharifi, E., Yousefiasl, S., Laderian, N., Rabiee, N., Makvandi, P., Pourmotabed, S., et al. (2023) Cell-Loaded Genipin Cross-Linked Collagen/Gelatin Skin Substitute Adorned with Zinc-Doped Bioactive Glass-Ceramic for Cutaneous Wound Regeneration. International Journal of Biological Macromolecules, 251, Article ID: 125898.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Wu, Y., Huo, S., Liu, S., Hong, Q., Wang, Y. and Lyu, Z. (2023) Cu-Sr Bilayer Bioactive Glass Nanoparticles/Polydopamine Functionalized Polyetheretherketone Enhances Osteogenic Activity and Prevents Implant‐Associated Infections through Spatiotemporal Immunomodulation. Advanced Healthcare Materials, 12, e2301772.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Mostajeran, H., Baheiraei, N. and Bagheri, H. (2024) Effects of Cerium-Doped Bioactive Glass Incorporation on an Alginate/Gelatin Scaffold for Bone Tissue Engineering: In Vitro Characterizations. International Journal of Biological Macromolecules, 255, Article ID: 128094.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Wu, Z., Bai, J., Ge, G., Wang, T., Feng, S., Ma, Q., et al. (2022) Regulating Macrophage Polarization in High Glucose Microenvironment Using Lithium‐Modified Bioglass‐Hydrogel for Diabetic Bone Regeneration. Advanced Healthcare Materials, 11, e2200298.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Yu, Y., Wang, C., Fu, Q., Wan, Y. and Yu, A. (2024) Multi-Crosslinked Hydrogel Built with Hyaluronic Acid-Tyramine, Thiolated Glycol Chitosan and Copper-Doped Bioglass Nanoparticles for Expediting Wound Healing. Carbohydrate Polymers, 327, Article ID: 121635.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Kamrani, A., Nasrabadi, M.H., Halabian, R. and Ghorbani, M. (2023) A Biomimetic Multi-Layer Scaffold with Collagen and Zinc Doped Bioglass as a Skin-Regeneration Agent in Full-Thickness Injuries and Its Effects in Vitro and in Vivo. International Journal of Biological Macromolecules, 253, Article ID: 127163.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Huo, S., Liu, S., Liu, Q., Xie, E., Miao, L., Meng, X., et al. (2023) Copper-Zinc‐Doped Bilayer Bioactive Glasses Loaded Hydrogel with Spatiotemporal Immunomodulation Supports MRSA‐Infected Wound Healing. Advanced Science, 11, e2302674.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Wu, Q., Hu, L., Yan, R., Shi, J., Gu, H., Deng, Y., et al. (2022) Strontium-Incorporated Bioceramic Scaffolds for Enhanced Osteoporosis Bone Regeneration. Bone Research, 10, Article No. 55.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Wang, G., Lv, Z., Wang, T., Hu, T., Bian, Y., Yang, Y., et al. (2022) Surface Functionalization of Hydroxyapatite Scaffolds with MgAlEu‐LDH Nanosheets for High‐performance Bone Regeneration. Advanced Science, 10, e2204234.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | Karakuzu-Ikizler, B., Terzioğlu, P., Basaran-Elalmis, Y., Tekerek, B.S. and Yücel, S. (2020) Role of Magnesium and Aluminum Substitution on the Structural Properties and Bioactivity of Bioglasses Synthesized from Biogenic Silica. Bioactive Materials, 5, 66-73.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Wang, X., Zhang, Y., Lin, C. and Zhong, W. (2017) Sol-Gel Derived Terbium-Containing Mesoporous Bioactive Glasses Nanospheres: In Vitro Hydroxyapatite Formation and Drug Delivery. Colloids and Surfaces B: Biointerfaces, 160, 406-415.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Williams, D.F. (2022) Biocompatibility Pathways and Mechanisms for Bioactive Materials: The Bioactivity Zone. Bioactive Materials, 10, 306-322.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Schmitz, S.I., Widholz, B., Essers, C., Becker, M., Tulyaganov, D.U., Moghaddam, A., et al. (2020) Superior Biocompatibility and Comparable Osteoinductive Properties: Sodium-Reduced Fluoride-Containing Bioactive Glass Belonging to the CaO-MgO-SiO2 System as a Promising Alternative to 45S5 Bioactive Glass. Bioactive Materials, 5, 55-65.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [38] | Vallet-Regi, M. and Salinas, A.J. (2021) Mesoporous Bioactive Glasses for Regenerative Medicine. Materials Today Bio, 11, Article ID: 100121.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Zhang, Y., Shao, H., Lin, T., Peng, J., Wang, A., Zhang, Z., et al. (2019) Effect of Ca/P Ratios on Porous Calcium Phosphate Salt Bioceramic Scaffolds for Bone Engineering by 3D Gel-Printing Method. Ceramics International, 45, 20493-20500.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [40] | Stone-Weiss, N., Bradtmüller, H., Eckert, H. and Goel, A. (2021) Composition-Structure-Solubility Relationships in Borosilicate Glasses: Toward a Rational Design of Bioactive Glasses with Controlled Dissolution Behavior. ACS Applied Materials & Interfaces, 13, 31495-31513.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [41] | Patel, U., Moss, R.M., Hossain, K.M.Z., Kennedy, A.R., Barney, E.R., Ahmed, I., et al. (2017) Structural and Physico-Chemical Analysis of Calcium/Strontium Substituted, Near-Invert Phosphate Based Glasses for Biomedical Applications. Acta Biomaterialia, 60, 109-127.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Xing, R., Yuan, C., Fan, W., Ren, X. and Yan, X. (2023) Biomolecular Glass with Amino Acid and Peptide Nanoarchitectonics. Science Advances, 9, eadd8105.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Huang, C., Yu, M., Li, H., Wan, X., Ding, Z., Zeng, W., et al. (2021) Research Progress of Bioactive Glass and Its Application in Orthopedics. Advanced Materials Interfaces, 8, Article ID: 2100606.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [44] | Weng, L., Boda, S.K., Teusink, M.J., Shuler, F.D., Li, X. and Xie, J. (2017) Binary Doping of Strontium and Copper Enhancing Osteogenesis and Angiogenesis of Bioactive Glass Nanofibers While Suppressing Osteoclast Activity. ACS Applied Materials & Interfaces, 9, 24484-24496.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [45] | Pant, S., Subramanian, S., Thomas, S., Loganathan, S. and Valapa, R.B. (2022) Tailoring of Mesoporous Bioactive Glass Composite Scaffold via Thermal Extrusion Based 3D Bioprinting and Scrutiny on Bone Tissue Engineering Characteristics. Microporous and Mesoporous Materials, 341, Article ID: 112104.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [46] | Zhao, F., Yang, Z., Xiong, H., Yan, Y., Chen, X. and Shao, L. (2023) A Bioactive Glass Functional Hydrogel Enhances Bone Augmentation via Synergistic Angiogenesis, Self-Swelling and Osteogenesis. Bioactive Materials, 22, 201-210.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [47] | Ding, X., Shi, J., Wei, J., Li, Y., Wu, X., Zhang, Y., et al. (2021) A Biopolymer Hydrogel Electrostatically Reinforced by Amino-Functionalized Bioactive Glass for Accelerated Bone Regeneration. Science Advances, 7, eabj7857.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [48] | Kaya, S., Cresswell, M. and Boccaccini, A.R. (2018) Mesoporous Silica-Based Bioactive Glasses for Antibiotic-Free Antibacterial Applications. Materials Science and Engineering: C, 83, 99-107.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [49] | Tiama, T.M., Elhaes, H., Ibrahim, M.A., Refaat, A., El-Mansy, M.A.M. and Sabry, N.M. (2023) Molecular and Biological Activities of Metal Oxide-Modified Bioactive Glass. Scientific Reports, 13, Article No. 10637.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [50] | Taye, M.B. (2022) Biomedical Applications of Ion-Doped Bioactive Glass: A Review. Applied Nanoscience, 12, 3797-3812.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [51] | Raja, F.N.S., Worthington, T., de Souza, L.P.L., Hanaei, S.B. and Martin, R.A. (2022) Synergistic Antimicrobial Metal Oxide-Doped Phosphate Glasses: A Potential Strategy to Reduce Antimicrobial Resistance and Host Cell Toxicity. ACS Biomaterials Science & Engineering, 8, 1193-1199.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [52] | Chen, Q.Z., Thompson, I.D. and Boccaccini, A.R. (2006) 45S5 Bioglass®-Derived Glass-Ceramic Scaffolds for Bone Tissue Engineering. Biomaterials, 27, 2414-2425.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [53] | Gross, U.M., Müller-Mai, C. and Voigt, C. (2013) Ceravital® Bioactive Glass-Ceramics. In: Hench, L.L., Ed., An Introduction to Bioceramics, Imperial College Press, 209-214.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [54] | Kokubo, T. and Yamaguchi, S. (2016) Novel Bioactive Materials Derived by Bioglass: Glass‐Ceramic A‐W and Surface‐modified Ti Metal. International Journal of Applied Glass Science, 7, 173-182.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [55] | Zhang, Z., Zhang, N., Li, X., Li, G., Zhang, K., Jing, A., et al. (2022) Porous Magnetic Fe3O4/Bioactive Glass-Ceramic (CaO-SiO2-P2O5-MgO) Scaffold with Enhanced Self-Heating Ability for Hyperthermia Treatment of Bone Tumor—An in Vitro Study. Journal of the Australian Ceramic Society, 58, 1729-1745.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [56] | Barrioni, B.R., Oliveira, A.C., de Fátima Leite, M. and de Magalhães Pereira, M. (2017) Sol-Gel-Derived Manganese-Releasing Bioactive Glass as a Therapeutic Approach for Bone Tissue Engineering. Journal of Materials Science, 52, 8904-8927.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [57] | Gupta, S., Majumdar, S. and Krishnamurthy, S. (2021) Bioactive Glass: A Multifunctional Delivery System. Journal of Controlled Release, 335, 481-497.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [58] | Schumacher, M., Habibovic, P. and van Rijt, S. (2021) Mesoporous Bioactive Glass Composition Effects on Degradation and Bioactivity. Bioactive Materials, 6, 1921-1931.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [59] | Gupta, N. and Santhiya, D. (2018) Mesoporous Bioactive Glass and Its Applications. In: Ylänen, H., Ed., Bioactive Glasses, Elsevier, 63-85.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [60] | Yang, Z., Liu, X., Zhao, F., Yao, M., Lin, Z., Yang, Z., et al. (2022) Bioactive Glass Nanoparticles Inhibit Osteoclast Differentiation and Osteoporotic Bone Loss by Activating LncRNA NRON Expression in the Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells. Biomaterials, 283, Article ID: 121438.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [61] | Liu, B., Li, J., Lei, X., Cheng, P., Song, Y., Gao, Y., et al. (2020) 3D-Bioprinted Functional and Biomimetic Hydrogel Scaffolds Incorporated with Nanosilicates to Promote Bone Healing in Rat Calvarial Defect Model. Materials Science and Engineering: C, 112, Article ID: 110905. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [62] | Schumacher, M., Habibović, P. and van Rijt, S. (2022) Peptide-Modified Nano-Bioactive Glass for Targeted Immobilization of Native VEGF. ACS Applied Materials & Interfaces, 14, 4959-4968.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [63] | Yuan, Z., Zhang, L., Shafiq, M., Wang, X., Cai, P., Hafeez, A., et al. (2024) Composite Superplastic Aerogel Scaffolds Containing Dopamine and Bioactive Glass-Based Fibers for Skin and Bone Tissue Regeneration. Journal of Colloid and Interface Science, 673, 411-425.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [64] | Xu, H., Zhu, Y., Hsiao, A.W., Xu, J., Tong, W., Chang, L., et al. (2023) Bioactive Glass-Elicited Stem Cell-Derived Extracellular Vesicles Regulate M2 Macrophage Polarization and Angiogenesis to Improve Tendon Regeneration and Functional Recovery. Biomaterials, 294, Article ID: 121998.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [65] | Chen, M., Winston, D.D., Wang, M., Niu, W., Cheng, W., Guo, Y., et al. (2022) Hierarchically Multifunctional Bioactive Nanoglass for Integrated Tumor/infection Therapy and Impaired Wound Repair. Materials Today, 53, 27-40.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [66] | He, X., Li, X., Zhang, M., Tian, B., Sun, L., Bi, C., et al. (2022) Role of Molybdenum in Material Immunomodulation and Periodontal Wound Healing: Targeting Immunometabolism and Mitochondrial Function for Macrophage Modulation. Biomaterials, 283, Article ID: 121439.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [67] | Liu, Y., Liu, X., Guo, H., Wang, X., Li, A., Qiu, D., et al. (2024) 3D Bioprinting Bioglass to Construct Vascularized Full-Thickness Skin Substitutes for Wound Healing. Materials Today Bio, 24, Article ID: 100899.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [68] | Huang, J., Zheng, Y., Niu, H., Huang, J., Zhang, X., Chen, J., et al. (2023) A Multifunctional Hydrogel for Simultaneous Visible H2O2 Monitoring and Accelerating Diabetic Wound Healing. Advanced Healthcare Materials, 13, e2302328.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [69] | Wang, Y., Luo, M., Li, T., Xie, C., Li, S. and Lei, B. (2023) Multi-Layer-Structured Bioactive Glass Nanopowder for Multistage-Stimulated Hemostasis and Wound Repair. Bioactive Materials, 25, 319-332.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [70] | Han, Y., Liu, C., Chen, B., Fu, C., Kankala, R.K., Wang, S., et al. (2022) Orchestrated Tumor Apoptosis (Cu2+) and Bone Tissue Calcification (Ca2+) by Hierarchical Copper/Calcium-Ensembled Bioactive Silica for Osteosarcoma Therapy. Chemical Engineering Journal, 435, Article ID: 134820.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [71] | Fellenberg, J., Losch, S., Lehner, B., Arango-Ospina, M., Boccaccini, A.R. and Westhauser, F. (2022) Bioactive Glass Selectively Promotes Cytotoxicity towards Giant Cell Tumor of Bone Derived Neoplastic Stromal Cells and Induces MAPK Signalling Dependent Autophagy. Bioactive Materials, 15, 456-468.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [72] | Richter, R.F., Ahlfeld, T., Gelinsky, M. and Lode, A. (2023) Composites Consisting of Calcium Phosphate Cements and Mesoporous Bioactive Glasses as a 3D Plottable Drug Delivery System. Acta Biomaterialia, 156, 146-157.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [73] | Wang, H., Deng, Z., Chen, J., Qi, X., Pang, L., Lin, B., et al. (2020) A Novel Vehicle-Like Drug Delivery 3D Printing Scaffold and Its Applications for a Rat Femoral Bone Repairing in Vitro and in Vivo. International Journal of Biological Sciences, 16, 1821-1832.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [74] | Yang, S., Hu, Y., Zhao, R., Zhou, Y., Zhuang, Y., Zhu, Y., et al. (2024) Quercetin-Loaded Mesoporous Nano-Delivery System Remodels Osteoimmune Microenvironment to Regenerate Alveolar Bone in Periodontitis via the miR-21a-5p/PDCD4/NF-κB Pathway. Journal of Nanobiotechnology, 22, Article No. 94.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [75] | Zhu, H., Cai, C., Yu, Y., Zhou, Y., Yang, S., Hu, Y., et al. (2024) Quercetin‐Loaded Bioglass Injectable Hydrogel Promotes m6A Alteration of Per1 to Alleviate Oxidative Stress for Periodontal Bone Defects. Advanced Science, 11, e2403412.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [76] | Höhlinger, M. (2021) Biodegradable Coating Development and Analysis for a WE43 Mg Alloy with Focus on Corrosion, Surface Analysis and Biocompatibility. Master’s Thesis, Friedrich-Alexander-University Erlangen-Nürnberg. | 
                     
                                
                                    
                                        | [77] | Goldmann, W.H. (2021) Biosensitive and Antibacterial Coatings on Metallic Material for Medical Applications. Cell Biology International, 45, 1624-1632.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [78] | Azadani, R.N., Karbasi, S. and Poursamar, A. (2024) Chitosan/MWCNTs Nanocomposite Coating on 3D Printed Scaffold of Poly 3-Hydroxybutyrate/Magnetic Mesoporous Bioactive Glass: A New Approach for Bone Regeneration. International Journal of Biological Macromolecules, 260, Article ID: 129407.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [79] | Lee, P.S., Heinemann, C., Zheng, K., Appali, R., Alt, F., Krieghoff, J., et al. (2022) The Interplay of Collagen/bioactive Glass Nanoparticle Coatings and Electrical Stimulation Regimes Distinctly Enhanced Osteogenic Differentiation of Human Mesenchymal Stem Cells. Acta Biomaterialia, 149, 373-386.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [80] | Begines, B., Arevalo, C., Romero, C., Hadzhieva, Z., Boccaccini, A.R. and Torres, Y. (2022) Fabrication and Characterization of Bioactive Gelatin-Alginate-Bioactive Glass Composite Coatings on Porous Titanium Substrates. ACS Applied Materials & Interfaces, 14, 15008-15020.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [81] | Zhao, F., Lei, B., Li, X., Mo, Y., Wang, R., Chen, D., et al. (2018) Promoting in Vivo Early Angiogenesis with Sub-Micrometer Strontium-Contained Bioactive Microspheres through Modulating Macrophage Phenotypes. Biomaterials, 178, 36-47.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [82] | Zhu, Y., Wang, Y., Xia, G., Zhang, X., Deng, S., Zhao, X., et al. (2023) Oral Delivery of Bioactive Glass‐Loaded Core-Shell Hydrogel Microspheres for Effective Treatment of Inflammatory Bowel Disease. Advanced Science, 10, Article ID: 2207418.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [83] | Finkelstein-Zuta, G., Arnon, Z.A., Vijayakanth, T., Messer, O., Lusky, O.S., Wagner, A., et al. (2024) A Self-Healing Multispectral Transparent Adhesive Peptide Glass. Nature, 630, 368-374.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [84] | Deliormanlı, A.M., Oguzlar, S. and Ertekin, K. (2021) Photoluminescence and Decay Characteristics of Cerium, Gallium and Vanadium—Containing Borate-Based Bioactive Glass Powders for Bioimaging Applications. Ceramics International, 47, 3797-3807.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [85] | Wang, M., Chen, M., Niu, W., Winston, D.D., Cheng, W. and Lei, B. (2020) Injectable Biodegradation-Visual Self-Healing Citrate Hydrogel with High Tissue Penetration for Microenvironment-Responsive Degradation and Local Tumor Therapy. Biomaterials, 261, Article ID: 120301.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [86] | Wu, P., Wang, J. and Jiang, L. (2020) Bio-Inspired Photonic Crystal Patterns. Materials Horizons, 7, 338-365.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [87] | Luo, D., Cui, S., Liu, Y., Shi, C., Song, Q., Qin, X., et al. (2018) Biocompatibility of Magnetic Resonance Imaging Nanoprobes Improved by Transformable Gadolinium Oxide Nanocoils. Journal of the American Chemical Society, 140, 14211-14216.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [88] | Kargozar, S., Kermani, F., Mollazadeh Beidokhti, S., Hamzehlou, S., Verné, E., Ferraris, S., et al. (2019) Functionalization and Surface Modifications of Bioactive Glasses (BGs): Tailoring of the Biological Response Working on the Outermost Surface Layer. Materials, 12, Article 3696.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [89] | Liverani, L., Liguori, A., Zezza, P., Gualandi, C., Toselli, M., Boccaccini, A.R., et al. (2022) Nanocomposite Electrospun Fibers of Poly(ε-Caprolactone)/Bioactive Glass with Shape Memory Properties. Bioactive Materials, 11, 230-239.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [90] | Matsumoto, A., Tanaka, M., Matsumoto, H., Ochi, K., Moro-oka, Y., Kuwata, H., et al. (2017) Synthetic “Smart Gel” Provides Glucose-Responsive Insulin Delivery in Diabetic Mice. Science Advances, 3, eaaq723.  [Google Scholar] [CrossRef] [PubMed] |