| [1] | Yoshimura, M., Conway-Campbell, B. and Ueta, Y. (2021) Arginine Vasopressin: Direct and Indirect Action on Metabolism. Peptides, 142, Article ID: 170555.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Sato-Numata, K., Numata, T., Ueta, Y. and Okada, Y. (2021) Vasopressin Neurons Respond to Hyperosmotic Stimulation with Regulatory Volume Increase and Secretory Volume Decrease by Activating Ion Transporters and Ca2+ Channels. Cellular Physiology & Biochemistry, 55, 119-134.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Morris, M. and Alexander, N. (1989) Baroreceptor Influences on Oxytocin and Vasopressin Secretion. Hypertension, 13, 110-114. | 
                     
                                
                                    
                                        | [4] | Grinevich, V. and Ludwig, M. (2021) The Multiple Faces of the Oxytocin and Vasopressin Systems in the Brain. Journal of Neuroendocrinology, 33, e13004. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Bankir, L., Guerrot, D. and Bichet, D.G. (2021) Vaptans or Voluntary Increased Hydration to Protect the Kidney: How Do They Compare? Nephrology Dialysis Transplantation, 38, 562-574.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Ghanavati, P.M., Khazaeli, D. and Amjadzadeh, M. (2021) A Comparison of the Efficacy and Tolerability of Treating Primary Nocturnal Enuresis with Solifenacin Plus Desmopressin, Tolterodine Plus Desmopressin, and Desmopressin Alone: A Randomized Controlled Clinical Trial. International braz j urol, 47, 73-81.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Schrier, R.W., Gross, P., Gheorghiade, M., Berl, T., Verbalis, J.G., Czerwiec, F.S., et al. (2006) Tolvaptan, a Selective Oral Vasopressin V2-Receptor Antagonist, for Hyponatremia. New England Journal of Medicine, 355, 2099-2112.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Policarpo, M., Baldwin, M.W., Casane, D. and Salzburger, W. (2024) Diversity and Evolution of the Vertebrate Chemoreceptor Gene Repertoire. Nature Communications, 15, Article No. 1421. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Liu, H., Zhong, H., Zhang, Y., Xue, H., Zhang, Z., Fu, K., et al. (2024) Structural Basis of Tolvaptan Binding to the Vasopressin V2 Receptor. Acta Pharmacologica Sinica, 45, 2441-2449.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | He, Q., Xiao, P., Huang, S., Jia, Y., Zhu, Z., Lin, J., et al. (2021) Structural Studies of Phosphorylation-Dependent Interactions between the V2R Receptor and Arrestin-2. Nature Communications, 12, Article No. 2396. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Bous, J., Fouillen, A., Orcel, H., Trapani, S., Cong, X., Fontanel, S., et al. (2022) Structure of the Vasopressin Hormone-V2 Receptor-β-Arrestin1 Ternary Complex. Science Advances, 8, eabo7761.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Wang, L., Xu, J., Cao, S., Sun, D., Liu, H., Lu, Q., et al. (2021) Cryo-EM Structure of the AVP-Vasopressin Receptor 2-GS Signaling Complex. Cell Research, 31, 932-934.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Zhou, F., Ye, C., Ma, X., Yin, W., Croll, T.I., Zhou, Q., et al. (2021) Molecular Basis of Ligand Recognition and Activation of Human V2 Vasopressin Receptor. Cell Research, 31, 929-931.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Fujiwara, Y., Tanoue, A., Tsujimoto, G. and Koshimizu, T. (2011) The Roles of V1a Vasopressin Receptors in Blood Pressure Homeostasis: A Review of Studies on V1a Receptor Knockout Mice. Clinical and Experimental Nephrology, 16, 30-34.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Brands, J., Bravo, S., Jürgenliemke, L., Grätz, L., Schihada, H., Frechen, F., et al. (2024) A Molecular Mechanism to Diversify Ca2+ Signaling Downstream of GS Protein-Coupled Receptors. Nature Communications, 15, Article No. 7684.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Umemori, H., Inoue, T., Kume, S., Sekiyama, N., Nagao, M., Itoh, H., et al. (1997) Activation of the G Protein Gq/11 through Tyrosine Phosphorylation of the α Subunit. Science, 276, 1878-1881.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Murasawa, S., Matsubara, H., Kizima, K., Maruyama, K., Mori, Y. and Inada, M. (1995) Glucocorticoids Regulate V1a Vasopressin Receptor Expression by Increasing mRNA Stability in Vascular Smooth Muscle Cells. Hypertension, 26, 665-669.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Szczepanska-Sadowska, E., Czarzasta, K., Bogacki-Rychlik, W. and Kowara, M. (2024) The Interaction of Vasopressin with Hormones of the Hypothalamo-Pituitary-Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases. International Journal of Molecular Sciences, 25, Article 7394. | 
                     
                                
                                    
                                        | [19] | Carter, C.S. (2017) The Oxytocin-Vasopressin Pathway in the Context of Love and Fear. Frontiers in Endocrinology, 8, Article 356.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Tsuchiya, H., Fujimura, S., Fujiwara, Y. and Koshimizu, T.A. (2020) Critical Role of V1a Vasopressin Receptor in Murine Parturition. Biology of Reproduction, 102, 923-934. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Perrier, E.T., Armstrong, L.E., Bottin, J.H., Clark, W.F., Dolci, A., Guelinckx, I., et al. (2021) Hydration for Health Hypothesis: A Narrative Review of Supporting Evidence. European Journal of Nutrition, 60, 1167-1180. | 
                     
                                
                                    
                                        | [22] | Ślusarz, M.J. (2024) Structural Basis for Antagonist Binding to Vasopressin V1b Receptor Revealed by the Molecular Dynamics Simulations. Biopolymers, 116, e23627.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Tanoue, A., Ito, S., Honda, K., Oshikawa, S., Kitagawa, Y., Koshimizu, T., et al. (2004) The Vasopressin V1b Receptor Critically Regulates Hypothalamic-Pituitary-Adrenal Axis Activity under Both Stress and Resting Conditions. Journal of Clinical Investigation, 113, 302-309.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Iob, E., Kirschbaum, C. and Steptoe, A. (2019) Persistent Depressive Symptoms, HPA-Axis Hyperactivity, and Inflammation: The Role of Cognitive-Affective and Somatic Symptoms. Molecular Psychiatry, 25, 1130-1140.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Török, B., Fazekas, C.L., Szabó, A. and Zelena, D. (2021) Epigenetic Modulation of Vasopressin Expression in Health and Disease. International Journal of Molecular Sciences, 22, Article 9415.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Erdélyi, L.S., Hunyady, L. and Balla, A. (2023) V2 Vasopressin Receptor Mutations: Future Personalized Therapy Based on Individual Molecular Biology. Frontiers in Endocrinology, 14, Article 1173601.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Wang, L., Guo, W., Fang, C., Feng, W., Huang, Y., Zhang, X., et al. (2021) Functional Characterization of a Loss-Of-Function Mutant I324M of Arginine Vasopressin Receptor 2 in X-Linked Nephrogenic Diabetes Insipidus. Scientific Reports, 11, Article No. 11057.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Felline, A., Bellucci, L., Vezzi, V., Ambrosio, C., Cotecchia, S. and Fanelli, F. (2024) Structural Plasticity of Arrestin-G Protein Coupled Receptor Complexes as a Molecular Determinant of Signaling. International Journal of Biological Macromolecules, 283, Article ID: 137217.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Xiang, Y. and Hwa, J. (2016) Regulation of VWF Expression, and Secretion in Health and Disease. Current Opinion in Hematology, 23, 288-293.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Gal, C.S. (2001) An Overview of SR121463, a Selective Non‐Peptide Vasopressin V2 Receptor Antagonist. Cardiovascular Drug Reviews, 19, 201-214.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Ranieri, M., Di Mise, A., Tamma, G. and Valenti, G. (2019) Vasopressin-Aquaporin-2 Pathway: Recent Advances in Understanding Water Balance Disorders. F1000Research, 8, Article 149.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Noda, Y., Horikawa, S., Kanda, E., Yamashita, M., Meng, H., Eto, K., et al. (2008) Reciprocal Interaction with G-Actin and Tropomyosin Is Essential for Aquaporin-2 Trafficking. The Journal of Cell Biology, 182, 587-601.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Lozić, M., Šarenac, O., Murphy, D. and Japundžić-Žigon, N. (2018) Vasopressin, Central Autonomic Control and Blood Pressure Regulation. Current Hypertension Reports, 20, Article No. 11.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | Wasilewski, M.A., Grisanti, L.A., Song, J., Carter, R.L., Repas, A.A., Myers, V.D., et al. (2016) Vasopressin Type 1A Receptor Deletion Enhances Cardiac Contractility, β-Adrenergic Receptor Sensitivity and Acute Cardiac Injury-Induced Dysfunction. Clinical Science, 130, 2017-2027.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Pickett, J.R., Wu, Y., Zacchi, L.F. and Ta, H.T. (2023) Targeting Endothelial Vascular Cell Adhesion Molecule-1 in Atherosclerosis: Drug Discovery and Development of Vascular Cell Adhesion Molecule-1-Directed Novel Therapeutics. Cardiovascular Research, 119, 2278-2293.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Rabow, S., Jonsson, H., Bro, E. and Olofsson, P. (2023) Cardiovascular Effects of Oxytocin and Carbetocin at Cesarean Section. A Prospective Double-Blind Randomized Study Using Noninvasive Pulse Wave Analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 36, Article ID: 2208252.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Li, X., Du, Y., Han, X., Wang, H., Sheng, Y., Lian, F., et al. (2023) Efficacy of Atosiban for Repeated Implantation Failure in Frozen Embryo Transfer Cycles. Scientific Reports, 13, Article No. 9277.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [38] | Torres, V.E. (2009) Vasopressin in Chronic Kidney Disease: An Elephant in the Room? Kidney International, 76, 925-928.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Piani, F., Reinicke, T., Lytvyn, Y., Melena, I., Lovblom, L.E., Lai, V., et al. (2021) Vasopressin Associated with Renal Vascular Resistance in Adults with Longstanding Type 1 Diabetes with and without Diabetic Kidney Disease. Journal of Diabetes and Its Complications, 35, Article ID: 107807.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Christ‐Crain, M., Winzeler, B. and Refardt, J. (2021) Diagnosis and Management of Diabetes Insipidus for the Internist: An Update. Journal of Internal Medicine, 290, 73-87.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [41] | Harada, K., Wada, E., Osuga, Y., Shimizu, K., Uenoyama, R., Hirai, M.Y., et al. (2025) Intestinal Butyric Acid-Mediated Disruption of Gut Hormone Secretion and Lipid Metabolism in Vasopressin Receptor-Deficient Mice. Molecular Metabolism, 91, Article ID: 102072.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Angelousi, A., Alexandraki, K.I., Mytareli, C., Grossman, A.B. and Kaltsas, G. (2023) New Developments and Concepts in the Diagnosis and Management of Diabetes Insipidus (AVP‐Deficiency and Resistance). Journal of Neuroendocrinology, 35, e13233.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Juruena, M.F., Eror, F., Cleare, A.J. and Young, A.H. (2020) The Role of Early Life Stress in HPA Axis and Anxiety. In: Kim, Y.K., Eds., Anxiety Disorders, Springer, 141-153.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [44] | Goutier, W., Kloeze, M. and McCreary, A.C. (2014) Nicotine‐Induced Locomotor Sensitization: Pharmacological Analyses with Candidate Smoking Cessation Aids. Addiction Biology, 21, 234-241.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [45] | Raff, H. and Carroll, T. (2015) Cushing’s Syndrome: From Physiological Principles to Diagnosis and Clinical Care. The Journal of Physiology, 593, 493-506.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [46] | Nakamura, K., Velho, G. and Bouby, N. (2017) Vasopressin and Metabolic Disorders: Translation from Experimental Models to Clinical Use. Journal of Internal Medicine, 282, 298-309.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [47] | Vanya, M., Szucs, S., Vetro, A. and Bartfai, G. (2017) The Potential Role of Oxytocin and Perinatal Factors in the Pathogenesis of Autism Spectrum Disorders—Review of the Literature. Psychiatry Research, 247, 288-290.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [48] | Rinschen, M.M., Schermer, B. and Benzing, T. (2014) Vasopressin-2 Receptor Signaling and Autosomal Dominant Polycystic Kidney Disease: From Bench to Bedside and Back Again. Journal of the American Society of Nephrology, 25, 1140-1147.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [49] | Prosperi, F., Suzumoto, Y., Marzuillo, P., Costanzo, V., Jelen, S., Iervolino, A., et al. (2020) Characterization of Five Novel Vasopressin V2 Receptor Mutants Causing Nephrogenic Diabetes Insipidus Reveals a Role of Tolvaptan for M272R-V2R Mutation. Scientific Reports, 10, Article No. 16383.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [50] | Fukuyama, S., Okudaira, S., Yamazato, S., Yamazato, M. and Ohta, T. (2003) Analysis of Renal Tubular Electrolyte Transporter Genes in Seven Patients with Hypokalemic Metabolic Alkalosis. Kidney International, 64, 808-816.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [51] | Hernandez, M., Sullivan, R.D., McCune, M.E., Reed, G.L. and Gladysheva, I.P. (2022) Sodium-Glucose Cotransporter-2 Inhibitors Improve Heart Failure with Reduced Ejection Fraction Outcomes by Reducing Edema and Congestion. Diagnostics, 12, Article 989.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [52] | Cataldo, I., Azhari, A. and Esposito, G. (2018) A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. Frontiers in Molecular Neuroscience, 11, Article 27.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [53] | Rigney, N., de Vries, G.J. and Petrulis, A. (2023) Modulation of Social Behavior by Distinct Vasopressin Sources. Frontiers in Endocrinology, 14, Article 1127792.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [54] | Verbalis, J.G. (2020) Acquired Forms of Central Diabetes Insipidus: Mechanisms of Disease. Best Practice & Research Clinical Endocrinology & Metabolism, 34, Article ID: 101449.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [55] | Leissinger, C., Carcao, M., Gill, J.C., Journeycake, J., Singleton, T. and Valentino, L. (2013) Desmopressin (DDAVP) in the Management of Patients with Congenital Bleeding Disorders. Haemophilia, 20, 158-167.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [56] | Brouard, R., Bossmar, T., Fournié‐Lloret, D., Chassard, D. and Åkerlund, M. (2000) Effect of SR49059, an Orally Active V1a Vasopressin Receptor Antagonist, in the Prevention of Dysmenorrhoea. BJOG: An International Journal of Obstetrics & Gynaecology, 107, 614-619.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [57] | Ponzoni, L., Braida, D., Bondiolotti, G. and Sala, M. (2017) The Non-Peptide Arginine-Vasopressin V1a Selective Receptor Antagonist, SR49059, Blocks the Rewarding, Prosocial, and Anxiolytic Effects of 3,4-Methylenedioxymethamphetamine and Its Derivatives in Zebra Fish. Frontiers in Psychiatry, 8, Article 146. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [58] | Zhao, N., Peacock, S.O., Lo, C.H., Heidman, L.M., Rice, M.A., Fahrenholtz, C.D., et al. (2019) Arginine Vasopressin Receptor 1a Is a Therapeutic Target for Castration-Resistant Prostate Cancer. Science Translational Medicine, 11, eaaw4636.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [59] | Li-Ng, M. and Verbalis, J.G. (2010) Conivaptan: Evidence Supporting Its Therapeutic Use in Hyponatremia. Core Evi-dence, 4, 83-92. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [60] | Breshears, J.D., Jiang, B., Rowland, N.C., Kunwar, S. and Blevins, L.S. (2013) Use of Conivaptan for Management of Hyponatremia Following Surgery for Cushing’s Disease. Clinical Neurology and Neurosurgery, 115, 2358-2361.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [61] | Schnider, P., Bissantz, C., Bruns, A., Dolente, C., Goetschi, E., Jakob-Roetne, R., et al. (2020) Discovery of Balovaptan, a Vasopressin 1a Receptor Antagonist for the Treatment of Autism Spectrum Disorder. Journal of Medicinal Chemistry, 63, 1511-1525.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [62] | Pena, A., Murat, B., Trueba, M., Ventura, M.A., Bertrand, G., Cheng, L.L., et al. (2007) Pharmacological and Physiological Characterization of D[Leu4, Lys8]Vasopressin, the First V1b-Selective Agonist for Rat Vasopressin/Oxytocin Receptors. Endocrinology, 148, 4136-4146.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [63] | Corbani, M., Trueba, M., Stoev, S., Murat, B., Mion, J., Boulay, V., et al. (2011) Design, Synthesis, and Pharmacological Characterization of Fluorescent Peptides for Imaging Human V1b Vasopressin or Oxytocin Receptors. Journal of Medicinal Chemistry, 54, 2864-2877.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [64] | Gal, C.S., Wagnon, J., Tonnerre, B., Roux, R., Garcia, G., Griebel, G., et al. (2006) An Overview of SSR149415, a Selective Nonpeptide Vasopressin V1b Receptor Antagonist for the Treatment of Stress-Related Disorders. CNS Drug Reviews, 11, 53-68.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [65] | Griebel, G., Simiand, J., Serradeil-Le Gal, C., Wagnon, J., Pascal, M., Scatton, B., et al. (2002) Anxiolytic-and Antidepressant-Like Effects of the Non-Peptide Vasopressin V1b Receptor Antagonist, SSR149415, Suggest an Innovative Approach for the Treatment of Stress-Related Disorders. Proceedings of the National Academy of Sciences, 99, 6370-6375. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [66] | Iijima, M., Yoshimizu, T., Shimazaki, T., Tokugawa, K., Fukumoto, K., Kurosu, S., et al. (2014) Antidepressant and Anxiolytic Profiles of Newly Synthesized Arginine Vasopressin V1b Receptor Antagonists: TASP0233278 and tasp0390325. British Journal of Pharmacology, 171, 3511-3525.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [67] | Robben, J.H., Sze, M., Knoers, N.V., Eggert, P., Deen, P. and Mu[Combining Diaeresis]ller, D. (2007) Relief of Nocturnal Enuresis by Desmopressin Is Kidney and Vasopressin Type 2 Receptor Independent. Journal of the American Society of Nephrology, 18, 1534-1539.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [68] | Hines, C.B., Hooper, G.L. and Collins-Yoder, A. (2020) Tolvaptan for Autosomal Dominant Polycystic Kidney Disease: Pharmacokinetics and Implications for Practice. Nephrology Nursing Journal, 47, 145-150.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [69] | Nakamura, S., Hirano, T., Tsujimae, K., Aoyama, M., Kondo, K., Yamamura, Y., et al. (2000) Antidiuretic Effects of a Nonpeptide Vasopressin V2-Receptor Agonist, OPC-51803, Administered Orally to Rats. The Journal of Pharmacology and Experimental Therapeutics, 295, 1005-1011.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [70] | Tanemoto, M. (2023) Vasopressin V2 Receptor Antagonists for the Syndrome of Inappropriate Antidiuretic Hormone Secretion. International Urology and Nephrology, 56, 361-362.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [71] | Yamaguchi, K., Shijubo, N., Kodama, T., Mori, K., Sugiura, T., Kuriyama, T., et al. (2010) Clinical Implication of the Antidiuretic Hormone (ADH) Receptor Antagonist Mozavaptan Hydrochloride in Patients with Ectopic ADH Syndrome. Japanese Journal of Clinical Oncology, 41, 148-152.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [72] | Wang, X., Constans, M.M., Chebib, F.T., Torres, V.E. and Pellegrini, L. (2019) Effect of a Vasopressin V2 Receptor Antagonist on Polycystic Kidney Disease Development in a Rat Model. American Journal of Nephrology, 49, 487-493.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [73] | Fouillen, A., Bous, J., Couvineau, P., Orcel, H., Mary, C., Pierre, T., Mendre, C., Gilles, N., Schulte, G., Granier, S. and Mouillac, B. (2024) Inactive Structures of the Vasopressin V2 Receptor Reveal Distinct Antagonist Binding Modes for Tolvaptan and Mambaq-Uaretin Toxin. | 
                     
                                
                                    
                                        | [74] | Kee, T.R., Khan, S.A., Neidhart, M.B., Masters, B.M., Zhao, V.K., Kim, Y.K., et al. (2024) The Multifaceted Functions of β-Arrestins and Their Therapeutic Potential in Neurodegenerative Diseases. Experimental & Molecular Medicine, 56, 129-141.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [75] | Haider, R.S., Matthees, E.S.F., Drube, J., Reichel, M., Zabel, U., Inoue, A., et al. (2022) β-Arrestin1 and 2 Exhibit Distinct Phosphorylation-Dependent Conformations When Coupling to the Same GPCR in Living Cells. Nature Communications, 13, Article No. 5638.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [76] | Carino, C.M.C., Hiratsuka, S., Kise, R., Nakamura, G., Kawakami, K., Yanagawa, M., et al. (2025) Signal Profiles and Spatial Regulation of β-Arrestin Recruitment through Gβ5 and GRK3 at the Μ-Opioid Receptor. European Journal of Pharmacology, 987, Article ID: 177151.  [Google Scholar] [CrossRef] [PubMed] |