[1]
|
Guan, J., Bao, W., Xu, Y., Yang, W., Li, M., Xu, M., et al. (2021) Assessment of Myocardial Work in Cancer Therapy-Related Cardiac Dysfunction and Analysis of CTRCD Prediction by Echocardiography. Frontiers in Pharmacology, 12, Article 770580. https://doi.org/10.3389/fphar.2021.770580
|
[2]
|
Kersting, D., Mavroeidi, I., Settelmeier, S., Seifert, R., Schuler, M., Herrmann, K., et al. (2023) Molecular Imaging Biomarkers in Cardiooncology: A View on Established Technologies and Future Perspectives. Journal of Nuclear Medicine, 64, 29S-38S. https://doi.org/10.2967/jnumed.122.264868
|
[3]
|
Abdul-Rahman, T., Dunham, A., Huang, H., Bukhari, S.M.A., Mehta, A., Awuah, W.A., et al. (2023) Chemotherapy Induced Cardiotoxicity: A State of the Art Review on General Mechanisms, Prevention, Treatment and Recent Advances in Novel Therapeutics. Current Problems in Cardiology, 48, Article ID: 101591. https://doi.org/10.1016/j.cpcardiol.2023.101591
|
[4]
|
Zhao, X., Tian, Z., Sun, M. and Dong, D. (2023) Nrf2: A Dark Horse in Doxorubicin-Induced Cardiotoxicity. Cell Death Discovery, 9, Article No. 261. https://doi.org/10.1038/s41420-023-01565-0
|
[5]
|
Xu, Y., Qu, X., Zhou, J., Lv, G., Han, D., Liu, J., et al. (2021) Pilose Antler Peptide-3.2KD Ameliorates Adriamycin-Induced Myocardial Injury through TGF-β/SMAD Signaling Pathway. Frontiers in Cardiovascular Medicine, 8, Article 659643. https://doi.org/10.3389/fcvm.2021.659643
|
[6]
|
Podyacheva, E., Shmakova, T., Kushnareva, E., Onopchenko, A., Martynov, M., Andreeva, D., et al. (2022) Modeling Doxorubicin-Induced Cardiomyopathy with Fibrotic Myocardial Damage in Wistar Rats. Cardiology Research, 13, 339-356. https://doi.org/10.14740/cr1416
|
[7]
|
Oikonomou, E., Anastasiou, Μ., Siasos, G., Androulakis, E., Psyrri, A., Toutouzas, K., et al. (2019) Cancer Therapeutics-Related Cardiovascular Complications. Mechanisms, Diagnosis and Treatment. Current Pharmaceutical Design, 24, 4424-4435. https://doi.org/10.2174/1381612825666190111101459
|
[8]
|
Li, S., Liu, H., Lin, Z., Li, Z., Chen, Y., Chen, B., et al. (2022) Isoorientin Attenuates Doxorubicin-Induced Cardiac Injury via the Activation of MAPK, Akt, and Caspase-Dependent Signaling Pathways. Phytomedicine, 101, Article ID: 154105. https://doi.org/10.1016/j.phymed.2022.154105
|
[9]
|
Khairnar, S.I., Kulkarni, Y.A. and Singh, K. (2022) Cardiotoxicity Linked to Anticancer Agents and Cardioprotective Strategy. Archives of Pharmacal Research, 45, 704-730. https://doi.org/10.1007/s12272-022-01411-4
|
[10]
|
Shi, H., Duan, L., Tong, L., Pu, P., Wei, L., Wang, L., et al. (2024) Research Progress on Flavonoids in Traditional Chinese Medicine to Counteract Cardiotoxicity Associated with Anti-Tumor Drugs. Reviews in Cardiovascular Medicine, 25, Article No. 74. https://doi.org/10.31083/j.rcm2503074
|
[11]
|
Wang, Y., Lu, Y., Chen, W. and Xie, X. (2023) Inhibition of Ferroptosis Alleviates High-Power Microwave-Induced Myocardial Injury. Frontiers in Cardiovascular Medicine, 10, Article 1157752. https://doi.org/10.3389/fcvm.2023.1157752
|
[12]
|
Yan, R., Sun, Y., Yang, Y., Zhang, R., Jiang, Y. and Meng, Y. (2023) Mitochondria and NLRP3 Inflammasome in Cardiac Hypertrophy. Molecular and Cellular Biochemistry, 479, 1571-1582. https://doi.org/10.1007/s11010-023-04812-1
|
[13]
|
Kim, M., Kim, S., Kim, H., Cho, D., Jung, S.P., Park, K.H., et al. (2022) Serial Changes of Layer-Specific Myocardial Function According to Chemotherapy Regimen in Patients with Breast Cancer. European Heart Journal Open, 2, oeac008. https://doi.org/10.1093/ehjopen/oeac008
|
[14]
|
Tang, S., Li, H., Song, L. and Zhou, Y. (2023) Echocardiographic Study of Left Ventricular Pressure-Strain Loop in Evaluating Changes in Left Ventricular Myocardial Work in Breast Cancer Patients after Chemotherapy. International Heart Journal, 64, 203-212. https://doi.org/10.1536/ihj.22-287
|
[15]
|
Aly, D.M. and Shah, S. (2023) Three-Dimensional Echocardiography Derived Printing: A Review of Workflow, Current, and Future Applications. Current Cardiology Reports, 25, 597-605. https://doi.org/10.1007/s11886-023-01882-x
|
[16]
|
(2021) Guideline for Ultrasonic Diagnosis of Liver Diseases. Chinese Journal of Hepatology, 29, 385-402.
|
[17]
|
Tassan-Mangina, S., Brasselet, C., Nazeyrollas, P., et al. (2002) Value of Pulsed Doppler Tissue Imaging for Early Detection of Myocardial Dysfunction with Anthracyclines. Archives des Maladies du Coeur et des Vaisseaux, 95, 263-268.
|
[18]
|
Yang, K., Hu, J., Yuan, X., Xiahou, Y. and Ren, P. (2024) Assessment of Left Ventricular Diastolic Function in Patients with Diffuse Largeb-Cell Lymphoma after Anthracycline Chemotherapy by Using Vector Flowmapping. Current Medical Imaging Reviews, 20, e15734056298648. https://doi.org/10.2174/0115734056298648240604072237
|
[19]
|
Peregud-Pogorzelska, M., Zielska, M., Kawa, M.P., Babiak, K., Safranow, K., Machaliński, B., et al. (2020) Association between Light-Induced Dynamic Dilation of Retinal Vessels and Echocardiographic Parameters of the Left Ventricular Function in Hypertensive Patients. Medicina, 56, Article No. 704. https://doi.org/10.3390/medicina56120704
|
[20]
|
Keleş, N., et al. (2023) Does Premature Ventricular Complex Impair Left Ventricular Diastolic Functions? The Anatolian Journal of Cardiology, 27, 217-222. https://doi.org/10.14744/anatoljcardiol.2022.2421
|
[21]
|
Marai, I., Shimron, M., Williams, L., Hazanov, E., Kinany, W., Grosman-Rimon, L., et al. (2021) Left Atrial Function Analysis in Patients in Sinus Rhythm, Normal Left Ventricular Function and Indeterminate Diastolic Function. The International Journal of Cardiovascular Imaging, 38, 543-549. https://doi.org/10.1007/s10554-021-02425-7
|
[22]
|
Rasheed, R.S., El Sokkary, H., El Amrosy, M.Z., El Setiha, M. and Salama, M.M.A.E.M. (2022) Role of Myocardial Strain Imaging by Echocardiography for the Early Detection of Anthracyclines-Induced Cardiotoxicity. Journal of the Saudi Heart Association, 34, 32-40. https://doi.org/10.37616/2212-5043.1296
|
[23]
|
Tian, Y., Wang, T., Tian, L., Yang, Y., Xue, C., Sheng, W., et al. (2023) Early Detection and Serial Monitoring during Chemotherapy-Radiation Therapy: Using T1 and T2 Mapping Cardiac Magnetic Resonance Imaging. Frontiers in Cardiovascular Medicine, 10, Article 1085737. https://doi.org/10.3389/fcvm.2023.1085737
|
[24]
|
Huang, R., Jin, J., Zhang, P., Yan, K., Zhang, H., Chen, X., et al. (2023) Use of Speckle Tracking Echocardiography in Evaluating Cardiac Dysfunction in Patients with Acromegaly: An Update. Frontiers in Endocrinology, 14, Article 1260842. https://doi.org/10.3389/fendo.2023.1260842
|
[25]
|
Du, Y., Dong, Y., Liu, D., et al. (2022) Research Progress on Vector Flow Imaging of Cardiac Ultrasound. Chinese Journal of Medical Instrumentation, 46, 176-180.
|
[26]
|
Chen, Q., Song, H., Yu, J. and Kim, K. (2021) Current Development and Applications of Super-Resolution Ultrasound Imaging. Sensors, 21, Article No. 2417. https://doi.org/10.3390/s21072417
|
[27]
|
Liu, J., Ren, J., Xu, X., Xiong, L., Peng, Y., Pan, X., et al. (2022) Ultrasound-Based Artificial Intelligence in Gastroenterology and Hepatology. World Journal of Gastroenterology, 28, 5530-5546. https://doi.org/10.3748/wjg.v28.i38.5530
|
[28]
|
Kim, S.W., Kim, S., Shin, D., Choi, J.H., Sim, J.S., Baek, S., et al. (2023) Feasibility of Artificial Intelligence Assisted Quantitative Muscle Ultrasound in Carpal Tunnel Syndrome. BMC Musculoskeletal Disorders, 24, Article No. 524. https://doi.org/10.1186/s12891-023-06623-3
|
[29]
|
Bansal, K., Jha, C.K., Bhatia, D. and Shekhar, H. (2021) Ultrasound-Enabled Therapeutic Delivery and Regenerative Medicine: Physical and Biological Perspectives. ACS Biomaterials Science & Engineering, 7, 4371-4387. https://doi.org/10.1021/acsbiomaterials.1c00276
|