[1]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287
|
[2]
|
Fleischmann, C., Scherag, A., Adhikari, N.K.J., Hartog, C.S., Tsaganos, T., Schlattmann, P., et al. (2016) Assessment of Global Incidence and Mortality of Hospital-Treated Sepsis. Current Estimates and Limitations. American Journal of Respiratory and Critical Care Medicine, 193, 259-272. https://doi.org/10.1164/rccm.201504-0781oc
|
[3]
|
MacLean, L.D., Mulligan, W.G., Mclean, A.P.H. and Duff, J.H. (1967) Patterns of Septic Shock in Man—A Detailed Study of 56 Patients. Annals of Surgery, 166, 543-562. https://doi.org/10.1097/00000658-196710000-00004
|
[4]
|
陈发超, 徐银川, 张召才. 新型生化标志物在脓毒症心肌损伤中的诊断价值研究进展[J]. 中国全科医学, 2021, 24(5): 533-538.
|
[5]
|
Suffredini, A.F., Fromm, R.E., Parker, M.M., Brenner, M., Kovacs, J.A., Wesley, R.A., et al. (1989) The Cardiovascular Response of Normal Humans to the Administration of Endotoxin. New England Journal of Medicine, 321, 280-287. https://doi.org/10.1056/nejm198908033210503
|
[6]
|
De Geer, L., Engvall, J. and Oscarsson, A. (2015) Strain Echocardiography in Septic Shock—A Comparison with Systolic and Diastolic Function Parameters, Cardiac Biomarkers and Outcome. Critical Care, 19, Article No. 122. https://doi.org/10.1186/s13054-015-0857-1
|
[7]
|
Schmittinger, C.A., Dünser, M.W., Torgersen, C., Luckner, G., Lorenz, I., Schmid, S., et al. (2013) Histologic Pathologies of the Myocardium in Septic Shock: A Prospective Observational Study. Shock, 39, 329-335. https://doi.org/10.1097/shk.0b013e318289376b
|
[8]
|
Parker, M.M., Shelhamer, J.H., Bacharach, S.L., Green, M.V., Natanson, C., Frederick, T.M., et al. (1984) Profound but Reversible Myocardial Depression in Patients with Septic Shock. Annals of Internal Medicine, 100, 483-490. https://doi.org/10.7326/0003-4819-100-4-483
|
[9]
|
Beesley, S.J., Weber, G., Sarge, T., Nikravan, S., Grissom, C.K., Lanspa, M.J., et al. (2018) Septic Cardiomyopathy. Critical Care Medicine, 46, 625-634. https://doi.org/10.1097/ccm.0000000000002851
|
[10]
|
Martin, L., Derwall, M., Al Zoubi, S., Zechendorf, E., Reuter, D.A., Thiemermann, C., et al. (2019) The Septic Heart: Current Understanding of Molecular Mechanisms and Clinical Implications. Chest, 155, 427-437. https://doi.org/10.1016/j.chest.2018.08.1037
|
[11]
|
Geri, G., Vignon, P., Aubry, A., Fedou, A., Charron, C., Silva, S., et al. (2019) Cardiovascular Clusters in Septic Shock Combining Clinical and Echocardiographic Parameters: A Post Hoc Analysis. Intensive Care Medicine, 45, 657-667. https://doi.org/10.1007/s00134-019-05596-z
|
[12]
|
Charpentier, J., Luyt, C., Fulla, Y., Vinsonneau, C., Cariou, A., Grabar, S., et al. (2004) Brain Natriuretic Peptide: A Marker of Myocardial Dysfunction and Prognosis during Severe Sepsis. Critical Care Medicine, 32, 660-665. https://doi.org/10.1097/01.ccm.0000114827.93410.d8
|
[13]
|
Velagapudi, V.M. and Tighe, D.A. (2019) Letter on “Left Ventricular Systolic Function Evaluated by Strain Echocardiography and Relationship with Mortality in Patients with Severe Sepsis or Septic Shock: A Systematic Review and Meta-Analysis”. Critical Care, 23, Article No. 38. https://doi.org/10.1186/s13054-019-2312-1
|
[14]
|
夏嘉鼎, 苏震, 郑辉宇, 等. 脓毒症性心脏功能障碍患者肌钙蛋白Ⅰ表达水平的变化及预后评估价值[J]. 中国医科大学学报, 2017, 46(11): 1001-1004.
|
[15]
|
Beltrán-García, J., Osca-Verdegal, R., Nácher-Sendra, E., Cardona-Monzonís, A., Sanchis-Gomar, F., Carbonell, N., et al. (2021) Role of Non-Coding RNAs as Biomarkers of Deleterious Cardiovascular Effects in Sepsis. Progress in Cardiovascular Diseases, 68, 70-77. https://doi.org/10.1016/j.pcad.2021.07.005
|
[16]
|
陈发超. 多种生物标志物联合预测脓毒症患者心脏功能障碍和死亡率[D]: [硕士学位论文]. 杭州: 浙江大学, 2020.
|
[17]
|
蔡华忠, 秦晓梦, 周峰, 等. 血清miRNA-155-5p和miRNA-133a-3p表达对脓毒症心肌损伤的诊断价值[J]. 中国急救医学, 2019, 39(8): 736-738.
|
[18]
|
Wang, H., Bei, Y., Huang, P., Zhou, Q., Shi, J., Sun, Q., et al. (2016) Inhibition of miR-155 Protects against LPS-Induced Cardiac Dysfunction and Apoptosis in Mice. Molecular Therapy-Nucleic Acids, 5, e374. https://doi.org/10.1038/mtna.2016.80
|
[19]
|
洪澄英, 陈怀生, 陈友莲, 等. 脓毒性心肌病患者血浆microRNA表达谱差异的初步研究[J]. 中国病理生理杂志, 2021, 37(7): 1264-1269.
|
[20]
|
吴晓霞, 邓烈华. 非编码RNA在脓毒症心肌病中作用及机制的研究进展[J]. 中国急救复苏与灾害医学杂志, 2023, 18(7): 968-971.
|
[21]
|
Wu, Z.J., Chen, Y.F., Wang, H.D., et al. (2018) Expression of Plasma miRNA-497 in Children with Sepsis-Induced Myocardial Injury and Its Clinical Significance. Chinese Journal of Contemporary Pediatrics, 20, 32-36.
|
[22]
|
薛雨晨, 薛晓梅, 何斌. 微小RNA-133a和微小RNA-499a-5p在脓毒性心肌病中的诊断和预后价值[J]. 国际麻醉学与复苏杂志, 2019, 40(8): 759-764.
|
[23]
|
Cao, C., Zhang, Y., Chai, Y., Wang, L., Yin, C., Shou, S., et al. (2019) Attenuation of Sepsis-Induced Cardiomyopathy by Regulation of MicroRNA-23b Is Mediated through Targeting of Myd88-Mediated NF-κB Activation. Inflammation, 42, 973-986. https://doi.org/10.1007/s10753-019-00958-7
|
[24]
|
Wang, H., Bei, Y., Shen, S., Huang, P., Shi, J., Zhang, J., et al. (2016) miR-21-3p Controls Sepsis-Associated Cardiac Dysfunction via Regulating Sorbs2. Journal of Molecular and Cellular Cardiology, 94, 43-53. https://doi.org/10.1016/j.yjmcc.2016.03.014
|
[25]
|
Xie, J., Zhang, L., Fan, X., Dong, X., Zhang, Z. and Fan, W. (2019) MicroRNA-146a Improves Sepsis-Induced Cardiomyopathy by Regulating the TLR-4/Nf-κB Signaling Pathway. Experimental and Therapeutic Medicine, 18, 779-785. https://doi.org/10.3892/etm.2019.7657
|
[26]
|
Guo, H., Tang, L., Xu, J., Lin, C., Ling, X., Lu, C., et al. (2019) MicroRNA-495 Serves as a Diagnostic Biomarker in Patients with Sepsis and Regulates Sepsis-Induced Inflammation and Cardiac Dysfunction. European Journal of Medical Research, 24, Article No. 37. https://doi.org/10.1186/s40001-019-0396-3
|
[27]
|
Ma, H., Wang, X., Ha, T., Gao, M., Liu, L., Wang, R., et al. (2016) MicroRNA-125b Prevents Cardiac Dysfunction in Polymicrobial Sepsis by Targeting TRAF6-Mediated Nuclear Factor κB Activation and P53-Mediated Apoptotic Signaling. Journal of Infectious Diseases, 214, 1773-1783. https://doi.org/10.1093/infdis/jiw449
|
[28]
|
Ge, C., Liu, J. and Dong, S. (2018) miRNA-214 Protects Sepsis-Induced Myocardial Injury. Shock, 50, 112-118. https://doi.org/10.1097/shk.0000000000000978
|
[29]
|
Sang, Z., Zhang, P., Wei, Y. and Dong, S. (2020) miR‐214‐3p Attenuates Sepsis‐Induced Myocardial Dysfunction in Mice by Inhibiting Autophagy through PTEN/Akt/mTOR Pathway. BioMed Research International, 2020, Article ID: 1409038. https://doi.org/10.1155/2020/1409038
|
[30]
|
Zhang, J., Liu, Y. and Liu, L. (2021) Hyperoside Prevents Sepsis-Associated Cardiac Dysfunction through Regulating Cardiomyocyte Viability and Inflammation via Inhibiting miR-21. Biomedicine & Pharmacotherapy, 138, Article ID: 111524. https://doi.org/10.1016/j.biopha.2021.111524
|
[31]
|
陈发超. 多种生物标志物联合预测脓毒症患者心脏功能障碍和死亡率[D]: [硕士学位论文]. 杭州: 浙江大学, 2020.
|
[32]
|
Alhamdi, Y., Abrams, S.T., Cheng, Z., Jing, S., Su, D., Liu, Z., et al. (2015) Circulating Histones Are Major Mediators of Cardiac Injury in Patients with Sepsis. Critical Care Medicine, 43, 2094-2103. https://doi.org/10.1097/ccm.0000000000001162
|
[33]
|
张文伟, 曹红, 金辉. 血清高迁移率族蛋白B1与脓毒症小鼠心肌细胞凋亡的相关性[J]. 中国老年学杂志, 2013, 33(16): 3909-3910.
|
[34]
|
张毳毳, 白和平, 吕晓燕. 血高迁移率族蛋白-1对创伤所致严重脓毒症患者心功能及预后的预测价值[J]. 临床和实验医学杂志, 2021, 20(21): 2293-2296.
|
[35]
|
Zhang, Z., Dai, H., Yu, Y., Yang, J. and Hu, C. (2012) Usefulness of Heart-Type Fatty Acid-Binding Protein in Patients with Severe Sepsis. Journal of Critical Care, 27, 415.e13-415.e18. https://doi.org/10.1016/j.jcrc.2012.01.004
|
[36]
|
Chen, F., Xu, Y. and Zhang, Z. (2020) Multi-Biomarker Strategy for Prediction of Myocardial Dysfunction and Mortality in Sepsis. Journal of Zhejiang University-SCIENCE B, 21, 537-548. https://doi.org/10.1631/jzus.b2000049
|
[37]
|
陆洋, 沈浩亮, 崔晓莉, 等. C-反应蛋白和NT-pro BNP对老年脓毒症患者死亡和多器官衰竭的预测价值[J]. 中国老年学杂志, 2021, 41(18): 4011-4014.
|
[38]
|
罗思文, 张琳. h-FABP在检测脓毒症早期心肌损伤中的意义[J]. 中国医药科学, 2019, 9(5): 89-91.
|
[39]
|
齐洪娜, 张建军, 何佳起, 等. 心型脂肪酸结合蛋白和N-末端脑钠肽前体在脓毒症心肌损伤中的临床研究[J]. 中国全科医学, 2017, 20(9): 1042-1048.
|
[40]
|
张洪齐, 赵华英, 杨超, 等. 血浆可溶性髓样细胞触发受体1对成人脓毒症患者诊断价值的Meta分析[J]. 中华危重症医学杂志(电子版), 2019, 12(5): 328-334.
|
[41]
|
Tao, F., Peng, L., Li, J., Shao, Y., Deng, L. and Yao, H. (2013) Association of Serum Myeloid Cells of Soluble Triggering Receptor-1 Level with Myocardial Dysfunction in Patients with Severe Sepsis. Mediators of Inflammation, 2013, Article ID: 819246. https://doi.org/10.1155/2013/819246
|
[42]
|
Li, Z., Zhang, E., Hu, Y., Liu, Y. and Chen, B. (2016) High Serum Strem-1 Correlates with Myocardial Dysfunction and Predicts Prognosis in Septic Patients. The American Journal of the Medical Sciences, 351, 555-562. https://doi.org/10.1016/j.amjms.2016.01.023
|
[43]
|
梅卫义, 杜志民, 胡承恒, 等. 不稳定型心绞痛患者妊娠相关血浆蛋白A与高敏C反应蛋白的相关性[J]. 中国动脉硬化杂志, 2005, 13(2): 207-209.
|
[44]
|
陈素梅, 古丽巴哈尔, 田培刚, 等. 心脏超声联合心脏标志物在脓毒症心功能不全中的诊断价值[J]. 中国实用内科杂志, 2020, 40(6): 481-486.
|
[45]
|
宋于康, 李叶戌子, 王妙淑. 脓毒症早期采用心肌标志物诊断心功能障碍的预后评估[J]. 实用医学杂志, 2017, 33(10): 1631-1633.
|
[46]
|
杨建中, 李转运, 殷富康, 等. 以心肌标志物为基础的脓毒症舒张性心功能障碍联合诊断模型的构建[J]. 中国全科医学, 2018, 21(20): 2426-2431.
|
[47]
|
杨建中. 脓毒症心功能障碍的诊断及预后预测临床研究[D]: [博士学位论文]. 乌鲁木齐: 新疆医科大学, 2018.
|
[48]
|
Landesberg, G., Gilon, D., Meroz, Y., Georgieva, M., Levin, P.D., Goodman, S., et al. (2011) Diastolic Dysfunction and Mortality in Severe Sepsis and Septic Shock. European Heart Journal, 33, 895-903. https://doi.org/10.1093/eurheartj/ehr351
|
[49]
|
Pencina, M.J., D’Agostino, R.B., D’Agostino, R.B. and Vasan, R.S. (2007) Evaluating the Added Predictive Ability of a New Marker: From Area under the ROC Curve to Reclassification and Beyond. Statistics in Medicine, 27, 157-172. https://doi.org/10.1002/sim.2929
|
[50]
|
Janes, H., Pepe, M.S. and Gu, W. (2008) Assessing the Value of Risk Predictions by Using Risk Stratification Tables. Annals of Internal Medicine, 149, 751-760. https://doi.org/10.7326/0003-4819-149-10-200811180-00009
|