|
[1]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jennings, R.B., Sommers, H.M., Smyth, G.A., et al. (1960) Myocardial Necrosis Induced by Temporary Occlusion of a Coronary Artery in the Dog. Archives of Pathology, 70, 68-78.
|
|
[3]
|
Braunwald, E. and Kloner, R.A. (1985) Myocardial Reperfusion: A Double-Edged Sword? Journal of Clinical Investigation, 76, 1713-1719. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Murry, C.E., Jennings, R.B. and Reimer, K.A. (1986) Preconditioning with Ischemia: A Delay of Lethal Cell Injury in Ischemic Myocardium. Circulation, 74, 1124-1136. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hausenloy, D.J., Tsang, A., Mocanu, M.M. and Yellon, D.M. (2005) Ischemic Preconditioning Protects by Activating Prosurvival Kinases at Reperfusion. American Journal of Physiology-Heart and Circulatory Physiology, 288, H971-H976. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kagan, V.E., Mao, G., Qu, F., Angeli, J.P.F., Doll, S., Croix, C.S., et al. (2016) Oxidized Arachidonic and Adrenic Pes Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yan, H., Zou, T., Tuo, Q., Xu, S., Li, H., Belaidi, A.A., et al. (2021) Ferroptosis: Mechanisms and Links with Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 49. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tang, D., Chen, X., Kang, R. and Kroemer, G. (2020) Ferroptosis: Molecular Mechanisms and Health Implications. Cell Research, 31, 107-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ravingerová, T., Kindernay, L., Barteková, M., Ferko, M., Adameová, A., Zohdi, V., et al. (2020) The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. International Journal of Molecular Sciences, 21, Article 7889. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liang, C., Zhang, X., Yang, M. and Dong, X. (2019) Recent Progress in Ferroptosis Inducers for Cancer Therapy. Advanced Materials, 31, e1904197. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wu, X., Li, Y., Zhang, S. and Zhou, X. (2021) Ferroptosis as a Novel Therapeutic Target for Cardiovascular Disease. Theranostics, 11, 3052-3059. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Forcina, G.C. and Dixon, S.J. (2019) GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics, 19, e1800311. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chen, J.J. and Galluzzi, L. (2018) Fighting Resilient Cancers with Iron. Trends in Cell Biology, 28, 77-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dabkowski, E.R., Williamson, C.L. and Hollander, J.M. (2008) Mitochondria-Specific Transgenic Overexpression of Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4) Attenuates Ischemia/Reperfusion-Associated Cardiac Dysfunction. Free Radical Biology and Medicine, 45, 855-865. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Paraskevaidis, I.A., Iliodromitis, E.K., Vlahakos, D., Tsiapras, D.P., Nikolaidis, A., Marathias, A., et al. (2004) Deferoxamine Infusion during Coronary Artery Bypass Grafting Ameliorates Lipid Peroxidation and Protects the Myocardium against Reperfusion Injury: Immediate and Long-Term Significance. European Heart Journal, 26, 263-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gao, M., Monian, P., Quadri, N., Ramasamy, R. and Jiang, X. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., et al. (2019) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 116, 2672-2680. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Feng, Y., Madungwe, N.B., Imam Aliagan, A.D., Tombo, N. and Bopassa, J.C. (2019) Liproxstatin-1 Protects the Mouse Myocardium against Ischemia/Reperfusion Injury by Decreasing VDAC1 Levels and Restoring GPX4 Levels. Biochemical and Biophysical Research Communications, 520, 606-611. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tang, L., Zhou, Y., Xiong, X., Li, N., Zhang, J., Luo, X., et al. (2021) Ubiquitin-Specific Protease 7 Promotes Ferroptosis via Activation of the p53/TfR1 Pathway in the Rat Hearts after Ischemia/Reperfusion. Free Radical Biology and Medicine, 162, 339-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wu, Z., Bai, Y., Qi, Y., Chang, C., Jiao, Y., Bai, Y., et al. (2023) Metformin Ameliorates Ferroptosis in Cardiac Ischemia and Reperfusion by Reducing NOX4 Expression via Promoting AMPKα. Pharmaceutical Biology, 61, 886-896. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xu, S., Wu, B., Zhong, B., Lin, L., Ding, Y., Jin, X., et al. (2021) Naringenin Alleviates Myocardial Ischemia/reperfusion Injury by Regulating the Nuclear Factor-Erythroid Factor 2-Related Factor 2 (Nrf2)/System Xc-/Glutathione Peroxidase 4 (GPX4) Axis to Inhibit Ferroptosis. Bioengineered, 12, 10924-10934. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., et al. (2021) DHODH-Mediated Ferroptosis Defence Is a Targetable Vulnerability in Cancer. Nature, 593, 586-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Alim, I., Caulfield, J.T., Chen, Y., Swarup, V., Geschwind, D.H., Ivanova, E., et al. (2019) Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell, 177, 1262-1279.e25. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hu, X., He, Y., Han, Z., Liu, W., Liu, D., Zhang, X., et al. (2022) PNO1 Inhibits Autophagy-Mediated Ferroptosis by GSH Metabolic Reprogramming in Hepatocellular Carcinoma. Cell Death & Disease, 13, Article No. 1010. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yun, Z., Takagi, M. and Yoshida, T. (2003) Combined Addition of Glutathione and Iron Chelators for Decrease of Intracellular Level of Reactive Oxygen Species and Death of Chinese Hamster Ovary Cells. Journal of Bioscience and Bioengineering, 95, 124-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Dehkordi, H.T. and Ghasemi, S. (2024) Glutathione Therapy in Diseases: Challenges and Potential Solutions for Therapeutic Advancement. Current Molecular Medicine, 24, 1219-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Bartekova, M., Barancik, M., Ferenczyova, K. and Dhalla, N.S. (2018) Beneficial Effects of N-Acetylcysteine and N-Mercaptopropionylglycine on Ischemia Reperfusion Injury in the Heart. Current Medicinal Chemistry, 25, 355-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ruiz‐Meana, M., Pina, P., Garcia‐Dorado, D., Rodríguez‐Sinovas, A., Barba, I., Miró‐Casas, E., et al. (2004) Glycine Protects Cardiomyocytes against Lethal Reoxygenation Injury by Inhibiting Mitochondrial Permeability Transition. The Journal of Physiology, 558, 873-882. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Warnecke, G., Schulze, B., Steinkamp, T., Haverich, A. and Klima, U. (2006) Glycine Application and Right Heart Function in a Porcine Heart Transplantation Model. Transplant International, 19, 218-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhong, X. (2012) Glycine Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting Myocardial Apoptosis in Rats. Journal of Biomedical Research, 26, 346-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Xia, J., Zhang, J., Wu, X., Du, W., Zhu, Y., Liu, X., et al. (2022) Blocking Glycine Utilization Inhibits Multiple Myeloma Progression by Disrupting Glutathione Balance. Nature Communications, 13, Article No. 4007. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Rom, O., Liu, Y., Liu, Z., Zhao, Y., Wu, J., Ghrayeb, A., et al. (2020) Glycine-based Treatment Ameliorates NAFLD by Modulating Fatty Acid Oxidation, Glutathione Synthesis, and the Gut Microbiome. Science Translational Medicine, 12, eaaz2841. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hua, H., Xu, X., Tian, W., Li, P., Zhu, H., Wang, W., et al. (2022) Glycine Alleviated Diquat-Induced Hepatic Injury via Inhibiting Ferroptosis in Weaned Piglets. Animal Bioscience, 35, 938-947. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xu, X., Wei, Y., Hua, H., Zhu, H., Xiao, K., Zhao, J., et al. (2022) Glycine Alleviated Intestinal Injury by Inhibiting Ferroptosis in Piglets Challenged with Diquat. Animals, 12, Article 3071. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gao, L., Zhang, C., Zheng, Y., Wu, D., Chen, X., Lan, H., et al. (2022) Glycine Regulates Lipid Peroxidation Promoting Porcine Oocyte Maturation and Early Embryonic Development. Journal of Animal Science, 101, skac425. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, L., Liu, J., Ma, D., Zhi, X., Li, L., Li, S., et al. (2024) Glycine Recalibrates Iron Homeostasis of Lens Epithelial Cells by Blocking Lysosome-Dependent Ferritin Degradation. Free Radical Biology and Medicine, 210, 258-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Fischer, U.M., Tossios, P., Huebner, A., Geissler, H.J., Bloch, W. and Mehlhorn, U. (2004) Myocardial Apoptosis Prevention by Radical Scavenging in Patients Undergoing Cardiac Surgery. The Journal of Thoracic and Cardiovascular Surgery, 128, 103-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Koramaz, I., Pulathan, Z., Usta, S., Karahan, S.C., Alver, A., Yaris, E., et al. (2006) Cardioprotective Effect of Cold-Blood Cardioplegia Enriched with N-Acetylcysteine during Coronary Artery Bypass Grafting. The Annals of Thoracic Surgery, 81, 613-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Badgley, M.A., Kremer, D.M., Maurer, H.C., DelGiorno, K.E., Lee, H., Purohit, V., et al. (2020) Cysteine Depletion Induces Pancreatic Tumor Ferroptosis in Mice. Science, 368, 85-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhou, D., Yang, Y., Chen, J., Zhou, J., He, J., Liu, D., et al. (2024) N-acetylcysteine Protects against Myocardial Ischemia-Reperfusion Injury through Anti-Ferroptosis in Type 1 Diabetic Mice. Cardiovascular Toxicology, 24, 481-498. [Google Scholar] [CrossRef] [PubMed]
|