氨基酸抑制铁死亡改善心肌缺血再灌注损伤的研究进展
Research Progress of Amino Acids Inhibiting Ferroptosis to Improve Myocardial Ischemia-Reperfusion Injury
摘要: 心肌缺血再灌注损伤(ischemia-reperfusion injury, IRI)与心肌梗死恢复血运重建后的心肌损伤密切相关。寻找降低再灌注损伤以减少心肌梗死后不良风险的方法成为迫切需要解决的问题。铁死亡作为新型细胞死亡形式,近年来备受关注。本综述旨在总结铁死亡的机制、抑制铁死亡减轻心肌IRI的证据、补充甘氨酸、N-乙酰半胱氨酸(N-acetylcysteine, NAC)改善心肌IRI的证据以及其通过抑制细胞铁死亡的发生而减轻IRI的潜力。
Abstract: Myocardial ischemia-reperfusion injury (IRI) is closely related to myocardial injury after myocardial infarction revascularization. Finding ways to reduce reperfusion injury to reduce the adverse risks after myocardial infarction has become an urgent issue to be addressed. Ferroptosis, a new form of cell death, has attracted much attention in recent years. This review aims to summarize the mechanism of ferroptosis, the evidence that inhibiting ferroptosis alleviates myocardial IRI, the evidence that glycine and N-acetylcysteine (NAC) supplementation improves myocardial IRI and the potential to alleviate IRI by inhibiting the occurrence of cellular ferroptosis.
文章引用:王锟鹏, 单伟超. 氨基酸抑制铁死亡改善心肌缺血再灌注损伤的研究进展[J]. 临床医学进展, 2025, 15(3): 1423-1429. https://doi.org/10.12677/acm.2025.153758

1. 引言

急性心肌梗死(acute myocardial infarction, AMI)是冠心病(coronary heart disease, CHD)的严重类型,发病率、致残率、致死率均较高。随着溶栓、经皮冠状动脉介入治疗的发展,AMI的死亡率由以前的30%下降到5%左右。然而,在缺血的心肌血流重新恢复的过程中可引起再灌注前存在活性的细胞发生死亡,此现象为心肌IRI,这会降低心肌缺血再灌注的益处。有研究表明,心肌再灌注后引起的损伤面积占最终心肌梗死面积的50%。考虑到心肌缺血是无法预测的,也是无法避免的,于是医学研究将关注点聚焦到心肌IRI,旨在通过降低心肌IRI以减少心肌梗死后的不良预后。对于IRI背后的分子机制和细胞机制已进行了许多研究,研究发现IRI可激活多种细胞死亡过程,可分为坏死、凋亡或自噬相关的细胞死亡等。铁死亡作为一种新型的细胞死亡形式,在2012年被Dixion和他的同事们首次提出[1],自此,人们将IRI的细胞损伤机制聚焦到铁死亡,致力于为降低心肌IRI提供新思路。本文旨在总结铁死亡发生的机制、抑制铁死亡减轻心肌IRI的证据、补充甘氨酸和N-乙酰半胱氨酸(N-acetylcysteine, NAC)减少IRI的研究进展以及其通过抑制细胞铁死亡的发生而减轻心肌IRI的潜力。

2. 心肌IRI

心肌IRI的发现要追溯到1960年Jennings等人通过对结扎冠状动脉的犬心脏进行的实验研究,本研究中提出,再灌注似乎使心肌坏死的速度增加[2]。这些研究人员指出,仅在心肌IRI 30~60分钟后出现的心肌坏死程度相当于冠状动脉持续性闭塞24小时后[2]。然而,再灌注是单独导致组织损伤,还是只是加速了原本注定要死亡的细胞的进程,仍存在争议。此后,Braunwald和KLoner在1985年的论著中总结了直接心肌再灌注损伤的证据[3]。1986年,Murry等人的研究发现,在长时间的缺血和再灌流之前,重复的短期缺血可以显著减少犬的心肌梗死面积[4]。随后,这种“缺血预适应”在包括人类在内的许多动物模型中得到证实,证明了再灌注事件是启动导致心脏保护的分子级联反应的关键[5],从而巩固了缺血和随后再灌注之间的重要区别。

3. 铁死亡机制

铁死亡是一种继细胞坏死、细胞凋亡等细胞死亡之外,新发现的一种铁依赖的细胞死亡形式。铁死亡的细胞分子学表现为脂质过氧化物过度累积,多种分子途径代谢异常可造成过氧化物累积,最终导致细胞发生铁死亡,下面将介绍三种铁死亡调节通路(图1)。

3.1. 铁死亡的氧化机制

多不饱和脂肪酸(polyunsaturated fatty acids, PUFAs)被氧化为脂质过氧化物是铁死亡发生的一个重要

Figure 1. Schematic diagram of ferroptosis pathway

1. 铁死亡通路示意图

途径。最近的一项研究显示,氧化的花生四烯酸磷脂酰乙醇胺(oxidized arachidonic acid-phosphatidyl ethanolamines, AA-OOH-PE)是诱发铁死亡的关键脂质[6]。而AA-OOH-PE的生成需要三种酶:酰基辅酶A合成酶长链家族4 (acyl-CoA synthetase long-chain family member 4, ACSL4)、溶血磷脂酰胆碱酰基转移酶3 (lysophosphatidylcholine acyltransferase 3, LPCAT3)和花生四烯酸脂氧合酶(Arachidonic acid lipoxygenase, ALOX)。首先PUFA (尤其花生四烯酸(arachidonic acid, AA))被ACSL4催化生成AA-CoA;LPCAT3调节AA-CoA酯化为花生四烯酸磷脂酰乙醇胺(AA-PE);在LOXs的催化作用下,AA-PE可被氧化为AA-OOH-PE,并发挥进一步的氧化作用[7]。当AA-OOH-PE水平过高不能被还原时,就会导致脂质过氧化物过度累积,从而诱发铁死亡。

3.2. 铁在铁死亡中的作用

铁是人体内重要的微量元素,其含量和分布的异常可影响正常的生理功能。Fe3+与转铁蛋白(transferrin, TF)结合形成TF-Fe3+后被膜蛋白转铁蛋白受体1 (transferrin receptor 1, TFR1)吞入细胞[8]。进入细胞的Fe3+被前列腺六跨膜上皮抗原3 (six-transmembrane epithelial antigen of the prostate member 3, STEAP3)还原为Fe2+,储存在不稳定铁池(labile iron pool, LIP)中[8]。在正常情况下,不稳定铁的水平保持在非常低的水平以防止活性氧(reactive oxygen species, ROS (过氧化物H2O2、羟基自由基等))的形成。然而,铁超载的病理状态会显著增加铁池的不稳定性,使铁池中Fe2+和H2O2发生芬顿反应(fenton reaction) [9],这是脂质过氧化非酶促反应的开始。

3.3. 氨基酸与谷胱甘肽(Glutathione, GSH)代谢途径参与铁死亡

GSH是体内一种重要的抗氧化剂和自由基清除剂,被发现是抑制铁死亡的关键物质。胱氨酸–谷氨酸反向转运系统(cystine-glutamate antiporter system Xc, x-CT)是由溶质载体家族7A成员11 (solute carrier family 7A member 11 subunit, SLC7A11)与溶质载体家族3A成员2 (solute carrier family 3A member 2 subunit, SLC3A2)组成的一种12次跨膜蛋白[10],是胱氨酸、谷氨酸1:1进行细胞内外交换的场所,胱氨酸转运至细胞内后被还原形成半胱氨酸[11]。GSH由谷氨酸、半胱氨酸及甘氨酸在胞浆酶谷氨酸半胱氨酸连接酶(glutamate-cysteine ligase, GCL)和谷胱甘肽合成酶(glutathione synthetase, GSS)的催化作用下分两步合成[12]。谷胱甘肽过氧化物酶4 (glutathione peroxidase 4, GPX4)是一种含硒蛋白,且依赖GSH的酶。GPX4中的活性位点硒酸盐(Se-H)被氧化为硒酸(Se-OH),第一个GSH用于还原硒酸,生成分子间硒硫键,该键被另一个GSH还原,形成氧化谷胱甘肽(oxidized glutathione, GSSG) [13]。GPX4可催化特定脂质过氧化物还原为脂质醇[14],以减轻脂质过氧化物的累积,进而减少铁死亡的发生。

4. 抑制铁死亡改善心肌IRI的研究进展

心肌IRI过程中心肌细胞发生铁死亡已被证实,大量实验研究提出抑制铁死亡可减轻心肌IRI。早在铁死亡概念首次提出之前,就有报道称线粒体特异性过表达GPX4可在心肌IRI后保护心脏[15]。此外,之前一项临床研究表明,在外科搭桥手术中,麻醉后8小时静脉输注去铁胺(一种铁螯合剂,目前已被证实可减少铁死亡的发生)可有效减少氧自由基的生成,保护心肌免受再灌注损伤,且对左室射血分数(left ventricular ejection fraction, LVEF)降低的患者益处更为明显[16]。随后的一项研究表明,通过抑制谷氨酰胺的分解能抑制铁死亡从而减少离体心脏模型中的IRI [17]。进一步动物模型试验数据证明,在心肌IRI期间抑制铁死亡可以提供心脏保护益处[18]-[22]。上述实验结果凸显了以铁死亡为目标治疗心肌IRI的潜力。

5. 氨基酸减轻铁死亡治疗缺血再灌注损伤的潜力

研究发现,若x-CT系统受到抑制,则导致GSH耗竭,进而使GPX4失活,最终使脂质过氧化物过度积累,引发铁死亡,经典的铁死亡诱导剂Erastin即通过抑制x-CT系统导致细胞死亡[1]。GSH缺乏或GPX4失活也会导致铁死亡[23]。相反,激活GPX4或增加GSH的含量可以减少铁死亡的发生。Alim等人的研究发现,补充硒可增强GPX4的活性,从而有效抑制铁死亡的发生[24]。另一项研究发现,一种铁死亡抑制剂,其主要作用机制为通过增加细胞内谷氨酸含量而激活x-CT系统,进一步促进胱氨酸从细胞外的摄取,最终使GSH的合成增加,减少铁死亡的发生[25]。在铁死亡提出之前一项细胞水平研究表明,添加GSH和铁螯合剂可有效降低细胞内ROS水平[26]。然而,直接给药GSH在人体及动物体内可行性不强,因为口服GSH会导致其在肠道中快速分解,而静脉注射GSH会导致其快速氧化为GSSG [27]。因此,我们将关注点聚集于产生GSH的原料物质,通过增加半胱氨酸、甘氨酸的含量,可使GSH的合成增加,从而激活GPX4的活性,影响SLC7A11/GPX4通路活性,以减少铁死亡的发生。

5.1. 甘氨酸

先前的研究表明,甘氨酸可保护心脏、肝脏、肾脏、肠道等器官IRI损伤[28]。其中,在心脏IRI方面,Ruiz-Meana等人的一项研究表明,甘氨酸通过防止线粒体肿胀和钙黄绿素释放,提高了IRI后的心肌细胞和大鼠心脏的活力[29];另一项以猪为研究对象的实验中发现,使用甘氨酸后,移植后的右心室顺应性显著改善[30];2012年的一项大鼠体内研究发现,甘氨酸使IRI大鼠的梗塞面积减少21%,左心室射血分数和缩短分数分别增加了19.11%和30.98%,且在甘氨酸治疗后,IRI大鼠的血浆肌酸激酶水平降低[31]。甘氨酸在保护心肌IRI方面展现出明显优势,但其作用机制未被完全明确。近期,一项关于多发性骨髓瘤(multiple myeloma, MM)的研究发现,甘氨酸缺乏通过破坏细胞内GSH的平衡显著抑制MM细胞增殖,而外源性甘氨酸被MM细胞吸收后代谢为GSH,与MM进展有关[32];另一项小鼠实验亦证明,基于甘氨酸的治疗通过刺激肝脏GSH合成来减轻非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD) [33],可见外源性补充甘氨酸可增加GSH的含量。与此同时,多项研究发现,补充甘氨酸可通过抑制铁死亡的方式而使多种器官损伤减轻[34]-[37]。上述研究结果表明,补充甘氨酸可减轻心肌IRI,且甘氨酸可抑制铁死亡的发生。综上,甘氨酸作为铁死亡关键物质GSH的补充原料,我们有理由推断补充甘氨酸也可通过减轻铁死亡而改善心肌IRI,且其作用机制为补充GSH含量,进而影响GPX4活性,增强SLC7A11/GPX4通路活性,然而,目前缺乏此方面的证据。

5.2. NAC

NAC是乙酰化的L-半胱氨酸。早期探索NAC对IRI影响的实验研究可以追溯到80年代末和90年代初。这些研究大多揭示了NAC的保护作用,表现为改善机械功能恢复、降低室性心律失常发生率和减少因IRI导致的心肌顿抑[28]。NAC在心脏IRI中的有益作用主要被认为是由于其能够在IRI期间保持和增强冠状动脉血流,以及清除自由基和/或补充细胞内的GSH含量。研究还表明,NAC可消除再灌注后IRI引起的GSSG积累。后续许多其他基础实验研究也证实NAC对心脏IRI损伤的保护作用。NAC被开发用于提高半胱氨酸的生物利用度,并已被证明对心血管功能有益。基于NAC在基础实验中取得的成功,许多临床实验也验证了NAC在心肌IRI的益处。有报道称,在36名接受冠状动脉搭桥术患者的左心室活检样本中,NAC可防止因心脏停搏而诱导心肌细胞凋亡[38]。在接受冠状动脉搭桥术的患者中,NAC补充的冷血心脏停搏液可最大限度地减少心脏手术期间以及手术后早期的心肌损伤[39]。2015年的一项研究发现,部分胱氨酸缺乏即可导致铁死亡,体外细胞培养基中添加胱氨酸或半胱氨酸已被证明可以抑制铁死亡[17]。NAC的抗铁死亡作用已在半胱氨酸耗竭和x-CT系统抑制诱导的铁死亡的背景下得到证实[40]。2024年发表的一项研究验证了NAC保护糖尿病患者心肌IRI的主要机制是使铁死亡减弱,且观察到GSH水平的增加[41]。通过上述研究发现,我们不难得出NAC可减轻铁死亡进而改善心肌IRI的结论,而其作用机制很大程度上为NAC可增加GSH的含量。

6. 结论

各种实验研究都表明,补充甘氨酸、NAC可以有效预防心肌IRI,但甘氨酸、NAC治疗IRI复杂的病理生理机制未得到充分研究。大量实验验证了铁死亡发生在心肌IRI中,而抑制铁死亡可减轻心肌IRI的发生,甘氨酸、NAC作为GSH合成的关键物质有望成为抑制铁死亡的关键因素。有必要进行进一步的实验性研究验证甘氨酸、NAC是否能通过抑制细胞铁死亡的机制改善心肌IRI,为治疗IRI提供更有力的科学依据。

NOTES

*通讯作者。

参考文献

[1] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[2] Jennings, R.B., Sommers, H.M., Smyth, G.A., et al. (1960) Myocardial Necrosis Induced by Temporary Occlusion of a Coronary Artery in the Dog. Archives of Pathology, 70, 68-78.
[3] Braunwald, E. and Kloner, R.A. (1985) Myocardial Reperfusion: A Double-Edged Sword? Journal of Clinical Investigation, 76, 1713-1719.
https://doi.org/10.1172/jci112160
[4] Murry, C.E., Jennings, R.B. and Reimer, K.A. (1986) Preconditioning with Ischemia: A Delay of Lethal Cell Injury in Ischemic Myocardium. Circulation, 74, 1124-1136.
https://doi.org/10.1161/01.cir.74.5.1124
[5] Hausenloy, D.J., Tsang, A., Mocanu, M.M. and Yellon, D.M. (2005) Ischemic Preconditioning Protects by Activating Prosurvival Kinases at Reperfusion. American Journal of Physiology-Heart and Circulatory Physiology, 288, H971-H976.
https://doi.org/10.1152/ajpheart.00374.2004
[6] Kagan, V.E., Mao, G., Qu, F., Angeli, J.P.F., Doll, S., Croix, C.S., et al. (2016) Oxidized Arachidonic and Adrenic Pes Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90.
https://doi.org/10.1038/nchembio.2238
[7] Yan, H., Zou, T., Tuo, Q., Xu, S., Li, H., Belaidi, A.A., et al. (2021) Ferroptosis: Mechanisms and Links with Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 49.
https://doi.org/10.1038/s41392-020-00428-9
[8] Tang, D., Chen, X., Kang, R. and Kroemer, G. (2020) Ferroptosis: Molecular Mechanisms and Health Implications. Cell Research, 31, 107-125.
https://doi.org/10.1038/s41422-020-00441-1
[9] Ravingerová, T., Kindernay, L., Barteková, M., Ferko, M., Adameová, A., Zohdi, V., et al. (2020) The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. International Journal of Molecular Sciences, 21, Article 7889.
https://doi.org/10.3390/ijms21217889
[10] Liang, C., Zhang, X., Yang, M. and Dong, X. (2019) Recent Progress in Ferroptosis Inducers for Cancer Therapy. Advanced Materials, 31, e1904197.
https://doi.org/10.1002/adma.201904197
[11] Wu, X., Li, Y., Zhang, S. and Zhou, X. (2021) Ferroptosis as a Novel Therapeutic Target for Cardiovascular Disease. Theranostics, 11, 3052-3059.
https://doi.org/10.7150/thno.54113
[12] Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282.
https://doi.org/10.1038/s41580-020-00324-8
[13] Forcina, G.C. and Dixon, S.J. (2019) GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics, 19, e1800311.
https://doi.org/10.1002/pmic.201800311
[14] Chen, J.J. and Galluzzi, L. (2018) Fighting Resilient Cancers with Iron. Trends in Cell Biology, 28, 77-78.
https://doi.org/10.1016/j.tcb.2017.11.007
[15] Dabkowski, E.R., Williamson, C.L. and Hollander, J.M. (2008) Mitochondria-Specific Transgenic Overexpression of Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4) Attenuates Ischemia/Reperfusion-Associated Cardiac Dysfunction. Free Radical Biology and Medicine, 45, 855-865.
https://doi.org/10.1016/j.freeradbiomed.2008.06.021
[16] Paraskevaidis, I.A., Iliodromitis, E.K., Vlahakos, D., Tsiapras, D.P., Nikolaidis, A., Marathias, A., et al. (2004) Deferoxamine Infusion during Coronary Artery Bypass Grafting Ameliorates Lipid Peroxidation and Protects the Myocardium against Reperfusion Injury: Immediate and Long-Term Significance. European Heart Journal, 26, 263-270.
https://doi.org/10.1093/eurheartj/ehi028
[17] Gao, M., Monian, P., Quadri, N., Ramasamy, R. and Jiang, X. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308.
https://doi.org/10.1016/j.molcel.2015.06.011
[18] Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., et al. (2019) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 116, 2672-2680.
https://doi.org/10.1073/pnas.1821022116
[19] Feng, Y., Madungwe, N.B., Imam Aliagan, A.D., Tombo, N. and Bopassa, J.C. (2019) Liproxstatin-1 Protects the Mouse Myocardium against Ischemia/Reperfusion Injury by Decreasing VDAC1 Levels and Restoring GPX4 Levels. Biochemical and Biophysical Research Communications, 520, 606-611.
https://doi.org/10.1016/j.bbrc.2019.10.006
[20] Tang, L., Zhou, Y., Xiong, X., Li, N., Zhang, J., Luo, X., et al. (2021) Ubiquitin-Specific Protease 7 Promotes Ferroptosis via Activation of the p53/TfR1 Pathway in the Rat Hearts after Ischemia/Reperfusion. Free Radical Biology and Medicine, 162, 339-352.
https://doi.org/10.1016/j.freeradbiomed.2020.10.307
[21] Wu, Z., Bai, Y., Qi, Y., Chang, C., Jiao, Y., Bai, Y., et al. (2023) Metformin Ameliorates Ferroptosis in Cardiac Ischemia and Reperfusion by Reducing NOX4 Expression via Promoting AMPKα. Pharmaceutical Biology, 61, 886-896.
https://doi.org/10.1080/13880209.2023.2212700
[22] Xu, S., Wu, B., Zhong, B., Lin, L., Ding, Y., Jin, X., et al. (2021) Naringenin Alleviates Myocardial Ischemia/reperfusion Injury by Regulating the Nuclear Factor-Erythroid Factor 2-Related Factor 2 (Nrf2)/System Xc-/Glutathione Peroxidase 4 (GPX4) Axis to Inhibit Ferroptosis. Bioengineered, 12, 10924-10934.
https://doi.org/10.1080/21655979.2021.1995994
[23] Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., et al. (2021) DHODH-Mediated Ferroptosis Defence Is a Targetable Vulnerability in Cancer. Nature, 593, 586-590.
https://doi.org/10.1038/s41586-021-03539-7
[24] Alim, I., Caulfield, J.T., Chen, Y., Swarup, V., Geschwind, D.H., Ivanova, E., et al. (2019) Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell, 177, 1262-1279.e25.
https://doi.org/10.1016/j.cell.2019.03.032
[25] Hu, X., He, Y., Han, Z., Liu, W., Liu, D., Zhang, X., et al. (2022) PNO1 Inhibits Autophagy-Mediated Ferroptosis by GSH Metabolic Reprogramming in Hepatocellular Carcinoma. Cell Death & Disease, 13, Article No. 1010.
https://doi.org/10.1038/s41419-022-05448-7
[26] Yun, Z., Takagi, M. and Yoshida, T. (2003) Combined Addition of Glutathione and Iron Chelators for Decrease of Intracellular Level of Reactive Oxygen Species and Death of Chinese Hamster Ovary Cells. Journal of Bioscience and Bioengineering, 95, 124-127.
https://doi.org/10.1016/s1389-1723(03)80116-0
[27] Dehkordi, H.T. and Ghasemi, S. (2024) Glutathione Therapy in Diseases: Challenges and Potential Solutions for Therapeutic Advancement. Current Molecular Medicine, 24, 1219-1230.
https://doi.org/10.2174/1566524023666230818142831
[28] Bartekova, M., Barancik, M., Ferenczyova, K. and Dhalla, N.S. (2018) Beneficial Effects of N-Acetylcysteine and N-Mercaptopropionylglycine on Ischemia Reperfusion Injury in the Heart. Current Medicinal Chemistry, 25, 355-366.
https://doi.org/10.2174/0929867324666170608111917
[29] Ruiz‐Meana, M., Pina, P., Garcia‐Dorado, D., Rodríguez‐Sinovas, A., Barba, I., Miró‐Casas, E., et al. (2004) Glycine Protects Cardiomyocytes against Lethal Reoxygenation Injury by Inhibiting Mitochondrial Permeability Transition. The Journal of Physiology, 558, 873-882.
https://doi.org/10.1113/jphysiol.2004.068320
[30] Warnecke, G., Schulze, B., Steinkamp, T., Haverich, A. and Klima, U. (2006) Glycine Application and Right Heart Function in a Porcine Heart Transplantation Model. Transplant International, 19, 218-224.
https://doi.org/10.1111/j.1432-2277.2005.00259.x
[31] Zhong, X. (2012) Glycine Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting Myocardial Apoptosis in Rats. Journal of Biomedical Research, 26, 346-354.
https://doi.org/10.7555/jbr.26.20110124
[32] Xia, J., Zhang, J., Wu, X., Du, W., Zhu, Y., Liu, X., et al. (2022) Blocking Glycine Utilization Inhibits Multiple Myeloma Progression by Disrupting Glutathione Balance. Nature Communications, 13, Article No. 4007.
https://doi.org/10.1038/s41467-022-31248-w
[33] Rom, O., Liu, Y., Liu, Z., Zhao, Y., Wu, J., Ghrayeb, A., et al. (2020) Glycine-based Treatment Ameliorates NAFLD by Modulating Fatty Acid Oxidation, Glutathione Synthesis, and the Gut Microbiome. Science Translational Medicine, 12, eaaz2841.
https://doi.org/10.1126/scitranslmed.aaz2841
[34] Hua, H., Xu, X., Tian, W., Li, P., Zhu, H., Wang, W., et al. (2022) Glycine Alleviated Diquat-Induced Hepatic Injury via Inhibiting Ferroptosis in Weaned Piglets. Animal Bioscience, 35, 938-947.
https://doi.org/10.5713/ab.21.0298
[35] Xu, X., Wei, Y., Hua, H., Zhu, H., Xiao, K., Zhao, J., et al. (2022) Glycine Alleviated Intestinal Injury by Inhibiting Ferroptosis in Piglets Challenged with Diquat. Animals, 12, Article 3071.
https://doi.org/10.3390/ani12223071
[36] Gao, L., Zhang, C., Zheng, Y., Wu, D., Chen, X., Lan, H., et al. (2022) Glycine Regulates Lipid Peroxidation Promoting Porcine Oocyte Maturation and Early Embryonic Development. Journal of Animal Science, 101, skac425.
https://doi.org/10.1093/jas/skac425
[37] Wang, L., Liu, J., Ma, D., Zhi, X., Li, L., Li, S., et al. (2024) Glycine Recalibrates Iron Homeostasis of Lens Epithelial Cells by Blocking Lysosome-Dependent Ferritin Degradation. Free Radical Biology and Medicine, 210, 258-270.
https://doi.org/10.1016/j.freeradbiomed.2023.11.020
[38] Fischer, U.M., Tossios, P., Huebner, A., Geissler, H.J., Bloch, W. and Mehlhorn, U. (2004) Myocardial Apoptosis Prevention by Radical Scavenging in Patients Undergoing Cardiac Surgery. The Journal of Thoracic and Cardiovascular Surgery, 128, 103-108.
https://doi.org/10.1016/j.jtcvs.2003.11.034
[39] Koramaz, I., Pulathan, Z., Usta, S., Karahan, S.C., Alver, A., Yaris, E., et al. (2006) Cardioprotective Effect of Cold-Blood Cardioplegia Enriched with N-Acetylcysteine during Coronary Artery Bypass Grafting. The Annals of Thoracic Surgery, 81, 613-618.
https://doi.org/10.1016/j.athoracsur.2005.08.013
[40] Badgley, M.A., Kremer, D.M., Maurer, H.C., DelGiorno, K.E., Lee, H., Purohit, V., et al. (2020) Cysteine Depletion Induces Pancreatic Tumor Ferroptosis in Mice. Science, 368, 85-89.
https://doi.org/10.1126/science.aaw9872
[41] Zhou, D., Yang, Y., Chen, J., Zhou, J., He, J., Liu, D., et al. (2024) N-acetylcysteine Protects against Myocardial Ischemia-Reperfusion Injury through Anti-Ferroptosis in Type 1 Diabetic Mice. Cardiovascular Toxicology, 24, 481-498.
https://doi.org/10.1007/s12012-024-09852-7