免疫检查点抑制剂不良事件研究进展
Research Progress on Adverse Events of Immune Checkpoint Inhibitors
DOI: 10.12677/acm.2025.153768, PDF, HTML, XML,    科研立项经费支持
作者: 肖洪益, 刘 宇, 张福军*:重庆医科大学第一临床学院口腔科,重庆;杨佳明:重庆市九龙坡区石桥铺社区卫生服务中心医技科,重庆
关键词: 免疫检查点抑制剂免疫检查点抑制剂相关不良反应研究进展Immune Checkpoint Inhibitors Adverse Reactions Related to Immune Checkpoint Inhibitors Research Progress
摘要: 近年来,免疫疗法已被广泛用于治疗恶性肿瘤患者。免疫检查点抑制剂(ICIs)已经显著改变了恶性肿瘤的治疗,并且已经成为一种非常有吸引力的单独或与其他治疗相结合的替代治疗药物,被广泛应用于恶性肿瘤的治疗。ICIs显著改善癌症患者的预后,但不幸的是免疫相关不良反应(irAEs)也随之而来。irAEs可以累及全身多个器官系统,最常见的是皮肤、胃肠道、肝脏、内分泌和肺部不良反应。在严重的情况下,irAEs可能危及生命,甚至导致死亡。考虑到长期生存的潜力,irAEs成为一个特别需要临床医生考虑的重要因素。本文通过对国内外相关文献的研究,总结了irAEs的研究进展,以期帮助诊断和有效管理这些潜在的严重不良事件。
Abstract: In recent years, immunotherapy has been widely used in the treatment of patients with malignant tumors. Immune checkpoint inhibitors (ICIs) have significantly transformed the treatment of malignancies and have become an attractive alternative therapy, either as monotherapy or in combination with other treatments. ICIs have been extensively applied in the treatment of malignant tumors and have significantly improved the prognosis of cancer patients. Unfortunately, immune-related adverse events (irAEs) have also emerged as a consequence. irAEs can affect multiple organ systems throughout the body, with the most common being skin, gastrointestinal, hepatic, endocrine, and pulmonary adverse reactions. In severe cases, irAEs may be life-threatening and can even lead to death. Considering the potential for long-term survival, irAEs have become an important factor that clinicians need to take into account. This article summarizes the research progress on irAEs through a review of relevant domestic and international literature, with the aim of aiding in the diagnosis and effective management of these potentially serious adverse events.
文章引用:肖洪益, 刘宇, 杨佳明, 张福军. 免疫检查点抑制剂不良事件研究进展[J]. 临床医学进展, 2025, 15(3): 1493-1500. https://doi.org/10.12677/acm.2025.153768

1. 引言

根据世界卫生组织2020年发布的一份报告,全球新增癌症病例1930万例,癌症死亡100万例,癌症发病率和死亡率均呈上升趋势,严重威胁人类健康[1]。近年,免疫检查点抑制剂(immune-checkpoint inhibitors, ICIs)作为抗肿瘤治疗的重要手段,其临床应用越来越广泛[2]。ICIs阻断机体的免疫负性调节,促进T细胞激活,从而增强机体对肿瘤的免疫杀伤作用[3]。目前广泛使用的两大类ICI是细胞毒性T淋巴细胞抗原4 (cytotoxic T-lymphocyte-associated protein 4, CTLA-4)和程序性细胞死亡-1 (programmed cell death protein 1, PD-1)/程序性死亡配体1 ( programmed death ligand 1, PD-L1)抑制剂。ICIs从机制上打破了机体固有的“免疫平衡”,从而导致免疫相关不良事件(immune-related adverse events, irAEs)。irAEs可能涉及身体的多个器官或系统[4],最常见的是皮肤、胃肠道、肝脏、内分泌和肺部不良反应[5]。有研究指出,irAE具有严重的影响和死亡率[6]。鉴于预计在不久的将来,癌症患者将越来越多地使用基于ICIs的疗法,治疗医师必须全面了解与这些疗法相关的毒性。对于接受癌症ICIs的患者,如果及时诊断和治疗,大多数irAEs是可逆的,了解irAEs对于确保及时诊断和有效管理这些潜在的严重不良事件至关重要[7]

2. 各类irAEs的研究进展

2.1. 皮肤irAEs

在所有irAEs相关器官和系统中,皮肤是最常见的靶点之一[8]。皮肤相关irAEs包括皮疹样疹、瘙痒、湿疹、苔藓样皮疹、银屑病样皮疹、白癜风等。大多数皮肤毒性的严重程度为轻度至中度,通常会自行消退。在极少数情况下,可能会发生严重的皮肤不良反应,包括Stevens-Johnson综合征、中毒性表皮坏死松解症、嗜酸性粒细胞增多症等,危及生命的皮肤毒性极少发生。已有自身免疫性疾病或已有皮肤损伤的患者更容易出现皮肤irAEs [9]-[11]。对于出现皮肤irAEs的患者不轻易停用抗肿瘤免疫治疗药物,可用的局部外用药物包括糖皮质激素或维生素D3衍生物等,另外还可使用紫外线光疗。系统口服药物主要有甲氨蝶呤、维A酸类药物、中成药或中药、小分子靶向药如磷酸二酯酶4 (PDE-4)抑制剂、阿普米司特[12]。严重的皮肤表现(3~4级)通常需要全身皮质类固醇,并且应停止ICIs [10] [11]。有研究表明皮肤irAEs的发生表明肿瘤反应和预后更好[10] [13]

2.2. 消化系统irAEs

患者胃肠道irAEs发生率为32%,可发生在整个治疗过程中,甚至结束后1个月以上发生。胃肠道、肝、胆胰腺经常受到影响。胃肠道症状的范围很广,最常见的不良反应是腹泻,结肠炎、粘膜炎和肝损伤也是其主要表现[13]-[15]。年龄是肺癌患者ICI相关胃肠道不良反应发生的影响因素之一。高龄、饮酒史、胃肠道基础病史、自身免疫性疾病史均会导致消化系统irAEs发生风险增高[16]。轻度不良反应可在不停止免疫检查点抑制剂的情况下给予口服补液盐保守治疗,如果病情恶化,应停止使用检查点抑制剂,使用口服糖皮质激素进行试验性治疗[14]。irAEs相关消化系统疾病irAEs相关性肝损伤可用皮质类固醇、布地奈德、熊去氧胆酸进行治疗[17]

2.3. 内分泌系统irAEs

ICIs相关内分泌不良事件非常常见,在接受不同ICIs治疗的患者中,高达55.6%的患者都存在该类不良事件[18],受影响的器官按降序排列:甲状腺、垂体、肾上腺、胰岛β细胞和甲状旁腺[19] [20]。还包括全身性脂肪营养不良、自身免疫性多结节综合征、高钙血症、低睾酮水平和ICIs给药后“可疑”的促肾上腺皮质激素非依赖性皮质醇分泌。ICIs诱导的内分泌疾病通常是不可逆转的。发生irAEs的风险因素是高剂量ICIs、先前存在的自身免疫性疾病和肥胖。几项研究表明,irAEs特别是与PD-1或PD-L1抑制剂相关irAEs的发生预示着更好的ICIs治疗反应、更高的生存率和无进展生存率[19]。ICIs相关的甲状腺损伤患者临床症状较轻者,通常可不处理或仅予以口服药物治疗,对症状较重的患者,通常不需停用ICIs。对于ICIs诱发垂体炎、肾上腺功能减退、糖尿病的患者可能出现严重不良反应,通常需停药并胰岛素干预治疗。必要时可酌情停止ICIs治疗[18]

2.4. 神经系统irAEs

神经系统irAEs包括中枢和外周神经系统表现,神经系统irAEs的总发生率为0.9%~2.3%,外周神经系统并发症最为常见(53.6%~78%)。黑色素瘤、年龄较小、既往化疗、既往切除、CTLA-4 ICIs暴露以及PD-1和CTLA-4联合暴露可能是危险因素。神经系统炎症反应与总死亡率的增加无关[15] [19] [21]。对于神经系统相关irAEs,需及时给予免疫治疗和糖皮质激素治疗。在皮质激素抵抗或严重感染的患者中,IVIg或血浆置换的二线治疗可能有效[21]

2.5. 泌尿系统irAEs

ICIs治疗也可能带来肾毒性。ICIs的肾毒性在临床试验中并不常见。然而,近年来,肾脏中的irAEs越来越受到关注,包括急性间质性炎、急性肾小管坏死和肾小球疾病。近年来,越来越多的证据表明,急性肾损伤的发生对ICIs治疗患者的预后有重大影响。首先,急性肾损伤被发现是接受ICIs治疗的患者的常见并发症,急性肾损伤的发生率为7.1%。贫血、基线Alb < 30 g/L以及抗生素、利尿剂、非甾体抗炎药和PPIs的使用是ICIs治疗患者发生急性肾损伤的独立危险因素。肾功能不可恢复的急性肾损伤患者的死亡风险高于肾功能可恢复的患者,并且在接受ICIs治疗的患者中,2或3期急性肾损伤的发展是肾功能不恢复的独立风险因素。这反映了在不可逆的肾损伤发生之前早期识别和治疗这种不良事件的重要性。也反映了早期识别和诊断急性肾损伤以及积极治疗以防止1期急性肾损伤发展为2或3阶段急性肾损伤的重要性[22]

2.6. 心脏irAEs

心脏irAEs与高死亡率有关。主要心脏不良事件包括心力衰竭、心肌炎、心包炎等,与所有其他系统性irAEs相比,ICIs相关心肌炎在所有心脏irAEs中的发病率最高,死亡率高达25%至50%。危险因素有糖尿病、肥胖、先前存在的心脏病理或外周动脉疾病、吸烟史和血脂异常。其他风险因素包括使用心脏毒性抗肿瘤药物、潜在的自身免疫性疾病。鉴于心肌炎的高死亡率,须立即停止ICI治疗并在症状出现24小时内给予高剂量皮质类固醇治疗。如果皮质类固醇治疗效果不佳,可以使用其他药物,如霉酚酸酯、甲氨蝶呤、IVIG、血浆置换、抗胸腺细胞球蛋白、利妥昔单抗、英夫利昔单抗等。也有研究表明,CTLA4激动剂可以防止T细胞对心肌细胞的自身免疫作用、IL-1β阻滞剂可以降低死亡率并改善心肺功能。使用营养品,如补充剂、抗坏血酸等,也可能降低ICI毒性的影响和风险[23] [24]

2.7. 呼吸系统irAEs

肺炎是导致停止治疗的最常见的严重irAEs之一,也是免疫检查点阻断后治疗相关死亡的最常见原因之一。来自临床试验和其他研究的早期数据显示,ICI相关肺炎仅发生在3%~7%。其临床表现各不相同,但症状是非特异性的,包括呼吸急促和运动时呼吸困难、低热、关节痛、非生产性咳嗽、疲劳和腹泻[24]。正在治疗的癌症类型可能也会影响肺炎的发病率,与接受黑色素瘤治疗的患者相比,接受肺癌和肾癌检查点抑制剂治疗的患者的发病率显著更高。与药物相关的肺损伤的其他常见风险因素的影响,包括既往辐射、吸烟史或先前存在的纤维化肺病。肺部感染。对于症状较轻的irAEs相关肺炎患者,建议停药并添加皮质类固醇,大多数患者的肺炎症状会得到缓解。对于症状较重的肺炎患者需要住院治疗和静脉注射类固醇治疗。对于严重的肺炎,应考虑额外的免疫抑制治疗,如英夫利昔单抗、霉酚酸酯或环磷酰胺[25]

2.8. 生殖系统irAEs

目前有关生殖系统相关irAEs的文献较少,其涉及对胎儿的不良反应、对精子的不良影响、性腺功能减退、不孕症。胎儿不良反应机制:PD-L1的缺乏导致调节性T/效应T细胞(Treg/Teff)的比例降低,并促使Th1-和Th17细胞扩增,这是诱导耐受的屏障,导致胚胎吸收增加和流产,因此在妊娠期使用PD-1/PD-L1检查点阻断免疫疗法时必须考虑生殖安全性[26]。男性生育能力受损是另一个的重要潜在不利影响[26]。ICIs会显著降低生精功能,对睾酮分泌的影响较小[27]。现有的有限证据表明,与ICIs相关的睾丸炎引起的原发性性腺功能减退症以及垂体炎引起的继发性性腺功能低下症是不孕的潜在风险[20]

2.9. 血管栓塞irAEs

ICIs的治疗与血栓形成的风险有关。接受ICI治疗期间VTE的累计发生率为13%,ATE的发生率接近2%,总发生率可能接近20% [28] [29]。VTE病史被发现是一个显著的独立风险因素,年龄 ≤ 65岁、肿瘤PD-L1表达增加、转移性疾病、使用抗血小板药物或抗凝血剂进行治疗也是相关的临床危险因素。年龄、性别、种族、癌症分期、体重指数和肿瘤细胞上PD-L1的表达与VTE风险增加无关。对于较高的Khorana风险类别与ICIs相关血栓形成(IAT)风险之间的相关性暂时存在争议[28]-[30]。通过ICI给药诱导进一步炎症可能会刺激多种细胞类型的促凝血活性[28]。抗凝和抗血小板治疗对IAT的效果不佳,抗凝治疗的出血风险高于保护作用[29]

2.10. 其他irAEs

1) 听前庭irAEs

听前庭irAEs是一种罕见的免疫治疗并发症。患者可能会出现突发性听力损失、耳鸣、听觉饱胀等症状。遗传性和自身免疫性疾病病史可能是相关危险因素。一般治疗方法是通过皮质类固醇诱导免疫抑制[31]

2) 类风湿irAEs

风湿性irAE也是一种罕见的并发症。ICI前RF阳性与更高的风湿性irAE发生几率显著相关。在ICIs治疗开始前,在患者出现关节症状的情况下需早期转诊治疗风湿病,临床医生需提高对ICI前RF阳性的风湿病irAEs的发展的警惕[32]

3) irAEs

眼科irAEs很少发生,包括干眼症、葡萄膜炎、眼重症肌无力、葡萄膜积液、视网膜脱离和结膜炎, 眼科irAEs的发生率 < 1%。眼睛有特殊的机制来限制炎症和传染源的侵袭,从而保护视觉功能解剖机制,免疫机制可以通过将T细胞转化为调节性T细胞并导致免疫细胞死亡来预防炎症。阻断这些调节性T细胞可能引发眼不良反应。眼科irAEs大多可以通过质类固醇的应用得到有效控制[33]

4) 口腔irAEs

在口腔中,irAEs包括颞下颌关节类风湿性关节炎、系统性红斑狼疮(SLE)、系统性硬化症、白塞病、寻常性天疱疮。增殖大多是轻微的,通常需要全身皮质类固醇进行治疗[34]

3. 总结

ICIs通过靶向CTLA-4、PD-1/PD-L1等通路显著改善了癌症患者的预后,但也引发了多系统的irAEs,irAEs在患有自身免疫性疾病的癌症患者中很常见,但严重的irAEs相对较低[35]。严重时可能危及生命。了解irAEs的机制和管理方法对于优化ICIs治疗策略、提高患者生存率和生活质量至关重要。

对支撑irAE发展机制的理解仍在不断发展,ICIs通路对调节细胞免疫应答有着重要作用。ICIs可增强免疫反应,引起抗肿瘤反应,同时增强的免疫反应也导致irAEs的发生[36]。另一种可能的发生机制为,靶向肿瘤细胞抗原的抗体和正常宿主组织上的自身抗原之间存在交叉免疫反应。例如转移性黑素瘤中的黑素瘤细胞和正常表皮黑素细胞间可能存在着共同抗原,两者可能同时成为了ICIs作用的目标,进而出现白癜风样皮肤不良反应[37]

对于irAEs发生的危险因素难以明确,尽管如此,来自真实世界数据的新观察结果为可能导致irAE的潜在新因素提供了一些见解,预先存在的自身免疫性疾病,如类风湿性关节炎和炎症性肠病,被认为是irAE的危险因素[38]。同时ICI治疗期间可能发生自身免疫性发作[39]。其次,遗传差异可能会影响个体对irAE的易感性。例如,已发现几种单核苷酸多态性和基因表达变异与特定癌症类型的irAE相关[40]。第三,有研究发现,癌症类型与不同类型irAE的发生之间似乎存在关联[41]。CTLA-4抑制剂更常引起肠炎、垂体炎和皮肤毒性,胃肠道不良事件发生率显著更高[42]。irAE的发生率可能因癌症类型而异。如与NSCLC相比,胃肠道和皮肤病irAE可能更常见于黑色素瘤,而与黑色素瘤相比,NSCLC可能更常见于皮炎、关节炎和肌痛[43]。此外,irAEs的发生还有性别差异,接受免疫治疗的患者中,发生率高于男性[44]

ICIs改变了癌症治疗的格局,对癌症患者的治疗带来了新的机遇。同时ICIs伴随的irAEs也值得临床医生的关注。人们对irAEs发生的机制和危险因素虽有了一定的认知,但并不全面,irAEs发生的机制和危险因素仍待进一步挖掘。这对减少患者irAEs的发生,减少因irAEs引起的停药以及生命威胁至关重要。

基金项目

重庆医科大学未来医学青年创新团队支持计划(项目编码W0014)。

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[2] Zaha, V.G., Meijers, W.C. and Moslehi, J. (2020) Cardio-Immuno-Oncology. Circulation, 141, 87-89.
https://doi.org/10.1161/circulationaha.119.042276
[3] Ji, H., Tang, X., Dong, Z., Song, L. and Jia, Y. (2019) Adverse Event Profiles of Anti-Ctla-4 and Anti-Pd-1 Monoclonal Antibodies Alone or in Combination: Analysis of Spontaneous Reports Submitted to Faers. Clinical Drug Investigation, 39, 319-330.
https://doi.org/10.1007/s40261-018-0735-0
[4] Song, Q., Yu, Z., Lu, W., Zhuo, Z., Chang, L., Mei, H., et al. (2025) PD-1/PD-L1 Inhibitors Related Adverse Events: A Bibliometric Analysis from 2014 to 2024. Human Vaccines & Immunotherapeutics, 21, Article ID: 2424611.
https://doi.org/10.1080/21645515.2024.2424611
[5] Chen, C., Wu, B., Zhang, C. and Xu, T. (2021) Immune-related Adverse Events Associated with Immune Checkpoint Inhibitors: An Updated Comprehensive Disproportionality Analysis of the FDA Adverse Event Reporting System. International Immunopharmacology, 95, Article ID: 107498.
https://doi.org/10.1016/j.intimp.2021.107498
[6] Michel, L., Rassaf, T. and Totzeck, M. (2019) Cardiotoxicity from Immune Checkpoint Inhibitors. IJC Heart & Vasculature, 25, Article ID: 100420.
https://doi.org/10.1016/j.ijcha.2019.100420
[7] Kou, L., Wen, Q., Xie, X., Chen, X., Li, J. and Li, Y. (2022) Adverse Events of Immune Checkpoint Inhibitors for Patients with Digestive System Cancers: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 13, Article ID: 1013186.
https://doi.org/10.3389/fimmu.2022.1013186
[8] Wu, Z., Chen, Q., Qu, L., Li, M., Wang, L., Mir, M.C., et al. (2022) Adverse Events of Immune Checkpoint Inhibitors Therapy for Urologic Cancer Patients in Clinical Trials: A Collaborative Systematic Review and Meta-Analysis. European Urology, 81, 414-425.
https://doi.org/10.1016/j.eururo.2022.01.028
[9] Cao, T., Zhou, X., Wu, X. and Zou, Y. (2023) Cutaneous Immune-Related Adverse Events to Immune Checkpoint Inhibitors: From Underlying Immunological Mechanisms to Multi-Omics Prediction. Frontiers in Immunology, 14, Article ID: 1207544.
https://doi.org/10.3389/fimmu.2023.1207544
[10] Teng, Y. and Yu, S. (2023) Molecular Mechanisms of Cutaneous Immune-Related Adverse Events (irAEs) Induced by Immune Checkpoint Inhibitors. Current Oncology, 30, 6805-6819.
https://doi.org/10.3390/curroncol30070498
[11] Yamamoto, T. (2022) Skin Manifestation Induced by Immune Checkpoint Inhibitors. Clinical, Cosmetic and Investigational Dermatology, 15, 829-841.
https://doi.org/10.2147/ccid.s364243
[12] 孙毅, 杨骥. 肿瘤免疫检查点抑制剂引起皮肤不良反应多学科专家共识(2025版) [J]. 中国临床医学, 2025: 1-16.
[13] Asdourian, M.S., Shah, N., Jacoby, T.V., Semenov, Y.R., Otto, T., Thompson, L.L., et al. (2023) Development of Multiple Cutaneous Immune-Related Adverse Events among Cancer Patients after Immune Checkpoint Blockade. Journal of the American Academy of Dermatology, 88, 485-487.
https://doi.org/10.1016/j.jaad.2022.06.030
[14] 刘光德, 吕志诚. 免疫检查点抑制剂的消化系统不良反应及其治疗[J]. 新医学, 2019, 50(11): 809-812.
[15] Yan, C., Huang, M., Swetlik, C., Toljan, K., Mahadeen, A.Z., Bena, J., et al. (2023) Predictors for the Development of Neurological Immune‐Related Adverse Events of Immune Checkpoint Inhibitors and Impact on Mortality. European Journal of Neurology, 30, 3221-3227.
https://doi.org/10.1111/ene.15942
[16] 时绘绘, 宇文利霞, 甄建龙, 袁耀辉. 肺癌患者免疫检查点抑制剂相关胃肠道不良反应的影响因素分析及预测模型构建[J]. 临床误诊误治, 2024, 37(19): 43-48+84.
[17] Dara, L. and De Martin, E. (2025) Immune‐Mediated Liver Injury from Checkpoint Inhibitor: An Evolving Frontier with Emerging Challenges. Liver International, 45, e16198.
https://doi.org/10.1111/liv.16198
[18] 吴娅雯. 免疫检查点抑制剂治疗肿瘤患者发生内分泌不良反应的临床分析[D]: [硕士学位论文]. 银川: 宁夏医科大学, 2023.
[19] Chera, A., Stancu, A.L. and Bucur, O. (2022) Thyroid-Related Adverse Events Induced by Immune Checkpoint Inhibitors. Frontiers in Endocrinology, 13, Article ID: 1010279.
https://doi.org/10.3389/fendo.2022.1010279
[20] Özdemir, B.C. (2021) Immune Checkpoint Inhibitor-Related Hypogonadism and Infertility: A Neglected Issue in Immuno-Oncology. Journal for ImmunoTherapy of Cancer, 9, e002220.
https://doi.org/10.1136/jitc-2020-002220
[21] Diamanti, L., Picca, A., Bini, P., Gastaldi, M., Alfonsi, E., Pichiecchio, A., et al. (2021) Characterization and Management of Neurological Adverse Events during Immune-Checkpoint Inhibitors Treatment: An Italian Multicentric Experience. Neurological Sciences, 43, 2031-2041.
https://doi.org/10.1007/s10072-021-05561-z
[22] Ji, M., Wu, R., Feng, Z., Wang, Y., Wang, Y., Zhang, L., et al. (2022) Incidence, Risk Factors and Prognosis of Acute Kidney Injury in Patients Treated with Immune Checkpoint Inhibitors: A Retrospective Study. Scientific Reports, 12, Article No. 18752.
https://doi.org/10.1038/s41598-022-21912-y
[23] Ganesh, S., Zhong, P. and Zhou, X. (2022) Cardiotoxicity Induced by Immune Checkpoint Inhibitor: The Complete Insight into Mechanisms, Monitoring, Diagnosis, and Treatment. Frontiers in Cardiovascular Medicine, 9, Article ID: 997660.
https://doi.org/10.3389/fcvm.2022.997660
[24] Larsen, B.T., Chae, J.M., Dixit, A.S., Hartman, T.E., Peikert, T. and Roden, A.C. (2019) Clinical and Histopathologic Features of Immune Checkpoint Inhibitor-Related Pneumonitis. American Journal of Surgical Pathology, 43, 1331-1340.
https://doi.org/10.1097/pas.0000000000001298
[25] Shannon, V.R. (2017) Pneumotoxicity Associated with Immune Checkpoint Inhibitor Therapies. Current Opinion in Pulmonary Medicine, 23, 305-316.
https://doi.org/10.1097/mcp.0000000000000382
[26] Zeng, W., Qin, S., Wang, R., Zhang, Y., Ma, X., Tian, F., et al. (2020) PDL1 Blockage Increases Fetal Resorption and Tfr Cells but Does Not Affect Tfh/Tfr Ratio and B-Cell Maturation during Allogeneic Pregnancy. Cell Death & Disease, 11, 119.
https://doi.org/10.1038/s41419-020-2313-7
[27] Nagamitsu, R., Shiraishi, K., Tabara, M. and Matsuyama, H. (2021) Effect of Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors on Spermatogenesis in Humans. International Journal of Urology, 28, 1077-1078.
https://doi.org/10.1111/iju.14646
[28] McCrae, K.R., Swaidani, S., Diaz-Montero, C.M. and Khorana, A.A. (2022) Old Is New Again: Emergence of Thromboembolic Complications in Cancer Patients on Immunotherapy. Thrombosis Research, 213, S51-S57.
https://doi.org/10.1016/j.thromres.2022.01.006
[29] Overvad, T.F., Skjøth, F., Piazza, G., Noble, S., Ording, A.G., Larsen, T.B., et al. (2022) The Khorana Score and Venous and Arterial Thrombosis in Patients with Cancer Treated with Immune Checkpoint Inhibitors: A Danish Cohort Study. Journal of Thrombosis and Haemostasis, 20, 2921-2929.
https://doi.org/10.1111/jth.15883
[30] Beyer-Westendorf, J. (2021) Checkpoint Inhibitors and Thrombosis: What’s Up? Blood, 137, 1569-1570.
https://doi.org/10.1182/blood.2020009480
[31] Page, J.C., Gidley, P.W. and Nader, M. (2022) Audiovestibular Toxicity Secondary to Immunotherapy: Case Series and Literature Review. Journal of Immunotherapy and Precision Oncology, 5, 2-6.
https://doi.org/10.36401/jipo-21-17
[32] Mathias, K., Rouhani, S., Olson, D., Bass, A.R., Gajewski, T.F. and Reid, P. (2023) Association between Rheumatic Autoantibodies and Immune-Related Adverse Events. The Oncologist, 28, 440-448.
https://doi.org/10.1093/oncolo/oyac252
[33] Zhou, Y., Wang, Y., Xia, R., Liu, J. and Ma, X. (2022) Immune Checkpoint Inhibitor-Associated Ophthalmic Adverse Events: Current Understanding of Its Mechanisms, Diagnosis, and Management. International Journal of Ophthalmology, 15, 646-656.
https://doi.org/10.18240/ijo.2022.04.19
[34] Yura, Y. and Hamada, M. (2022) Oral Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors: Salivary Gland Dysfunction and Mucosal Diseases. Cancers, 14, Article No. 792.
https://doi.org/10.3390/cancers14030792
[35] Le, J., Sun, Y., Deng, G., Dian, Y., Xie, Y. and Zeng, F. (2025) Immune Checkpoint Inhibitors in Cancer Patients with Autoimmune Disease: Safety and Efficacy. Human Vaccines & Immunotherapeutics, 21, Article ID: 2458948.
https://doi.org/10.1080/21645515.2025.2458948
[36] Yoest, J. (2017) Clinical Features, Predictive Correlates, and Pathophysiology of Immune-Related Adverse Events in Immune Checkpoint Inhibitor Treatments in Cancer: A Short Review. ImmunoTargets and Therapy, 6, 73-82.
https://doi.org/10.2147/itt.s126227
[37] Hua, C., Boussemart, L., Mateus, C., Routier, E., Boutros, C., Cazenave, H., et al. (2016) Association of Vitiligo with Tumor Response in Patients with Metastatic Melanoma Treated with Pembrolizumab. JAMA Dermatology, 152, 45-51.
https://doi.org/10.1001/jamadermatol.2015.2707
[38] Yamaguchi, A., Saito, Y., Okamoto, K., Narumi, K., Furugen, A., Takekuma, Y., et al. (2021) Preexisting Autoimmune Disease Is a Risk Factor for Immune-Related Adverse Events: A Meta-Analysis. Supportive Care in Cancer, 29, 7747-7753.
https://doi.org/10.1007/s00520-021-06359-7
[39] Kehl, K.L., Yang, S., Awad, M.M., Palmer, N., Kohane, I.S. and Schrag, D. (2019) Pre-Existing Autoimmune Disease and the Risk of Immune-Related Adverse Events among Patients Receiving Checkpoint Inhibitors for Cancer. Cancer Immunology, Immunotherapy, 68, 917-926.
https://doi.org/10.1007/s00262-019-02321-z
[40] Abdel-Wahab, N., Diab, A., Yu, R.K., Futreal, A., Criswell, L.A., Tayar, J.H., et al. (2021) Genetic Determinants of Immune-Related Adverse Events in Patients with Melanoma Receiving Immune Checkpoint Inhibitors. Cancer Immunology, Immunotherapy, 70, 1939-1949.
https://doi.org/10.1007/s00262-020-02797-0
[41] Khoja, L., Day, D., Wei-Wu Chen, T., Siu, L.L. and Hansen, A.R. (2017) Tumour-and Class-Specific Patterns of Immune-Related Adverse Events of Immune Checkpoint Inhibitors: A Systematic Review. Annals of Oncology, 28, 2377-2385.
https://doi.org/10.1093/annonc/mdx286
[42] Michot, J.M., Bigenwald, C., Champiat, S., Collins, M., Carbonnel, F., Postel-Vinay, S., et al. (2016) Immune-Related Adverse Events with Immune Checkpoint Blockade: A Comprehensive Review. European Journal of Cancer, 54, 139-148.
https://doi.org/10.1016/j.ejca.2015.11.016
[43] Xu, C., Chen, Y., Du, X., Liu, J., Huang, C., Chen, L., et al. (2018) Comparative Safety of Immune Checkpoint Inhibitors in Cancer: Systematic Review and Network Meta-Analysis. BMJ, 363, k4226.
https://doi.org/10.1136/bmj.k4226
[44] Unger, J.M., Vaidya, R., Albain, K.S., LeBlanc, M., Minasian, L.M., Gotay, C.C., et al. (2022) Sex Differences in Risk of Severe Adverse Events in Patients Receiving Immunotherapy, Targeted Therapy, or Chemotherapy in Cancer Clinical Trials. Journal of Clinical Oncology, 40, 1474-1486.
https://doi.org/10.1200/jco.21.02377