[1]
|
Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. https://doi.org/10.1016/s0140-6736(19)32989-7
|
[2]
|
Kissoon, N. and Uyeki, T.M. (2016) Sepsis and the Global Burden of Disease in Children. JAMA Pediatrics, 170, 107-108. https://doi.org/10.1001/jamapediatrics.2015.3241
|
[3]
|
Bassat, Q., Blau, D.M., Ogbuanu, I.U., Samura, S., Kaluma, E., Bassey, I., et al. (2023) Causes of Death among Infants and Children in the Child Health and Mortality Prevention Surveillance (CHAMPS) Network. JAMA Network Open, 6, e2322494. https://doi.org/10.1001/jamanetworkopen.2023.22494
|
[4]
|
Marik, P.E. and Farkas, J.D. (2018) The Changing Paradigm of Sepsis: Early Diagnosis, Early Antibiotics, Early Pressors, and Early Adjuvant Treatment. Critical Care Medicine, 46, 1690-1692. https://doi.org/10.1097/ccm.0000000000003310
|
[5]
|
王仲, 魏捷, 朱华栋, 等. 中国脓毒症早期预防与阻断急诊专家共识[J]. 中国急救医学, 2020, 40(7): 577-588.
|
[6]
|
Kumar, A., Roberts, D., Wood, K.E., Light, B., Parrillo, J.E., Sharma, S., et al. (2006) Duration of Hypotension before Initiation of Effective Antimicrobial Therapy Is the Critical Determinant of Survival in Human Septic Shock. Critical Care Medicine, 34, 1589-1596. https://doi.org/10.1097/01.ccm.0000217961.75225.e9
|
[7]
|
Beam, A.L. and Kohane, I.S. (2018) Big Data and Machine Learning in Health Care. Journal of the American Medical Association, 319, 1317-1318. https://doi.org/10.1001/jama.2017.18391
|
[8]
|
Vincent, J.-L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H., et al. (1996) The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. Intensive Care Medicine, 22, 707-710. https://doi.org/10.1007/bf01709751
|
[9]
|
Levy, M.M., Fink, M.P., Marshall, J.C., Abraham, E., Angus, D., et al. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Medicine, 29, 530-538. https://doi.org/10.1007/s00134-003-1662-x
|
[10]
|
Tayefi, M., Ngo, P., Chomutare, T., Dalianis, H., Salvi, E., Budrionis, A., et al. (2021) Challenges and Opportunities beyond Structured Data in Analysis of Electronic Health Records. WIREs Computational Statistics, 13, e1549. https://doi.org/10.1002/wics.1549
|
[11]
|
Zhang, D., Yin, C., Zeng, J., Yuan, X. and Zhang, P. (2020) Combining Structured and Unstructured Data for Predictive Models: A Deep Learning Approach. BMC Medical Informatics and Decision Making, 20, 1-11. https://doi.org/10.1186/s12911-020-01297-6
|
[12]
|
吴宗友, 白昆龙, 杨林蕊, 等. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527.
|
[13]
|
Spasic, I. and Nenadic, G. (2020) Clinical Text Data in Machine Learning: Systematic Review. JMIR Medical Informatics, 8, e17984. https://doi.org/10.2196/17984
|
[14]
|
Goh, K.H., Wang, L., Yeow, A.Y.K., Poh, H., Li, K., Yeow, J.J.L., et al. (2021) Artificial Intelligence in Sepsis Early Prediction and Diagnosis Using Unstructured Data in Healthcare. Nature Communications, 12, Article No. 711. https://doi.org/10.1038/s41467-021-20910-4
|
[15]
|
Horng, S., Sontag, D.A., Halpern, Y., Jernite, Y., Shapiro, N.I. and Nathanson, L.A. (2017) Creating an Automated Trigger for Sepsis Clinical Decision Support at Emergency Department Triage Using Machine Learning. PLOS ONE, 12, e0174708. https://doi.org/10.1371/journal.pone.0174708
|
[16]
|
Alsentzer, E., Murphy, J., Boag, W., Weng, W., Jindi, D., Naumann, T., et al. (2019) Publicly Available Clinical. Proceedings of the 2nd Clinical Natural Language Processing Workshop, Minneapolis, June 2019, 72-78. https://doi.org/10.18653/v1/w19-1909
|
[17]
|
Amrollahi, F.P., Shashikumar, S., Razmi, F. and Nemati, S. (2021) Contextual Embeddings from Clinical Notes Improves Prediction of Sepsis. Intensive Care and Critical Care Medicine, 1-6. https://doi.org/10.1101/2021.03.02.21252779
|
[18]
|
Barton, C., Chettipally, U., Zhou, Y., Jiang, Z., Lynn-Palevsky, A., Le, S., et al. (2019) Evaluation of a Machine Learning Algorithm for up to 48-Hour Advance Prediction of Sepsis Using Six Vital Signs. Computers in Biology and Medicine, 109, 79-84. https://doi.org/10.1016/j.compbiomed.2019.04.027
|
[19]
|
Mao, Q., Jay, M., Hoffman, J.L., Calvert, J., Barton, C., Shimabukuro, D., et al. (2018) Multicentre Validation of a Sepsis Prediction Algorithm Using Only Vital Sign Data in the Emergency Department, General Ward and ICU. BMJ Open, 8, e017833. https://doi.org/10.1136/bmjopen-2017-017833
|
[20]
|
van Wyk, F., Khojandi, A. and Kamaleswaran, R. (2019) Improving Prediction Performance Using Hierarchical Analysis of Real-Time Data: A Sepsis Case Study. IEEE Journal of Biomedical and Health Informatics, 23, 978-986. https://doi.org/10.1109/jbhi.2019.2894570
|
[21]
|
Wang, D., Li, J., Sun, Y., Ding, X., Zhang, X., Liu, S., et al. (2021) A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients. Frontiers in Public Health, 9, Article 754348. https://doi.org/10.3389/fpubh.2021.754348
|
[22]
|
Apostolova, E. and Velez, T. (2017) Toward Automated Early Sepsis Alerting: Identifying Infection Patients from Nursing Notes. BioNLP 2017, Vancouver, August 2017, 257-262. https://doi.org/10.18653/v1/w17-2332
|
[23]
|
Qin, F., Madan, V., Ratan, U., et al. (2021) Improving Early Sepsis Prediction with Multi Modal Learning.
|
[24]
|
Solé-Ribalta, A., Launes, C., Felipe-Villalobos, A., Balaguer, M., Luaces, C., Garrido, R., et al. (2022) New Multivariable Prediction Model Pediatric Sepsis Recognition and Stratification (PESERS Score) Shows Excellent Discriminatory Capacity. Acta Paediatrica, 111, 1209-1219. https://doi.org/10.1111/apa.16321
|
[25]
|
Chen, X., Zhang, R. and Tang, X.Y. (2021) Towards Real-Time Diagnosis for Pediatric Sepsis Using Graph Neural Network and Ensemble Methods. European Review for Medical & Pharmacological Sciences, 25, 4693-4701.
|
[26]
|
李少军. 基于大数据和机器学习开发儿童脓毒症诊断与预后模型的队列研究[D]: [博士学位论文]. 重庆: 重庆医科大学, 2023.
|