[1]
|
Liu, H., Zhou, J., Li, M., Hu, Y., Liu, X. and Zhou, J. (2019) Study of the Bioavailability of Heavy Metals from Atmospheric Deposition on the Soil-Pakchoi (Brassica chinensis L.) System. Journal of Hazardous Materials, 362, 9-16. https://doi.org/10.1016/j.jhazmat.2018.09.032
|
[2]
|
Chen, H., Wang, L., Hu, B., Xu, J. and Liu, X. (2022) Potential Driving Forces and Probabilistic Health Risks of Heavy Metal Accumulation in the Soils from an E-Waste Area, Southeast China. Chemosphere, 289, Article ID: 133182. https://doi.org/10.1016/j.chemosphere.2021.133182
|
[3]
|
Xi, B., Yu, H., Li, Y., Dang, Q., Tan, W., Wang, Y., et al. (2021) Insights into the Effects of Heavy Metal Pressure Driven by Long-Term Treated Wastewater Irrigation on Bacterial Communities and Nitrogen-Transforming Genes along Vertical Soil Profiles. Journal of Hazardous Materials, 403, Article ID: 123853. https://doi.org/10.1016/j.jhazmat.2020.123853
|
[4]
|
Qian, X., Wang, Z., Shen, G., Chen, X., Tang, Z., Guo, C., et al. (2018) Heavy Metals Accumulation in Soil after 4 Years of Continuous Land Application of Swine Manure: A Field-Scale Monitoring and Modeling Estimation. Chemosphere, 210, 1029-1034. https://doi.org/10.1016/j.chemosphere.2018.07.107
|
[5]
|
Zhang, H., Zhang, Q., Song, J., Zhang, Z., Chen, S., Long, Z., et al. (2020) Tracking Resistomes, Virulence Genes, and Bacterial Pathogens in Long-Term Manure-Amended Greenhouse Soils. Journal of Hazardous Materials, 396, Article ID: 122618. https://doi.org/10.1016/j.jhazmat.2020.122618
|
[6]
|
Zhao, W., Deng, J., Chi, S., Wang, W., Xu, L., Huang, Q., et al. (2022) Sustainability Assessment of Topsoil Ecology in Chongqing, China Based on the Application of Livestock and Poultry Manure. Journal of Cleaner Production, 358, Article ID: 131969. https://doi.org/10.1016/j.jclepro.2022.131969
|
[7]
|
Farias, P., Espírito Santo, C., Branco, R., Francisco, R., Santos, S., Hansen, L., et al. (2015) Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields. Applied and Environmental Microbiology, 81, 2534-2543. https://doi.org/10.1128/aem.03240-14
|
[8]
|
Chen, D., Li, X., Ni, L., Xu, D., Xu, Y., Ding, Y., et al. (2021) First Experimental Evidence for the Presence of Potentially Toxic Vibrio Cholerae in Snails, and Virulence, Cross-Resistance and Genetic Diversity of the Bacterium in 36 Species of Aquatic Food Animals. Antibiotics, 10, Article 412. https://doi.org/10.3390/antibiotics10040412
|
[9]
|
Chen, S., Li, X., Sun, G., Zhang, Y., Su, J. and Ye, J. (2015) Heavy Metal Induced Antibiotic Resistance in Bacterium Lsjc7. International Journal of Molecular Sciences, 16, 23390-23404. https://doi.org/10.3390/ijms161023390
|
[10]
|
Tan, Y., Cao, X., Chen, S., Ao, X., Li, J., Hu, K., et al. (2023) Antibiotic and Heavy Metal Resistance Genes in Sewage Sludge Survive during Aerobic Composting. Science of The Total Environment, 866, Article ID: 161386. https://doi.org/10.1016/j.scitotenv.2023.161386
|
[11]
|
Wang, Z.F., Yun, H., Li, S., Ji, J., Khan, A., Fu, X.L., et al. (2022) Factors Influencing the Transfer and Abundance of Antibiotic Resistance Genes in Livestock Environments in China. International Journal of Environmental Science and Technology, 20, 2197-2208. https://doi.org/10.1007/s13762-022-04031-z
|
[12]
|
Zhang, Y., Gu, A.Z., Cen, T., Li, X., He, M., Li, D., et al. (2018) Sub-Inhibitory Concentrations of Heavy Metals Facilitate the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes in Water Environment. Environmental Pollution, 237, 74-82. https://doi.org/10.1016/j.envpol.2018.01.032
|
[13]
|
Gaidhani, S.V., Raskar, A.V., Poddar, S., et al. (2014) Time Dependent Enhanced Resistance against Antibiotics & Metal Salts by Planktonic & Biofilm Form of Acinetobacter haemolyticus MMC 8 Clinical Isolate. Indian Journal of Medical Research, 140, 665-671.
|
[14]
|
Gao, M., Song, W., Zhou, Q., Ma, X. and Chen, X. (2013) Interactive Effect of Oxytetracycline and Lead on Soil Enzymatic Activity and Microbial Biomass. Environmental Toxicology and Pharmacology, 36, 667-674. https://doi.org/10.1016/j.etap.2013.07.003
|
[15]
|
Xu, Y., Yu, W., Ma, Q., Zhou, H. and Jiang, C. (2017) Toxicity of Sulfadiazine and Copper and Their Interaction to Wheat (Triticum aestivum L.) Seedlings. Ecotoxicology and Environmental Safety, 142, 250-256. https://doi.org/10.1016/j.ecoenv.2017.04.007
|
[16]
|
Yu, Z., Yin, D. and Deng, H. (2015) The Combinational Effects between Sulfonamides and Metals on Nematode Caenorhabditis Elegans. Ecotoxicology and Environmental Safety, 111, 66-71. https://doi.org/10.1016/j.ecoenv.2014.09.026
|
[17]
|
Nguyen, C.C., Hugie, C.N., Kile, M.L. and Navab-Daneshmand, T. (2019) Association between Heavy Metals and Antibiotic-Resistant Human Pathogens in Environmental Reservoirs: A Review. Frontiers of Environmental Science & Engineering, 13, Article No. 46. https://doi.org/10.1007/s11783-019-1129-0
|
[18]
|
Zhang, J., Yang, M., Zhong, H., Liu, M., Sui, Q., Zheng, L., et al. (2018) Deciphering the Factors Influencing the Discrepant Fate of Antibiotic Resistance Genes in Sludge and Water Phases during Municipal Wastewater Treatment. Bioresource Technology, 265, 310-319. https://doi.org/10.1016/j.biortech.2018.06.021
|
[19]
|
Agga, G.E., Scott, H.M., Amachawadi, R.G., Nagaraja, T.G., Vinasco, J., Bai, J., et al. (2014) Effects of Chlortetracycline and Copper Supplementation on Antimicrobial Resistance of Fecal Escherichia Coli from Weaned Pigs. Preventive Veterinary Medicine, 114, 231-246. https://doi.org/10.1016/j.prevetmed.2014.02.010
|
[20]
|
Kuppusamy, S., Kakarla, D., Venkateswarlu, K., Megharaj, M., Yoon, Y. and Lee, Y.B. (2018) Veterinary Antibiotics (VAs) Contamination as a Global Agro-Ecological Issue: A Critical View. Agriculture, Ecosystems & Environment, 257, 47-59. https://doi.org/10.1016/j.agee.2018.01.026
|
[21]
|
Wang, J., Chu, L., Wojnárovits, L. and Takács, E. (2020) Occurrence and Fate of Antibiotics, Antibiotic Resistant Genes (ARGs) and Antibiotic Resistant Bacteria (ARB) in Municipal Wastewater Treatment Plant: An Overview. Science of the Total Environment, 744, Article ID: 140997. https://doi.org/10.1016/j.scitotenv.2020.140997
|
[22]
|
Cheng, M., Wu, L., Huang, Y., Luo, Y. and Christie, P. (2014) Total Concentrations of Heavy Metals and Occurrence of Antibiotics in Sewage Sludges from Cities Throughout China. Journal of Soils and Sediments, 14, 1123-1135. https://doi.org/10.1007/s11368-014-0850-3
|
[23]
|
吴英, 周明良, 张波, 等. 嘉兴市主要旅游景区地表水中四环素和磺胺类抗生素抗性基因的污染现状调查[J]. 环境保护与循环经济, 2016, 36(9): 52-54.
|
[24]
|
付瑾瑾, 白昱慧, 朱晓玲, 等. 西溪湿地中四环素类和磺胺类抗性基因的污染现状[J]. 杭州师范大学学报(自然科学版), 2020, 19(6): 39-47.
|
[25]
|
Yang, J., Wang, J., Qiao, P., Zheng, Y., Yang, J., Chen, T., et al. (2020) Identifying Factors That Influence Soil Heavy Metals by Using Categorical Regression Analysis: A Case Study in Beijing, China. Frontiers of Environmental Science & Engineering, 14, Article No. 37. https://doi.org/10.1007/s11783-019-1216-2
|
[26]
|
Hu, Y., Gao, G.F. and Zhu, B. (2017) The Antibiotic Resistome: Gene Flow in Environments, Animals and Human Beings. Frontiers of Medicine, 11, 161-168. https://doi.org/10.1007/s11684-017-0531-x
|
[27]
|
Gupta, S., Graham, D.W., Sreekrishnan, T.R. and Ahammad, S.Z. (2023) Heavy Metal and Antibiotic Resistance in Four Indian and UK Rivers with Different Levels and Types of Water Pollution. Science of the Total Environment, 857, Article ID: 159059. https://doi.org/10.1016/j.scitotenv.2022.159059
|
[28]
|
Zhou, B., Wang, C., Zhao, Q., Wang, Y., Huo, M., Wang, J., et al. (2016) Prevalence and Dissemination of Antibiotic Resistance Genes and Coselection of Heavy Metals in Chinese Dairy Farms. Journal of Hazardous Materials, 320, 10-17. https://doi.org/10.1016/j.jhazmat.2016.08.007
|
[29]
|
Lima, N.C.B., Tanmoy, A.M., Westeel, E., de Almeida, L.G.P., Rajoharison, A., Islam, M., et al. (2019) Analysis of Isolates from Bangladesh Highlights Multiple Ways to Carry Resistance Genes in Salmonella Typhi. BMC Genomics, 20, Article No. 530. https://doi.org/10.1186/s12864-019-5916-6
|
[30]
|
Teitzel, G.M. and Parsek, M.R. (2003) Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology, 69, 2313-2320. https://doi.org/10.1128/aem.69.4.2313-2320.2003
|
[31]
|
Gupta, S., Graham, D.W., Sreekrishnan, T.R. and Ahammad, S.Z. (2022) Effects of Heavy Metals Pollution on the Co-Selection of Metal and Antibiotic Resistance in Urban Rivers in UK and India. Environmental Pollution, 306, Article ID: 119326. https://doi.org/10.1016/j.envpol.2022.119326
|
[32]
|
Ding, P., Lu, J., Wang, Y., Schembri, M.A. and Guo, J. (2022) Antidepressants Promote the Spread of Antibiotic Resistance via Horizontally Conjugative Gene Transfer. Environmental Microbiology, 24, 5261-5276. https://doi.org/10.1111/1462-2920.16165
|
[33]
|
Wang, Y., Lu, J., Mao, L., Li, J., Yuan, Z., Bond, P.L., et al. (2018) Antiepileptic Drug Carbamazepine Promotes Horizontal Transfer of Plasmid-Borne Multi-Antibiotic Resistance Genes within and across Bacterial Genera. The ISME Journal, 13, 509-522. https://doi.org/10.1038/s41396-018-0275-x
|
[34]
|
Frost, L.S., Leplae, R., Summers, A.O. and Toussaint, A. (2005) Mobile Genetic Elements: The Agents of Open Source Evolution. Nature Reviews Microbiology, 3, 722-732. https://doi.org/10.1038/nrmicro1235
|
[35]
|
Lau, S.Y. and Zgurskaya, H.I. (2005) Cell Division Defects in Escherichia coli Deficient in the Multidrug Efflux Transporter AcrEF-TolC. Journal of Bacteriology, 187, 7815-7825. https://doi.org/10.1128/jb.187.22.7815-7825.2005
|
[36]
|
Zhang, H., Song, J., Zheng, Z., Li, T., Shi, N., Han, Y., et al. (2023) Fungicide Exposure Accelerated Horizontal Transfer of Antibiotic Resistance Genes via Plasmid-Mediated Conjugation. Water Research, 233, Article ID: 119789. https://doi.org/10.1016/j.watres.2023.119789
|
[37]
|
Li, W. and Zhang, G. (2022) Detection and Various Environmental Factors of Antibiotic Resistance Gene Horizontal Transfer. Environmental Research, 212, Article ID: 113267. https://doi.org/10.1016/j.envres.2022.113267
|
[38]
|
Wang, M., Lian, Y., Wang, Y. and Zhu, L. (2023) The Role and Mechanism of Quorum Sensing on Environmental Antimicrobial Resistance. Environmental Pollution, 322, Article ID: 121238. https://doi.org/10.1016/j.envpol.2023.121238
|
[39]
|
Xu, Y., Zhou, Y., Ruan, J., Xu, S., Gu, J., Huang, S., et al. (2015) Endogenous Nitric Oxide in Pseudomonas Fluorescens ZY2 as Mediator against the Combined Exposure to Zinc and Cefradine. Ecotoxicology, 24, 835-843. https://doi.org/10.1007/s10646-015-1428-6
|
[40]
|
Su, Y., Wu, D., Xia, H., Zhang, C., Shi, J., Wilkinson, K.J., et al. (2019) Metallic Nanoparticles Induced Antibiotic Resistance Genes Attenuation of Leachate Culturable Microbiota: The Combined Roles of Growth Inhibition, Ion Dissolution and Oxidative Stress. Environment International, 128, 407-416. https://doi.org/10.1016/j.envint.2019.05.007
|
[41]
|
Lin, H., Jiang, L., Li, B., Dong, Y., He, Y. and Qiu, Y. (2019) Screening and Evaluation of Heavy Metals Facilitating Antibiotic Resistance Gene Transfer in a Sludge Bacterial Community. Science of The Total Environment, 695, Article ID: 133862. https://doi.org/10.1016/j.scitotenv.2019.133862
|
[42]
|
Li, W., Zhang, W., Zhang, M., Lei, Z., Li, P., Ma, Y., et al. (2022) Environmentally Relevant Concentrations of Mercury Facilitate the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes. Science of the Total Environment, 852, Article ID: 158272. https://doi.org/10.1016/j.scitotenv.2022.158272
|
[43]
|
Lu, J., Wang, Y., Jin, M., Yuan, Z., Bond, P. and Guo, J. (2020) Both Silver Ions and Silver Nanoparticles Facilitate the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes. Water Research, 169, Article ID: 115229. https://doi.org/10.1016/j.watres.2019.115229
|
[44]
|
Zhang, Y., Gu, A.Z., Cen, T., Li, X., He, M., Li, D., et al. (2018) Sub-Inhibitory Concentrations of Heavy Metals Facilitate the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes in Water Environment. Environmental Pollution, 237, 74-82. https://doi.org/10.1016/j.envpol.2018.01.032
|
[45]
|
Pu, Q., Fan, X., Li, H., An, X., Lassen, S.B. and Su, J. (2021) Cadmium Enhances Conjugative Plasmid Transfer to a Fresh Water Microbial Community. Environmental Pollution, 268, Article ID: 115903. https://doi.org/10.1016/j.envpol.2020.115903
|
[46]
|
Zhou, C., Gao, Y., Ma, Q., Xia, Z., Zhu, M., Zhang, X., et al. (2023) The Single and Combined Effects of Sulfamethazine and Cadmium on Soil Nitrification and Ammonia-Oxidizing Microorganisms. Environmental Science and Pollution Research, 30, 56108-56120. https://doi.org/10.1007/s11356-023-26141-y
|
[47]
|
Wang, L., Xia, X., Zhang, W., Wang, J., Zhu, L., Wang, J., et al. (2019) Separate and Joint Eco-Toxicological Effects of Sulfadimidine and Copper on Soil Microbial Biomasses and Ammoxidation Microorganisms Abundances. Chemosphere, 228, 556-564. https://doi.org/10.1016/j.chemosphere.2019.04.165
|
[48]
|
Wang, T., Zhang, J., Tao, M., Xu, C. and Chen, M. (2021) Quantitative Characterization of Toxicity Interaction within Antibiotic-Heavy Metal Mixtures on Chlorella Pyrenoidosa by a Novel Area-Concentration Ratio Method. Science of the Total Environment, 762, Article ID: 144180. https://doi.org/10.1016/j.scitotenv.2020.144180
|
[49]
|
Khurana, P., Pulicharla, R. and Kaur Brar, S. (2021) Antibiotic-metal Complexes in Wastewaters: Fate and Treatment Trajectory. Environment International, 157, Article ID: 106863. https://doi.org/10.1016/j.envint.2021.106863
|
[50]
|
Chang, P., Li, Z., Jean, J., Jiang, W., Wu, Q., Kuo, C., et al. (2013) Desorption of Tetracycline from Montmorillonite by Aluminum, Calcium, and Sodium: An Indication of Intercalation Stability. International Journal of Environmental Science and Technology, 11, 633-644. https://doi.org/10.1007/s13762-013-0215-2
|
[51]
|
Wenlong, B. and Dong, W. (2020) Influence of Fe(III)‐OTC Complex on Degradation of OTC with Fe(II)/H2O2 under Simulated Solar Light. Water and Environment Journal, 35, 425-433. https://doi.org/10.1111/wej.12640
|
[52]
|
Pulicharla, R., Hegde, K., Brar, S.K. and Surampalli, R.Y. (2017) Tetracyclines Metal Complexation: Significance and Fate of Mutual Existence in the Environment. Environmental Pollution, 221, 1-14. https://doi.org/10.1016/j.envpol.2016.12.017
|
[53]
|
郑振华, 周培疆, 吴振斌. 复合污染研究的新进展[J]. 应用生态学报, 2001(3): 469-473.
|
[54]
|
Meadows, S.L., Gennings, C., Carter, W.H. and Bae, D. (2002) Experimental Designs for Mixtures of Chemicals along Fixed Ratio Rays. Environmental Health Perspectives, 110, 979-983. https://doi.org/10.1289/ehp.02110s6979
|
[55]
|
Van Regenmortel, T., Nys, C., Janssen, C.R., Lofts, S. and De Schamphelaere, K.A.C. (2017) Comparison of Four Methods for Bioavailability-Based Risk Assessment of Mixtures of Cu, Zn, and Ni in Freshwater. Environmental Toxicology and Chemistry, 36, 2123-2138. https://doi.org/10.1002/etc.3746
|
[56]
|
Marking, L. (1977) Method for Assessing Additive Toxicity of Chemical Mixtures. In: Mayer, F.L. and Hamelink, J.L., Eds., Aquatic Toxicology and Hazard Evaluation, ASTM International, 99-108. https://doi.org/10.1520/stp32392s
|
[57]
|
Christensen, E.R.C.C. (1989) Modeling of Combined Toxic Effects of Chemicals. Hazard Assessment of Chemicals, 6, 125-186.
|
[58]
|
Lin, Z., Yin, K., Shi, P., Wang, L. and Yu, H. (2003) Development of QSARs for Predicting the Joint Effects between Cyanogenic Toxicants and Aldehydes. Chemical Research in Toxicology, 16, 1365-1371. https://doi.org/10.1021/tx025687a
|
[59]
|
Pan, M. and Chu, L.M. (2017) Fate of Antibiotics in Soil and Their Uptake by Edible Crops. Science of the Total Environment, 599, 500-512. https://doi.org/10.1016/j.scitotenv.2017.04.214
|
[60]
|
Deng, H., Tu, Y., Wang, H., Wang, Z., Li, Y., Chai, L., et al. (2022) Environmental Behavior, Human Health Effect, and Pollution Control of Heavy Metal(loid)s toward Full Life Cycle Processes. Eco-Environment & Health, 1, 229-243. https://doi.org/10.1016/j.eehl.2022.11.003
|
[61]
|
Lin, H., Wang, Z., Liu, C. and Dong, Y. (2022) Technologies for Removing Heavy Metal from Contaminated Soils on Farmland: A Review. Chemosphere, 305, Article ID: 135457. https://doi.org/10.1016/j.chemosphere.2022.135457
|
[62]
|
Banerjee, S. and van der Heijden, M.G.A. (2022) Soil Microbiomes and One Health. Nature Reviews Microbiology, 21, 6-20. https://doi.org/10.1038/s41579-022-00779-w
|
[63]
|
Chen, P., Guo, X. and Li, F. (2022) Antibiotic Resistance Genes in Bioaerosols: Emerging, Non-Ignorable and Pernicious Pollutants. Journal of Cleaner Production, 348, Article ID: 131094. https://doi.org/10.1016/j.jclepro.2022.131094
|
[64]
|
阮存鑫. 四环素与铜复合污染对土壤硝化作用及植物生长的影响[D]: [硕士学位论文]. 南京: 南京林业大学, 2010.
|
[65]
|
闫雷, 毕世欣, 赵启慧, 等. 土霉素及镉污染对土壤呼吸及酶活性的影响[J]. 水土保持通报, 2014, 34(6): 101-108.
|
[66]
|
Kong, W., Zhu, Y., Fu, B., Marschner, P. and He, J. (2006) The Veterinary Antibiotic Oxytetracycline and Cu Influence Functional Diversity of the Soil Microbial Community. Environmental Pollution, 143, 129-137. https://doi.org/10.1016/j.envpol.2005.11.003
|
[67]
|
Huang, R., Wen, B., Pei, Z., Shan, X., Zhang, S. and Williams, P.N. (2009) Accumulation, Subcellular Distribution and Toxicity of Copper in Earthworm (Eisenia fetida) in the Presence of Ciprofloxacin. Environmental Science & Technology, 43, 3688-3693. https://doi.org/10.1021/es900061t
|
[68]
|
Zhu, Y., Johnson, T.A., Su, J., Qiao, M., Guo, G., Stedtfeld, R.D., et al. (2013) Diverse and Abundant Antibiotic Resistance Genes in Chinese Swine Farms. Proceedings of the National Academy of Sciences of the United States of America, 110, 3435-3440. https://doi.org/10.1073/pnas.1222743110
|
[69]
|
赵祥, 王金花, 朱鲁生, 等. 抗生素和铜联合作用对蚕豆根尖细胞微核率的影响[J]. 环境科学研究, 2015, 28(7): 1085-1090.
|
[70]
|
Chen, Q., Cui, H., Su, J., Penuelas, J. and Zhu, Y. (2019) Antibiotic Resistomes in Plant Microbiomes. Trends in Plant Science, 24, 530-541. https://doi.org/10.1016/j.tplants.2019.02.010
|
[71]
|
Ezugworie, F.N., Igbokwe, V.C. and Onwosi, C.O. (2021) Proliferation of Antibiotic-Resistant Microorganisms and Associated Genes during Composting: An Overview of the Potential Impacts on Public Health, Management and Future. Science of the Total Environment, 784, Article ID: 147191. https://doi.org/10.1016/j.scitotenv.2021.147191
|
[72]
|
Cao, Y., Zhao, J., Wang, Q., Bai, S., Yang, Q., Wei, Y., et al. (2022) Industrial Aerobic Composting and the Addition of Microbial Agents Largely Reduce the Risks of Heavy Metal and ARG Transfer through Livestock Manure. Ecotoxicology and Environmental Safety, 239, Article ID: 113694. https://doi.org/10.1016/j.ecoenv.2022.113694
|
[73]
|
Li, H., Tian, Y., Liu, W., Long, Y., Ye, J., Li, B., et al. (2020) Impact of Electrokinetic Remediation of Heavy Metal Contamination on Antibiotic Resistance in Soil. Chemical Engineering Journal, 400, Article ID: 125866. https://doi.org/10.1016/j.cej.2020.125866
|
[74]
|
Li, X., Zhu, W., Meng, G., Guo, R. and Wang, Y. (2020) Phytoremediation of Alkaline Soils Co-Contaminated with Cadmium and Tetracycline Antibiotics Using the Ornamental Hyperaccumulators Mirabilis jalapa L. and Tagetes patula L. Environmental Science and Pollution Research, 27, 14175-14183. https://doi.org/10.1007/s11356-020-07975-2
|
[75]
|
Duan, M., Li, Z., Yan, R., Zhou, B., Su, L., Li, M., et al. (2023) Mechanism for Combined Application of Biochar and Bacillus Cereus to Reduce Antibiotic Resistance Genes in Copper Contaminated Soil and Lettuce. Science of the Total Environment, 884, Article ID: 163422. https://doi.org/10.1016/j.scitotenv.2023.163422
|