[1]
|
Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297. https://doi.org/10.1016/s0092-8674(04)00045-5
|
[2]
|
Bueno, M.J. and Malumbres, M. (2011) MicroRNAs and the Cell Cycle. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1812, 592-601. https://doi.org/10.1016/j.bbadis.2011.02.002
|
[3]
|
Hummel, R., Hussey, D.J. and Haier, J. (2010) MicroRNAs: Predictors and Modifiers of Chemo-and Radiotherapy in Different Tumour Types. European Journal of Cancer, 46, 298-311. https://doi.org/10.1016/j.ejca.2009.10.027
|
[4]
|
Hao, J.P. and Ma, A. (2018) The Ratio of miR-21/miR-24 as a Promising Diagnostic and Poor Prognosis Biomarker in Colorectal Cancer. European Review for Medical and Pharmacological Sciences, 22, 8649-8656.
|
[5]
|
Tsukamoto, M., Iinuma, H., Yagi, T., Matsuda, K. and Hashiguchi, Y. (2017) Circulating Exosomal MicroRNA-21 as a Biomarker in Each Tumor Stage of Colorectal Cancer. Oncology, 92, 360-370. https://doi.org/10.1159/000463387
|
[6]
|
Liu, H., Wang, J., Tao, Y., Li, X., Qin, J., Bai, Z., et al. (2019) Curcumol Inhibits Colorectal Cancer Proliferation by Targeting miR-21 and Modulated PTEN/PI3K/Akt Pathways. Life Sciences, 221, 354-361. https://doi.org/10.1016/j.lfs.2019.02.049
|
[7]
|
Xiong, B., Cheng, Y., Ma, L. and Zhang, C. (2012) MiR-21 Regulates Biological Behavior through the PTEN/PI-3K/Akt Signaling Pathway in Human Colorectal Cancer Cells. International Journal of Oncology, 42, 219-228. https://doi.org/10.3892/ijo.2012.1707
|
[8]
|
郭美, 王兵, 周恒花, 等. 结肠癌组织miR-21与PDCD4的表达情况及临床意义[J]. 重庆医学, 2022, 51(6): 1011-1014.
|
[9]
|
American Cancer Society (2020) Colorectal Cancer Facts & Figures 2020-2022. Atlanta American Cancer Society, Vol. 66, 1-41.
|
[10]
|
Denlinger, C.S. and Barsevick, A.M. (2009) The Challenges of Colorectal Cancer Survivorship. Journal of the National Comprehensive Cancer Network, 7, 883-894. https://doi.org/10.6004/jnccn.2009.0058
|
[11]
|
Peng, Y., Huang, M. and Kao, C. (2019) Prevalence of Depression and Anxiety in Colorectal Cancer Patients: A Literature Review. International Journal of Environmental Research and Public Health, 16, Article No. 411. https://doi.org/10.3390/ijerph16030411
|
[12]
|
Jiang, R., Chen, X., Ge, S., Wang, Q., Liu, Y., Chen, H., et al. (2021) MiR-21-5p Induces Pyroptosis in Colorectal Cancer via TGFBI. Frontiers in Oncology, 10, Article ID: 610545. https://doi.org/10.3389/fonc.2020.610545
|
[13]
|
胡晓舒, 温一阳, 杨金花. PTENP1对结直肠癌细胞增殖和凋亡的影响及其分子机制[J]. 肿瘤防治研究, 2022, 49(3): 192-196.
|
[14]
|
杜静虎, 陈满宇, 王东华, 等. ZNF521促进结肠癌的进展且受miR-211-5p靶向调控[J]. 临床与病理杂志, 2021, 41(6): 1237-1247.
|
[15]
|
Huang, S.X., Fan, W.Y., Wang, L., Liu, H., Wang, X., Zhao, H. and Jiang, W.B. (2020) Maspin Inhibits MCF-7 Cell Invasion and Proliferation by Downregulating miR-21 and Increasing the Expression of Its Target Genes. Oncology Letters, 19, 2621-2628.
|
[16]
|
王卫卫, 邢文韬, 魏思忱, 等. miR-21靶向调控Bcl-2对肠道上皮HT29细胞凋亡的影响及机制研究[J]. 中国免疫学杂志, 2019, 35(20): 2457-2463.
|
[17]
|
胡立宏, 潘雪峰, 关佳恒, 等. 结直肠癌患者血清miR-21-5p、miR-377-3p表达与Wnt/β-Catenin信号通路和预后的关系分析[J]. 疑难病杂志, 2023, 22(4): 383-389.
|
[18]
|
Bian, J., Dannappel, M., Wan, C. and Firestein, R. (2020) Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells, 9, Article No. 2125. https://doi.org/10.3390/cells9092125
|
[19]
|
Huber, A.H., Nelson, W.J. and Weis, W.I. (1997) Three-Dimensional Structure of the Armadillo Repeat Region of β-Catenin. Cell, 90, 871-882. https://doi.org/10.1016/s0092-8674(00)80352-9
|
[20]
|
Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G., Tan, Y., et al. (2002) Control of β-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism. Cell, 108, 837-847. https://doi.org/10.1016/s0092-8674(02)00685-2
|
[21]
|
Aberle, H., Bauer, A., Stappert, J., Kispert, A. and Kemler, R. (1997) β-Catenin Is a Target for the Ubiquitin-Proteasome Pathway. The EMBO Journal, 16, 3797-3804. https://doi.org/10.1093/emboj/16.13.3797
|
[22]
|
Hart, M., Concordet, J., Lassot, I., Albert, I., del los Santos, R., Durand, H., et al. (1999) The F-Box Protein beta-TrCP Associates with Phosphorylated β-Catenin and Regulates Its Activity in the Cell. Current Biology, 9, 207-211. https://doi.org/10.1016/s0960-9822(99)80091-8
|
[23]
|
Wu, G., Huang, H., Abreu, J.G. and He, X. (2009) Inhibition of GSK3 Phosphorylation of β-Catenin via Phosphorylated PPPSPXS Motifs of Wnt Coreceptor LRP6. PLoS ONE, 4, e4926. https://doi.org/10.1371/journal.pone.0004926
|
[24]
|
Cselenyi, C.S., Jernigan, K.K., Tahinci, E., Thorne, C.A., Lee, L.A. and Lee, E. (2008) LRP6 Transduces a Canonical Wnt Signal Independently of Axin Degradation by Inhibiting GSK3’s Phosphorylation of β-Catenin. Proceedings of the National Academy of Sciences, 105, 8032-8037. https://doi.org/10.1073/pnas.0803025105
|
[25]
|
Piao, S., Lee, S., Kim, H., Yum, S., Stamos, J.L., Xu, Y., et al. (2008) Direct Inhibition of Gsk3β by the Phosphorylated Cytoplasmic Domain of LRP6 in Wnt/β-Catenin Signaling. PLoS ONE, 3, e4046. https://doi.org/10.1371/journal.pone.0004046
|
[26]
|
Kim, S., Huang, H., Zhao, M., Zhang, X., Zhang, A., Semonov, M.V., et al. (2013) Wnt Stabilization of β-Catenin Reveals Principles for Morphogen Receptor-Scaffold Assemblies. Science, 340, 867-870. https://doi.org/10.1126/science.1232389
|
[27]
|
He, Q., Ye, A., Ye, W., Liao, X., Qin, G., Xu, Y., et al. (2021) Cancer-Secreted Exosomal miR-21-5p Induces Angiogenesis and Vascular Permeability by Targeting KRIT1. Cell Death & Disease, 12, Article No. 576. https://doi.org/10.1038/s41419-021-03803-8
|
[28]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[29]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708
|
[30]
|
Ginsburg, O., Yip, C., Brooks, A., Cabanes, A., Caleffi, M., Dunstan Yataco, J.A., et al. (2020) Breast Cancer Early Detection: A Phased Approach to Implementation. Cancer, 126, 2379-2393. https://doi.org/10.1002/cncr.32887
|
[31]
|
Wang, L. (2017) Early Diagnosis of Breast Cancer. Sensors, 17, Article No. 1572. https://doi.org/10.3390/s17071572
|
[32]
|
Liu, M., Mo, F., Song, X., He, Y., Yuan, Y., Yan, J., et al. (2021) Exosomal Hsa-Mir-21-5p Is a Biomarker for Breast Cancer Diagnosis. PeerJ, 9, e12147. https://doi.org/10.7717/peerj.12147
|
[33]
|
Nejaddehghan, S., Zargar, S.J., Oloomi, M., Baesi, K. and Kouhsar, M. (2024) Inhibition of miR-21-5p Affects the Expression of LNCRNA X-Inactive Specific Transcript and Induces Apoptosis in MCF-7 Breast Cancer Cells. Iranian Journal of Public Health, 53, 714-725.
|
[34]
|
孙方正. miR-21-5p调控乳腺癌MCF-7细胞增殖的分子机理研究[D]: [硕士学位论文]. 遵义: 遵义医科大学, 2021.
|
[35]
|
马小兰, 王娟, 石斌, 等. hnRNPK调控Wnt/β-Catenin信号转导通路抑制乳腺癌细胞铁死亡[J]. 中国癌症杂志, 2024, 34(10): 931-943.
|
[36]
|
Duma, N., Santana-Davila, R. and Molina, J.R. (2019) Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clinic Proceedings, 94, 1623-1640. https://doi.org/10.1016/j.mayocp.2019.01.013
|
[37]
|
Forde, P.M., Spicer, J., Lu, S., Provencio, M., Mitsudomi, T., Awad, M.M., et al. (2022) Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. New England Journal of Medicine, 386, 1973-1985. https://doi.org/10.1056/nejmoa2202170
|
[38]
|
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492
|
[39]
|
Jin, G., Lv, J., Yang, M., Wang, M., Zhu, M., Wang, T., et al. (2020) Genetic Risk, Incident Gastric Cancer, and Healthy Lifestyle: A Meta-Analysis of Genome-Wide Association Studies and Prospective Cohort Study. The Lancet Oncology, 21, 1378-1386. https://doi.org/10.1016/s1470-2045(20)30460-5
|
[40]
|
Petryszyn, P., Chapelle, N. and Matysiak-Budnik, T. (2020) Gastric Cancer: Where Are We Heading? Digestive Diseases, 38, 280-285. https://doi.org/10.1159/000506509
|
[41]
|
赵志东, 郇金亮, 汤文俊, 等. hsa-miR-21-5p/ZNF367分子轴通过PI3K/Akt通路影响胃癌细胞的增殖和迁移[J]. 中国医药生物技术, 2020, 15(3): 269-276.
|
[42]
|
徐珂. miR-21-5p经Wnt/β-Catenin通路调控EMT影响口腔鳞癌细胞生物学行为的机制研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2024.
|
[43]
|
胡兆勇, 谭劲, 陈明, 等. miR-21-5p在口腔黏膜下纤维化癌变细胞中的表达及生物信息学分析[J]. 中国医药导报, 2021, 18(31): 34-36+41+198.
|
[44]
|
焦叶林. 牙龈卟啉单胞菌通过激活YAP/TAZ诱导miR-21-5p/PTEN/自噬促进食管鳞癌演进[D]: [硕士学位论文]. 洛阳: 河南科技大学, 2020.
|
[45]
|
唐秦超. 中性粒细胞源性外泌体传递miRNA-21-5p靶向抑制CPEB3促进口腔鳞癌进展的机制研究[D]: [硕士学位论文]. 南宁: 广西医科大学, 2021.
|
[46]
|
Xie, H., Jing, R., Liao, X., Chen, H., Xie, X., Dai, H., et al. (2022) Arecoline Promotes Proliferation and Migration of Human Hepg2 Cells through Activation of the PI3K/AKT/mTOR Pathway. Hereditas, 159, Article No. 29. https://doi.org/10.1186/s41065-022-00241-0
|
[47]
|
Zhang, X., Wang, W., Mo, S. and Sun, X. (2024) Dead-Box Helicase 17 circRNA (circDDX17) Reduces Sorafenib Resistance and Tumorigenesis in Hepatocellular Carcinoma. Digestive Diseases and Sciences, 69, 2096-2108. https://doi.org/10.1007/s10620-024-08401-0
|