磁共振Dixon技术在2型糖尿病患者多器官脂肪定量评估中的研究进展
Research Progress on the Application of Magnetic Resonance Dixon Technique in Multi-Organ Fat Quantification for Patients with Type 2 Diabetes
DOI: 10.12677/acm.2025.153776, PDF, HTML, XML,   
作者: 李爰莹, 李 晖*:华北理工大学附属医院,医学影像中心,河北 唐山
关键词: 磁共振Dixon技术2型糖尿病脂肪定量多器官Dixon MRI Type 2 Diabetes Mellitus Fat Quantification Multiple Organs
摘要: 2型糖尿病(Type 2 Diabetes Mellitus, T2DM)常伴有多器官脂肪沉积异常,准确评估这些脂肪沉积对于疾病的早期诊断、病情监测和治疗方案制定具有重要意义。磁共振Dixon技术作为一种先进的成像技术,能够实现水脂分离,为多器官脂肪定量提供了新的手段。本文综述了磁共振Dixon技术的基本原理、优势以及在T2DM患者肝脏、胰腺、肾脏和骨骼肌等多器官脂肪定量中的应用现状和研究进展,旨在讨论MR定量成像技术在T2DM评估中的优势及面临的一些挑战,为MR量化T2DM病理生理改变提供新的研究思路。
Abstract: Type 2 Diabetes Mellitus (T2DM) is often associated with abnormal fat deposition in multiple organs. Accurate assessment of these fat depositions is of great significance for early diagnosis, disease monitoring, and treatment planning. As an advanced imaging technique, MRI Dixon technique can separate water and fat, providing a new means for quantitative fat assessment in multiple organs. This review summarizes the basic principles and advantages of the MRI Dixon technique, as well as its current applications and research progress in the quantitative fat assessment of the liver, pancreas, kidneys, and skeletal muscles in T2DM patients. It aims to discuss the advantages of MR quantitative imaging techniques in T2DM assessment and some challenges faced, and to provide new research ideas for MR quantification of pathological and physiological changes in T2DM.
文章引用:李爰莹, 李晖. 磁共振Dixon技术在2型糖尿病患者多器官脂肪定量评估中的研究进展[J]. 临床医学进展, 2025, 15(3): 1553-1558. https://doi.org/10.12677/acm.2025.153776

1. 引言

糖尿病是一种常见的慢性代谢性疾病,通常在成年人中发病,几乎身体新陈代谢的各个方面都会发生改变[1]。近年来,糖尿病患病率持续上升,其中T2DM患者占糖尿病人群的90%以上[2]。其常伴糖脂代谢异常,表现为血糖和甘油三酯的升高。甘油三酯升高可导致肝脏、胰腺、肾脏和肌肉脂肪沉积。传统的超声、CT和MRI等影像检查可以用于评估腹部脏器的脂肪堆积。目前,常规超声和CT能够显示腹部器官内的脂肪成分,但无法进行准确的数量分析。而MRI可以使用多种扫描序列准确地、无创地定量分析器官脂肪的沉积程度,因此对于T2DM的早期评估具有显著的价值。

2. 磁共振脂肪测量技术

磁共振脂肪测量技术是一组用于测量人体内脂肪含量和分布的方法,传统的脂肪变性检定方法,如同反相位或脂肪抑制技术,容易受到多种干扰因素的干扰,因此准确性较差,不适用于精确的定量分析。近年来,广泛采用的方法主要包括化学位移成像和磁共振波谱成像(Magnetic Resonance Pectroscopy, MRS),这两种方法都依赖于水和脂肪质子信号之间的共振频率差异,以实现水和脂肪的有效分离。

2.1. 视觉评估分级法及同反相位脂肪测量技术

视觉评估分级法是一种半定量的脂肪测量方法。其根据T1WI或T2WI图像上肌肉高信号的程度及范围代表肌肉的脂肪浸润程度[3]-[5]。Goutallier分级就是根据此方法将肩袖脂肪浸润程度分为5级。但研究表明[4] [6],这种依赖于视觉评估的方法对于肌肉的轻度脂肪变性不太敏感,且易受主观因素影响。

同反相位脂肪测量技术通过利用脂肪与水在特定回波时间下的相位差异,实现脂肪与水信号的有效分离,具有无创、高对比度和定量准确等显著优势,广泛应用于多种医学影像评估中。然而,其在运动敏感性、信噪比依赖、化学位移误差以及设备和算法复杂性等方面仍存在一定的局限性。

2.2. T2-mapping

T2-mapping技术是近年来出现的新兴MRI定量技术,通过测量组织T2值来定量分析组织内部成分变化。王玉锦等学者[7]运用T2-mapping抑脂序列对正常成人多裂肌内脂肪浸润情况进行研究,认为T2-mapping非抑脂序列与T2-mapping抑脂序列所测得的T2值(非抑脂)及T2值(抑脂)相减得到的T2值(脂肪),能反映正常成人多裂肌内少量脂肪浸润。T2-mapping成像回波次数越多,对组织T2值的测量会越准确,但扫描时间会延长。

2.3. 磁共振波谱成像(MRS)

1H-MRS利用不同代谢产物中氢质子进动频率差异,采集他们的信号经过一系列处理转换成由一系列波峰组成的谱线图,MRS-PDFF由脂峰下面积占水峰与脂峰下总面积的比例表示,其测量范围为0%~100%。MRS常用采集序列包括激励回波采集模式和点分辨波谱,点分辨光谱比激励回波采集模式具有更高的信噪比,但激励回波采集模式受J耦合的影响较小,通常是首选[8]。既往MRS-PDFF被认为是脂肪定量的最佳影像学技术,但其也有一些限制:它是单一体素检测,采样误差可能由所选体素的位置以及脂肪不均匀分布引起,这些误差可能导致结果偏差,尤其是在多次测试时,很难确保体素放置在相同位置,从而可能对纵向研究结果产生不利影响[9]。同时,MRS通常需要较长的扫描时间才能采集足够的信号以进行准确的代谢分析。这不仅增加了患者的扫描不适感,还可能因运动伪影而影响数据质量。

2.4. 化学位移成像

Dixon技术1984年由Dixon首次提出,40年来经历两点Dixon法、三点Dixon法到IDEAL技术,是基于水和脂肪之间的化学位移不同原理来实现水脂分离图像的一种方法。现如今的IDEAL技术基本上克服了对磁场均匀性要求高、水脂难以完全分离、肝脏内铁沉积影响测量结果、像素内水和脂肪含量相近时无法正确分离水和脂肪等缺点,可以保证在任意比例水和脂肪混合的情况下都能实现水脂的精确分离,而且还能缩短扫描时间,此后,几家公司又进一步优化了IDEAL技术,如GE公司的IDEAL-IQ序列、飞利浦公司的mDixon-Quant序列[10]。Kim等人的研究表明[11],对于肝脏,Dixon技术获得的脂肪分数与MRS测定的脂肪含量相一致(t = 0.977, P < 0.05),且与1H-MRS相比,Dixon技术不仅能够准确量化脂肪含量,还能覆盖更广泛的空间范围。Engjom等[12]表明在胰腺脂肪浸润患者中,超声对于胰腺脂肪的识别率仅为33%,然而,Dixon几乎能识别所有患者的胰腺脂肪含量减低,Dixon在评估胰腺脂肪含量方面优于超声,相应的脂肪分数结果可作为胰腺分泌衰竭的标志。以往的研究主要通过DXA、CT或T1加权磁共振成像(T1WI-MRI)来测量骨骼肌脂肪含量,但由于磁场分辨率有限且不均匀,这些方法不够准确。Grimm等[13]通过T2*校正的6点法Dixon与MRS比较了两者测量肌肉体积与肌肉脂肪质子密度分数的稳定性,发现Dixon对肌肉体积和PDFF测量的短期误差分别为1.2%~1.5%、2.1%~1.6%,而MRS对PDFF测量的短期误差为9.0%~15.3%,认为Dixon技术在短期和长期评估肌肉和脂肪方面具有良好的可重复性。其他研究同样表明[14]-[16],多回波Dixon序列是一种可靠的脂肪定量方法。

3. DIXON技术在糖尿病患者肝、胰、肾和椎旁肌脂肪定量中的应用

3.1. DIXON技术在肝脏的应用

目前,肝脏脂肪定量技术在与糖尿病相关的疾病领域应用极为普遍。现有研究表明,IDEAL-IQ与mDixon-Quant两种磁共振序列在单次屏气条件下(约15~20秒)均可实现全肝质子密度脂肪分数(PDFF)图谱的快速重建[17]-[20],通过手动或半自动ROI勾画完成定量分析。其得到的PDFF与组织病理学及磁共振波谱(MRS)具有良好的一致性(r = 0.94) [21],且具备优异的可重复性,此外,相较于传统活检及MRS的局限性采样,Dixon技术通过全肝覆盖成像显著提升了纵向研究及治疗监测的可靠性。陶征征等[22]运用Dixon技术,针对健康志愿者、T2DM患者以及糖调节受损者这三组不同人群,分别开展了肝脏脂肪定量检测。研究发现,T2DM患者的肝脏脂肪分数处于最高水平,糖调节受损者次之,健康志愿者的FF最低。冯英连等[23]借助T2*校正的Dixon技术,对2型糖尿病患者的肝脏进行了脂肪定量分析。最终结果显示,2型糖尿病组肝脏脂肪分数(5.4 ± 4.3)%相较于正常组(2.9 ± 1.3)%更高(P < 0.05)。此外,受试者的BMI与肝脏脂肪分数存在相关性(P < 0.05)。总体而言,Dixon是一种颇为理想的肝脏脂肪定量检查手段,其快速肝脏脂肪定量方法展现出巨大的应用潜力。

3.2. DIXON技术在胰腺的应用

几十年来,胰腺组织中脂肪的存在已经被病理标本和成像方法所确认。研究结果表明[24],MRI-PDFF在评估胰腺脂肪方面是可行的,与组织病理学胰腺脂肪增多程度呈中度和显著的相关性。Dixon技术可以评估整个胰腺的脂肪含量,还可以评估胰腺不同区域之间的脂肪比例。Lu等人[25]发现T2DM患者胰腺中的脂肪含量高于健康人,表明胰腺脂肪可能与T2DM有关。An等人[19]基于IDEAL-IQ序列研究发现,胰腺FF是T2DM的独立危险因素,当截断值为10.10%时,其区分T2DM和非T2DM的受试者工作特征(ROC)曲线下面积(AUC)为0.787,这也提示胰腺在T2DM发病的病理生理中起到至关重要的作用。Matsumoto等人[26]的研究表明,胰腺的不同部位来自不同的胚胎胰腺芽,导致胰腺脂肪替代不均匀。T2DM患者胰头、胰体、胰尾的FF值与正常对照组不同,胰体尾部脂肪含量是T2DM的预测因素[27]

3.3. DIXON技术在肾脏的应用

研究发现[28]-[30],糖尿病肾病与肾脏异常脂质沉积密切相关,但是人体内肾脏异常脂质沉积的机制尚未完全清楚。非脂肪组织中过量异位沉积的脂质容易引起器官功能的损伤,这个过程被称为脂毒性。基于六回波Dixon的PDFF更能反映T2DM患者RELA基因的增加和肾功能损害的变化,可能更适用于T2DM患者肾脏脂毒性损害程度的判定、选择预防治疗措施及疗效监测。Wang等人[31]研究了95名受试者肾实质脂肪沉积与T2DM的关系,他们发现糖尿病患者的肾脏FF较健康人群肾脏FF显著增加(4.7% ± 1.1%, 4.3% ± 0.5%; P < 0.001)。而冯等人的研究表明,糖尿病正常白蛋白组和健康组之间的肾脏脂肪分数无显著差异。在T2DM患者中,肾脏FF的增加与慢性肾脏疾病(Chronic Kidney Disease, CKD)显著相关,肾脏FF值可能是一项可靠的、有价值的人体测量指标,可用于早期识别T2DM患者CKD的风险[32]

3.4. DIXON技术在骨骼肌的应用

胰岛素抵抗是2型糖尿病的特征,骨骼肌既是胰岛素作用的重要靶细胞,同时也是胰岛素抵抗的重要部位。肌肉细胞内脂肪(Intramyocellular Lipid, IMCL)的含量异常增高可导致胰岛素作用的敏感性降低[33]进而导致胰岛素抵抗,且IMCL含量与胰岛素抵抗程度呈明显正相关[34]。在晚期糖尿病患者群体中,有15.7%的患者会出现肌少症,其肌肉的脂肪浸润现象较肌肉萎缩减少现象出现得更早[35]。相关研究表明,较低的2型糖尿病(T2DM)患病率与高质量肌肉的数量存在关联[36]。既往研究表明[19],与非T2DM患者相比,T2DM患者的腹肌FF更高(28.85 > 25.32, P < 0.05)。余庆龄[37]等人运用mDixon技术分析了T2DM患者大腿肌肉和椎旁肌肉的脂肪含量与健康对照组之间的差异,研究发现T2DM组大腿各肌群FF值均高于对照组,腰方肌FF值显著高于健康对照组(t = 3.402, P < 0.001)。目前,关于身体成分与T2DM关系的研究主要集中在脂肪组织,对骨骼肌在预测或诊断T2DM中的独立作用了解有限,有待我们进一步研究挖掘。

4. 总结与展望

综上所述,磁共振Dixon技术凭借其高准确性、可重复性和广泛的解剖覆盖范围,为T2DM相关器官脂肪沉积的定量分析提供了有力工具。在肝脏、胰腺、肾脏和骨骼肌等器官的应用中,Dixon技术不仅能够精准测量脂肪含量,还能揭示脂肪沉积与疾病进展的相关性。然而,目前的研究多集中于单一器官,缺乏对多器官脂肪沉积综合影响的系统性研究。此外,Dixon技术在扫描时间、运动伪影敏感性及标准化测量方面仍存在挑战。未来,随着技术的进一步优化、多器官综合研究的深入以及标准化流程的建立,Dixon技术有望在T2DM的早期预测、精准治疗和全程管理中发挥更大作用,为临床实践提供更全面的影像学支持。

NOTES

*通讯作者。

参考文献

[1] NCD Risk Factor Collaboration (NCD-RisC) (2016) Worldwide Trends in Diabetes since 1980: A Pooled Analysis of 751 Population-Based Studies with 4.4 Million Participants. Lancet, 387, 1513-1530.
[2] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
[3] Kim, J.Y., Park, J.S. and Rhee, Y.G. (2017) Can Preoperative Magnetic Resonance Imaging Predict the Reparability of Massive Rotator Cuff Tears? The American Journal of Sports Medicine, 45, 1654-1663.
https://doi.org/10.1177/0363546517694160
[4] Kim, H.K., Laor, T., Horn, P.S., Racadio, J.M., Wong, B. and Dardzinski, B.J. (2010) T2 Mapping in Duchenne Muscular Dystrophy: Distribution of Disease Activity and Correlation with Clinical Assessments. Radiology, 255, 899-908.
https://doi.org/10.1148/radiol.10091547
[5] Teichtahl, A.J., Urquhart, D.M., Wang, Y., Wluka, A.E., Wijethilake, P., O'Sullivan, R., et al. (2015) Fat Infiltration of Paraspinal Muscles Is Associated with Low Back Pain, Disability, and Structural Abnormalities in Community-Based Adults. The Spine Journal, 15, 1593-1601.
https://doi.org/10.1016/j.spinee.2015.03.039
[6] Wokke, B.H., Bos, C., Reijnierse, M., van Rijswijk, C.S., Eggers, H., Webb, A., et al. (2013) Comparison of Dixon and T1‐weighted MR Methods to Assess the Degree of Fat Infiltration in Duchenne Muscular Dystrophy Patients. Journal of Magnetic Resonance Imaging, 38, 619-624.
https://doi.org/10.1002/jmri.23998
[7] 王玉锦, 周舒畅, 祝婷婷. T2-mapping和化学位移成像定量观察正常成人多裂肌内少量脂肪的价值[J]. 放射学实践, 2019, 34(2): 188-192.
[8] Starekova, J., Hernando, D., Pickhardt, P.J. and Reeder, S.B. (2021) Quantification of Liver Fat Content with CT and MRI: State of the Art. Radiology, 301, 250-262.
https://doi.org/10.1148/radiol.2021204288
[9] Younossi, Z.M., Loomba, R., Anstee, Q.M., Rinella, M.E., Bugianesi, E., Marchesini, G., et al. (2018) Diagnostic Modalities for Nonalcoholic Fatty Liver Disease, Nonalcoholic Steatohepatitis, and Associated Fibrosis. Hepatology, 68, 349-360.
https://doi.org/10.1002/hep.29721
[10] Zhan, C., Olsen, S., Zhang, H.C., Kannengiesser, S., Chandarana, H. and Shanbhogue, K.P. (2019) Detection of Hepatic Steatosis and Iron Content at 3 Tesla: Comparison of Two-Point Dixon, Quantitative Multi-Echo Dixon, and MR Spectroscopy. Abdominal Radiology, 44, 3040-3048.
https://doi.org/10.1007/s00261-019-02118-9
[11] Kim, K.Y., Song, J.S., Kannengiesser, S. and Han, Y.M. (2015) Hepatic Fat Quantification Using the Proton Density Fat Fraction (PDFF): Utility of Free-Drawn-PDFF with a Large Coverage Area. La radiologia Medica, 120, 1083-1093.
https://doi.org/10.1007/s11547-015-0545-x
[12] Engjom, T., Kavaliauskiene, G., Tjora, E., Erchinger, F., Wathle, G., Lærum, B.N., et al. (2018) Sonographic Pancreas Echogenicity in Cystic Fibrosis Compared to Exocrine Pancreatic Function and Pancreas Fat Content at Dixon-MRI. PLOS ONE, 13, e0201019.
https://doi.org/10.1371/journal.pone.0201019
[13] Grimm, A., Meyer, H., Nickel, M.D., Nittka, M., Raithel, E., Chaudry, O., et al. (2018) Repeatability of Dixon Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy for Quantitative Muscle Fat Assessments in the Thigh. Journal of Cachexia, Sarcopenia and Muscle, 9, 1093-1100.
https://doi.org/10.1002/jcsm.12343
[14] Agten, C.A., Rosskopf, A.B., Gerber, C. and Pfirrmann, C.W.A. (2015) Quantification of Early Fatty Infiltration of the Rotator Cuff Muscles: Comparison of Multi-Echo Dixon with Single-Voxel MR Spectroscopy. European Radiology, 26, 3719-3727.
https://doi.org/10.1007/s00330-015-4144-y
[15] Forbes, S.C., Walter, G.A., Rooney, W.D., Wang, D., DeVos, S., Pollaro, J., et al. (2013) Skeletal Muscles of Ambulant Children with Duchenne Muscular Dystrophy: Validation of Multicenter Study of Evaluation with MR Imaging and MR Spectroscopy. Radiology, 269, 198-207.
https://doi.org/10.1148/radiol.13121948
[16] Nozaki, T., Tasaki, A., Horiuchi, S., Ochi, J., Starkey, J., Hara, T., et al. (2016) Predicting Retear after Repair of Full-Thickness Rotator Cuff Tear: Two-Point Dixon MR Imaging Quantification of Fatty Muscle Degeneration—Initial Experience with 1-Year Follow-Up. Radiology, 280, 500-509.
https://doi.org/10.1148/radiol.2016151789
[17] Zheng, Y., Yang, S., Chen, X., Lv, J., Su, J. and Yu, S. (2022) The Correlation between Type 2 Diabetes and Fat Fraction in Liver and Pancreas: A Study Using MR Dixon Technique. Contrast Media & Molecular Imaging, 2022, Article ID: 7073647.
https://doi.org/10.1155/2022/7073647
[18] Cao, M., Wu, W., Chen, J., Fang, X., Ren, Y., Zhu, X., et al. (2023) Quantification of Ectopic Fat Storage in the Liver and Pancreas Using Six-Point Dixon MRI and Its Association with Insulin Sensitivity and β-Cell Function in Patients with Central Obesity. European Radiology, 33, 9213-9222.
https://doi.org/10.1007/s00330-023-09856-x
[19] An, Q., Zhang, Q., Wang, Y., Zhang, H., Liu, Y., Zhang, Z., et al. (2024) Association between Type 2 Diabetes Mellitus and Body Composition Based on MRI Fat Fraction Mapping. Frontiers in Public Health, 12, Article 1332346.
https://doi.org/10.3389/fpubh.2024.1332346
[20] Dong, Z., Luo, Y., Cai, H., et al. (2016) Noninvasive Fat Quantification of the Liver and Pancreas May Provide Potential Biomarkers of Impaired Glucose Tolerance and Type 2 Diabetes. Medicine, 95, e3858.
[21] Sarma, M.K., Saucedo, A., Darwin, C.H., Felker, E.R., Umachandran, K., Kohanghadosh, D., et al. (2020) Noninvasive Assessment of Abdominal Adipose Tissues and Quantification of Hepatic and Pancreatic Fat Fractions in Type 2 Diabetes Mellitus. Magnetic Resonance Imaging, 72, 95-102.
https://doi.org/10.1016/j.mri.2020.07.001
[22] 陶征征, 张玉玲, 周赛君, 等. 应用磁共振mDixon Quant技术定量评价不同糖耐量患者腹部脂肪沉积的研究[J]. 临床放射学杂志, 2024, 43(4): 639-645.
[23] 冯英连, 董冰清, 王远成, 等. 2型糖尿病患者器官脂肪沉积的磁共振定量研究[J]. 中国医学影像学杂志, 2017, 25(7): 509-512.
[24] Schawkat, K., Eshmuminov, D., Lenggenhager, D., Endhardt, K., Vrugt, B., Boss, A., et al. (2018) Preoperative Evaluation of Pancreatic Fibrosis and Lipomatosis: Correlation of Magnetic Resonance Findings with Histology Using Magnetization Transfer Imaging and Multigradient Echo Magnetic Resonance Imaging. Investigative Radiology, 53, 720-727.
https://doi.org/10.1097/rli.0000000000000496
[25] Lu, T., Wang, Y., Dou, T., Xue, B., Tan, Y. and Yang, J. (2019) Pancreatic Fat Content Is Associated with β-Cell Function and Insulin Resistance in Chinese Type 2 Diabetes Subjects. Endocrine Journal, 66, 265-270.
https://doi.org/10.1507/endocrj.ej18-0436
[26] Matsumoto, S., Mori, H., Miyake, H., Takaki, H., Maeda, T., Yamada, Y., et al. (1995) Uneven Fatty Replacement of the Pancreas: Evaluation with CT. Radiology, 194, 453-458.
https://doi.org/10.1148/radiology.194.2.7824726
[27] Wu, M., Fang, Q., Zou, S., Zhu, Y., Lu, W., Du, X., et al. (2021) Influencing Factors for Hepatic Fat Accumulation in Patients with Type 2 Diabetes Mellitus. World Journal of Clinical Cases, 9, 7717-7728.
https://doi.org/10.12998/wjcc.v9.i26.7717
[28] Lin, L., Dekkers, I.A., Tao, Q., Paiman, E.H.M., Bizino, M.B., Jazet, I.M., et al. (2023) MR Assessed Changes of Renal Sinus Fat in Response to Glucose Regulation in West European and South Asian Patients with Type 2 Diabetes. Journal of Magnetic Resonance Imaging, 60, 729-738.
https://doi.org/10.1002/jmri.29174
[29] Notohamiprodjo, M., Goepfert, M., Will, S., Lorbeer, R., Schick, F., Rathmann, W., et al. (2020) Renal and Renal Sinus Fat Volumes as Quantified by Magnetic Resonance Imaging in Subjects with Prediabetes, Diabetes, and Normal Glucose Tolerance. PLOS ONE, 15, e0216635.
https://doi.org/10.1371/journal.pone.0216635
[30] 华建军, 杨文婷, 黄华英, 等. 肾脏异位脂肪沉积与早期糖尿病肾脏疾病相关性的研究[J]. 中国糖尿病杂志, 2024, 32(5): 352-356.
[31] Wang, Y., Feng, Y., Lu, C. and Ju, S. (2018) Renal Fat Fraction and Diffusion Tensor Imaging in Patients with Early-Stage Diabetic Nephropathy. European Radiology, 28, 3326-3334.
https://doi.org/10.1007/s00330-017-5298-6
[32] Shen, Y., Xie, L., Chen, X., Mao, L., Qin, Y., Lan, R., et al. (2022) Renal Fat Fraction Is Significantly Associated with the Risk of Chronic Kidney Disease in Patients with Type 2 Diabetes. Frontiers in Endocrinology, 13, Article 995028.
https://doi.org/10.3389/fendo.2022.995028
[33] Brøns, C. and Grunnet, L.G. (2017) Mechanisms in Endocrinology: Skeletal Muscle Lipotoxicity in Insulin Resistance and Type 2 Diabetes: A Causal Mechanism or an Innocent Bystander? European Journal of Endocrinology, 176, R67-R78.
https://doi.org/10.1530/eje-16-0488
[34] Coen, P.M. and Goodpaster, B.H. (2012) Role of Intramyocelluar Lipids in Human Health. Trends in Endocrinology & Metabolism, 23, 391-398.
https://doi.org/10.1016/j.tem.2012.05.009
[35] Li, C., Yu, K., Shyh‐Chang, N., Jiang, Z., Liu, T., Ma, S., et al. (2022) Pathogenesis of Sarcopenia and the Relationship with Fat Mass: Descriptive Review. Journal of Cachexia, Sarcopenia and Muscle, 13, 781-794.
https://doi.org/10.1002/jcsm.12901
[36] Wang, N., Sun, Y., Zhang, H., Chen, C., Wang, Y., Zhang, J., et al. (2021) Total and Regional Fat‐to‐Muscle Mass Ratio Measured by Bioelectrical Impedance and Risk of Incident Type 2 Diabetes. Journal of Cachexia, Sarcopenia and Muscle, 12, 2154-2162.
https://doi.org/10.1002/jcsm.12822
[37] 余庆龄, 周贝贝, 张新茹, 等. 磁共振多回波DIXON技术对2型糖尿病患者骨骼肌脂肪含量的定量评估[J]. 磁共振成像, 2024, 15(1): 145-151.