[1]
|
NCD Risk Factor Collaboration (NCD-RisC) (2016) Worldwide Trends in Diabetes since 1980: A Pooled Analysis of 751 Population-Based Studies with 4.4 Million Participants. Lancet, 387, 1513-1530.
|
[2]
|
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
|
[3]
|
Kim, J.Y., Park, J.S. and Rhee, Y.G. (2017) Can Preoperative Magnetic Resonance Imaging Predict the Reparability of Massive Rotator Cuff Tears? The American Journal of Sports Medicine, 45, 1654-1663. https://doi.org/10.1177/0363546517694160
|
[4]
|
Kim, H.K., Laor, T., Horn, P.S., Racadio, J.M., Wong, B. and Dardzinski, B.J. (2010) T2 Mapping in Duchenne Muscular Dystrophy: Distribution of Disease Activity and Correlation with Clinical Assessments. Radiology, 255, 899-908. https://doi.org/10.1148/radiol.10091547
|
[5]
|
Teichtahl, A.J., Urquhart, D.M., Wang, Y., Wluka, A.E., Wijethilake, P., O'Sullivan, R., et al. (2015) Fat Infiltration of Paraspinal Muscles Is Associated with Low Back Pain, Disability, and Structural Abnormalities in Community-Based Adults. The Spine Journal, 15, 1593-1601. https://doi.org/10.1016/j.spinee.2015.03.039
|
[6]
|
Wokke, B.H., Bos, C., Reijnierse, M., van Rijswijk, C.S., Eggers, H., Webb, A., et al. (2013) Comparison of Dixon and T1‐weighted MR Methods to Assess the Degree of Fat Infiltration in Duchenne Muscular Dystrophy Patients. Journal of Magnetic Resonance Imaging, 38, 619-624. https://doi.org/10.1002/jmri.23998
|
[7]
|
王玉锦, 周舒畅, 祝婷婷. T2-mapping和化学位移成像定量观察正常成人多裂肌内少量脂肪的价值[J]. 放射学实践, 2019, 34(2): 188-192.
|
[8]
|
Starekova, J., Hernando, D., Pickhardt, P.J. and Reeder, S.B. (2021) Quantification of Liver Fat Content with CT and MRI: State of the Art. Radiology, 301, 250-262. https://doi.org/10.1148/radiol.2021204288
|
[9]
|
Younossi, Z.M., Loomba, R., Anstee, Q.M., Rinella, M.E., Bugianesi, E., Marchesini, G., et al. (2018) Diagnostic Modalities for Nonalcoholic Fatty Liver Disease, Nonalcoholic Steatohepatitis, and Associated Fibrosis. Hepatology, 68, 349-360. https://doi.org/10.1002/hep.29721
|
[10]
|
Zhan, C., Olsen, S., Zhang, H.C., Kannengiesser, S., Chandarana, H. and Shanbhogue, K.P. (2019) Detection of Hepatic Steatosis and Iron Content at 3 Tesla: Comparison of Two-Point Dixon, Quantitative Multi-Echo Dixon, and MR Spectroscopy. Abdominal Radiology, 44, 3040-3048. https://doi.org/10.1007/s00261-019-02118-9
|
[11]
|
Kim, K.Y., Song, J.S., Kannengiesser, S. and Han, Y.M. (2015) Hepatic Fat Quantification Using the Proton Density Fat Fraction (PDFF): Utility of Free-Drawn-PDFF with a Large Coverage Area. La radiologia Medica, 120, 1083-1093. https://doi.org/10.1007/s11547-015-0545-x
|
[12]
|
Engjom, T., Kavaliauskiene, G., Tjora, E., Erchinger, F., Wathle, G., Lærum, B.N., et al. (2018) Sonographic Pancreas Echogenicity in Cystic Fibrosis Compared to Exocrine Pancreatic Function and Pancreas Fat Content at Dixon-MRI. PLOS ONE, 13, e0201019. https://doi.org/10.1371/journal.pone.0201019
|
[13]
|
Grimm, A., Meyer, H., Nickel, M.D., Nittka, M., Raithel, E., Chaudry, O., et al. (2018) Repeatability of Dixon Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy for Quantitative Muscle Fat Assessments in the Thigh. Journal of Cachexia, Sarcopenia and Muscle, 9, 1093-1100. https://doi.org/10.1002/jcsm.12343
|
[14]
|
Agten, C.A., Rosskopf, A.B., Gerber, C. and Pfirrmann, C.W.A. (2015) Quantification of Early Fatty Infiltration of the Rotator Cuff Muscles: Comparison of Multi-Echo Dixon with Single-Voxel MR Spectroscopy. European Radiology, 26, 3719-3727. https://doi.org/10.1007/s00330-015-4144-y
|
[15]
|
Forbes, S.C., Walter, G.A., Rooney, W.D., Wang, D., DeVos, S., Pollaro, J., et al. (2013) Skeletal Muscles of Ambulant Children with Duchenne Muscular Dystrophy: Validation of Multicenter Study of Evaluation with MR Imaging and MR Spectroscopy. Radiology, 269, 198-207. https://doi.org/10.1148/radiol.13121948
|
[16]
|
Nozaki, T., Tasaki, A., Horiuchi, S., Ochi, J., Starkey, J., Hara, T., et al. (2016) Predicting Retear after Repair of Full-Thickness Rotator Cuff Tear: Two-Point Dixon MR Imaging Quantification of Fatty Muscle Degeneration—Initial Experience with 1-Year Follow-Up. Radiology, 280, 500-509. https://doi.org/10.1148/radiol.2016151789
|
[17]
|
Zheng, Y., Yang, S., Chen, X., Lv, J., Su, J. and Yu, S. (2022) The Correlation between Type 2 Diabetes and Fat Fraction in Liver and Pancreas: A Study Using MR Dixon Technique. Contrast Media & Molecular Imaging, 2022, Article ID: 7073647. https://doi.org/10.1155/2022/7073647
|
[18]
|
Cao, M., Wu, W., Chen, J., Fang, X., Ren, Y., Zhu, X., et al. (2023) Quantification of Ectopic Fat Storage in the Liver and Pancreas Using Six-Point Dixon MRI and Its Association with Insulin Sensitivity and β-Cell Function in Patients with Central Obesity. European Radiology, 33, 9213-9222. https://doi.org/10.1007/s00330-023-09856-x
|
[19]
|
An, Q., Zhang, Q., Wang, Y., Zhang, H., Liu, Y., Zhang, Z., et al. (2024) Association between Type 2 Diabetes Mellitus and Body Composition Based on MRI Fat Fraction Mapping. Frontiers in Public Health, 12, Article 1332346. https://doi.org/10.3389/fpubh.2024.1332346
|
[20]
|
Dong, Z., Luo, Y., Cai, H., et al. (2016) Noninvasive Fat Quantification of the Liver and Pancreas May Provide Potential Biomarkers of Impaired Glucose Tolerance and Type 2 Diabetes. Medicine, 95, e3858.
|
[21]
|
Sarma, M.K., Saucedo, A., Darwin, C.H., Felker, E.R., Umachandran, K., Kohanghadosh, D., et al. (2020) Noninvasive Assessment of Abdominal Adipose Tissues and Quantification of Hepatic and Pancreatic Fat Fractions in Type 2 Diabetes Mellitus. Magnetic Resonance Imaging, 72, 95-102. https://doi.org/10.1016/j.mri.2020.07.001
|
[22]
|
陶征征, 张玉玲, 周赛君, 等. 应用磁共振mDixon Quant技术定量评价不同糖耐量患者腹部脂肪沉积的研究[J]. 临床放射学杂志, 2024, 43(4): 639-645.
|
[23]
|
冯英连, 董冰清, 王远成, 等. 2型糖尿病患者器官脂肪沉积的磁共振定量研究[J]. 中国医学影像学杂志, 2017, 25(7): 509-512.
|
[24]
|
Schawkat, K., Eshmuminov, D., Lenggenhager, D., Endhardt, K., Vrugt, B., Boss, A., et al. (2018) Preoperative Evaluation of Pancreatic Fibrosis and Lipomatosis: Correlation of Magnetic Resonance Findings with Histology Using Magnetization Transfer Imaging and Multigradient Echo Magnetic Resonance Imaging. Investigative Radiology, 53, 720-727. https://doi.org/10.1097/rli.0000000000000496
|
[25]
|
Lu, T., Wang, Y., Dou, T., Xue, B., Tan, Y. and Yang, J. (2019) Pancreatic Fat Content Is Associated with β-Cell Function and Insulin Resistance in Chinese Type 2 Diabetes Subjects. Endocrine Journal, 66, 265-270. https://doi.org/10.1507/endocrj.ej18-0436
|
[26]
|
Matsumoto, S., Mori, H., Miyake, H., Takaki, H., Maeda, T., Yamada, Y., et al. (1995) Uneven Fatty Replacement of the Pancreas: Evaluation with CT. Radiology, 194, 453-458. https://doi.org/10.1148/radiology.194.2.7824726
|
[27]
|
Wu, M., Fang, Q., Zou, S., Zhu, Y., Lu, W., Du, X., et al. (2021) Influencing Factors for Hepatic Fat Accumulation in Patients with Type 2 Diabetes Mellitus. World Journal of Clinical Cases, 9, 7717-7728. https://doi.org/10.12998/wjcc.v9.i26.7717
|
[28]
|
Lin, L., Dekkers, I.A., Tao, Q., Paiman, E.H.M., Bizino, M.B., Jazet, I.M., et al. (2023) MR Assessed Changes of Renal Sinus Fat in Response to Glucose Regulation in West European and South Asian Patients with Type 2 Diabetes. Journal of Magnetic Resonance Imaging, 60, 729-738. https://doi.org/10.1002/jmri.29174
|
[29]
|
Notohamiprodjo, M., Goepfert, M., Will, S., Lorbeer, R., Schick, F., Rathmann, W., et al. (2020) Renal and Renal Sinus Fat Volumes as Quantified by Magnetic Resonance Imaging in Subjects with Prediabetes, Diabetes, and Normal Glucose Tolerance. PLOS ONE, 15, e0216635. https://doi.org/10.1371/journal.pone.0216635
|
[30]
|
华建军, 杨文婷, 黄华英, 等. 肾脏异位脂肪沉积与早期糖尿病肾脏疾病相关性的研究[J]. 中国糖尿病杂志, 2024, 32(5): 352-356.
|
[31]
|
Wang, Y., Feng, Y., Lu, C. and Ju, S. (2018) Renal Fat Fraction and Diffusion Tensor Imaging in Patients with Early-Stage Diabetic Nephropathy. European Radiology, 28, 3326-3334. https://doi.org/10.1007/s00330-017-5298-6
|
[32]
|
Shen, Y., Xie, L., Chen, X., Mao, L., Qin, Y., Lan, R., et al. (2022) Renal Fat Fraction Is Significantly Associated with the Risk of Chronic Kidney Disease in Patients with Type 2 Diabetes. Frontiers in Endocrinology, 13, Article 995028. https://doi.org/10.3389/fendo.2022.995028
|
[33]
|
Brøns, C. and Grunnet, L.G. (2017) Mechanisms in Endocrinology: Skeletal Muscle Lipotoxicity in Insulin Resistance and Type 2 Diabetes: A Causal Mechanism or an Innocent Bystander? European Journal of Endocrinology, 176, R67-R78. https://doi.org/10.1530/eje-16-0488
|
[34]
|
Coen, P.M. and Goodpaster, B.H. (2012) Role of Intramyocelluar Lipids in Human Health. Trends in Endocrinology & Metabolism, 23, 391-398. https://doi.org/10.1016/j.tem.2012.05.009
|
[35]
|
Li, C., Yu, K., Shyh‐Chang, N., Jiang, Z., Liu, T., Ma, S., et al. (2022) Pathogenesis of Sarcopenia and the Relationship with Fat Mass: Descriptive Review. Journal of Cachexia, Sarcopenia and Muscle, 13, 781-794. https://doi.org/10.1002/jcsm.12901
|
[36]
|
Wang, N., Sun, Y., Zhang, H., Chen, C., Wang, Y., Zhang, J., et al. (2021) Total and Regional Fat‐to‐Muscle Mass Ratio Measured by Bioelectrical Impedance and Risk of Incident Type 2 Diabetes. Journal of Cachexia, Sarcopenia and Muscle, 12, 2154-2162. https://doi.org/10.1002/jcsm.12822
|
[37]
|
余庆龄, 周贝贝, 张新茹, 等. 磁共振多回波DIXON技术对2型糖尿病患者骨骼肌脂肪含量的定量评估[J]. 磁共振成像, 2024, 15(1): 145-151.
|