分子机制到治疗靶点:RUNX2在肿瘤中的研究进展
From Molecular Mechanisms to Therapeutic Targets: Research Progress of RUNX2 in Cancer
DOI: 10.12677/acm.2025.153778, PDF, HTML, XML,    国家自然科学基金支持
作者: 熊 韫, 周幽心*:苏州大学附属第一医院神经外科,江苏 苏州
关键词: RUNX2癌症分子机制治疗靶点RUNX2 Cancer Molecular Mechanisms Therapeutic Targets
摘要: RUNX2是一种关键的转录因子,其在多种癌症的发生和发展中起着重要作用。由于RUNX2在多种癌症类型中对预后具有显著的影响,其作为癌症生物标志物的潜力引起了广泛关注。RUNX2通过与核心结合因子β (CBFβ)结合,增强对靶基因的调控,促进癌细胞的增殖、迁移和侵袭。RUNX2与PI3K/AKT信号通路互作,激活肿瘤进展的关键途径。抑制RUNX2的表达和功能已显示出抑制肿瘤生长和迁移、促进癌细胞凋亡的潜力,使其成为癌症治疗中的有意义靶标。近年研究还发现,RUNX2影响肿瘤微环境和化疗耐药性,针对RUNX2的小分子抑制剂和靶向疗法的开发,为提高治疗效果和减少耐药现象提供了新的策略。
Abstract: RUNX2 is a critical transcription factor that plays an important role in the initiation and progression of various cancers. Due to its significant impact on prognosis across multiple cancer types, RUNX2 has garnered widespread attention as a potential biomarker for cancer. By interacting with core-binding factor β (CBFβ), RUNX2 enhances the regulation of target genes, promoting cancer cell proliferation, migration, and invasion. RUNX2 also interacts with the PI3K/AKT signaling pathway, activating key pathways involved in tumor progression. Inhibiting RUNX2 expression and function has demonstrated potential in suppressing tumor growth and migration, as well as inducing apoptosis in cancer cells, making it a meaningful therapeutic target in cancer treatment. Recent studies have also revealed that RUNX2 influences the tumor microenvironment and chemotherapy resistance. The development of small molecule inhibitors and targeted therapies against RUNX2 offers novel strategies to improve therapeutic efficacy and reduce resistance.
文章引用:熊韫, 周幽心. 分子机制到治疗靶点:RUNX2在肿瘤中的研究进展[J]. 临床医学进展, 2025, 15(3): 1572-1579. https://doi.org/10.12677/acm.2025.153778

1. 引言

在哺乳动物中,RUNX (Runt-related transcription factor)代表一个由三个转录因子组成的家族,它们共享一个共同的DNA结合结构域——Runt结构域,与果蝇的Runt基因同源。RUNX家族成员(包括RUNX1、RUNX2和RUNX3)与核心结合因子β (CBF-β)结合形成异源二聚体,增强其与DNA结合的能力,并参与随后的转录调控[1] [2]。转录因子(transcription factors, TFs)约占人类基因组的8%,并在真核细胞的多条信号通路中发挥着关键的调控作用。研究表明,约20%的转录因子与至少一种人类表型相关[3]。转录因子的调控过程具有高度的动态性,单个转录因子可以在不同的细胞类型中调控多个基因的转录。转录因子通过与其他蛋白质如共激活因子、共抑制因子、染色质重塑因子等相互作用,形成复杂的调控网络,共同决定着基因的表达模式和细胞的命运。这使得转录因子在基因工程、疾病治疗、生物技术等领域具有广泛的应用前景。因此,转录因子的失调与多种疾病的发生机制密切相关,包括心血管疾病、炎症性疾病以及各种类型的癌症[4],这也进一步凸显了转录因子介导的基因调控机制在生理中的重要性[5]

RUNX2是一种众所周知的成骨细胞、软骨细胞分化[6] [7]和器官形态发生[8] [9]的主要调节因子。与许多其他对胚胎发生至关重要的因素一样,RUNX2在癌症中经常被异常地重新激活。新的研究发现它参与了癌症的进展和肿瘤的发生。许多研究揭示了RUNX2介导的下游轴在调节癌症转移、增殖、血管生成、癌症干细胞和耐药等方面的功能[10] [11]。先前的报道证实,RUNX2在大多数人类肿瘤中高表达,并且RUNX2的高表达与肿瘤患者的不良预后相关[1]。多篇报道表明,抑制RUNX2的表达和功能,能够有效抑制肿瘤生长、迁移、耐药,促进肿瘤细胞凋亡。因此,RUNX2可能是癌症治疗中的一个有意义的靶标[1] [5] [11] [12]

2. RUNX2的分子结构

RUNX2基因位于人类的6p21.1位点,编码多种亚型,共有12种转录变体。RUNX2包括其Runt结构域、转录激活域、抑制域、核定位信号和磷酸化位点。RUNX2蛋白的核心是一个高度保守的Runt结构域,这是一种约128个氨基酸的序列,负责DNA结合和异源二聚体形成[2]。这个结构域使RUNX2能够结合到特定的DNA序列上,调节目标基因的表达。RUNX2包含转录激活域与转录抑制域,这些域通过与其他蛋白如共激活因子或转录抑制因子相互作用,增强或抑制转录过程。RUNX2通过核定位信号,使其能够被运输到细胞核中,发挥转录调控功能。RUNX2的活性和稳定性可以通过磷酸化调控。磷酸化通常影响RUNX2与其他蛋白的相互作用,以及其对靶基因的调控能力。

3. RUNX2在人类癌症中的表达及作用

3.1. RUNX2在癌症中的表达

先前的研究证实,RUNX2在包括胶质瘤在内[13]的多种癌症中过度表达,如乳腺癌[14]、肺癌[15]、骨肉瘤[16]、前列腺癌[17]、肝癌[18]、胰腺癌[12]、白血病[19]等。且高表达的RUNX2与癌症患者的不良预后相关[20]

3.2. RUNX2的致癌途径

先前的报道证实,RUNX2能够通过多种途径来促进致癌作用。CBFβ (核心结合因子β,core-binding factor subunit beta)是一个关键的调节蛋白,是一个转录因子的非DNA结合亚基,主要功能是它与CBFα (如RUNX1、RUNX2和RUNX3等家族成员)结合形成核心结合因子,稳定与其结合的RUNX家族转录因子,并增强这些因子与DNA的亲和力。这种非DNA结合蛋白通过与RUNX1、RUNX2和RUNX3等蛋白形成复合体,发挥其功能,调节下游基因的表达。有研究表明,CBFβ与RUNX2复合体促进结直肠癌细胞的增殖、迁移、侵袭和抑制细胞凋亡[21]。白血病中,RUNX1或其辅因子CBFβ的敲除导致细胞死亡[22]。在癌症发生中,CBFβ的异常可能导致RUNX蛋白的稳定性和功能受损,从而影响细胞增殖与凋亡的调控,进一步促进肿瘤形成和发展[23]

PI3K/AKT信号通路是细胞内一条重要的信号传导途径,广泛参与细胞生长、存活、代谢和增殖等多种生物过程。而PI3K的突变或过表达可以导致AKT持续激活,促进肿瘤细胞的生存和抗凋亡能力。有研究表明,RUNX2和PI3K/AKT轴相互激活作为肿瘤进展的驱动力[24]。RUNX2基因过表达和PTEN基因单拷贝失活共同促进AKT信号通路过度激活以及前列腺肿瘤形成[25]。RUNX2通过促进钙粘蛋白转换、向I型胶原的侵袭和AKT的激活来加速前列腺癌的侵袭性[26]。核内HDAC4介导RUNX2去乙酰化,从而抑制胍苷乙酸n-甲基转移酶(GAMT)的表达。通过AMPK-AKT-Bad信号通路诱导PC细胞凋亡[12]

RUNX2可以通过负调控肿瘤抑制因子从而引起致癌途径的失调及癌症的发展。WWOX (WW domain containing oxidoreductase)被认为是一个肿瘤抑制基因,其突变、缺失或表达下调与多种类型的癌症相关。WWOX在细胞周期、凋亡、DNA修复和信号转导等过程中发挥重要作用,尤其在抑制细胞增殖和促进凋亡方面起着关键作用。有研究表明,骨肉瘤中WWOX肿瘤抑制因子的频繁衰减与致瘤性增加和RUNX2异常表达相关[27]。转化生长因子β (TGF-β)家族成员骨形态发生蛋白3b (BMP-3B/GDF10)被认为是肿瘤生长抑制剂和肺癌中沉默的基因,RUNX2在肺癌中沉默BMP-3B引起肿瘤进展[15]。RUNX2也与TEAD竞争YAP1关联,独立于RASSF1A和p73,联合敲低会加剧YAP1-TEAD水平,将YAP1从肿瘤抑制基因转变为癌基因[28]

MYC是一系列调节基因和原癌基因的家族,它在细胞周期进程、凋亡和细胞转化中扮演着关键角色,在各种类型的癌症中常见表达上调。有研究表明,RUNX2在体内发挥了一种新的肿瘤保护作用,RUNX2和MYC通过抑制细胞凋亡和生长停滞共同参与淋巴瘤的发展[29] [30]。特异性RUNX2超级增强子能够激活MYC,促进细胞浆细胞样树突状细胞肿瘤的发展[31]

3.3. RUNX2在细胞增殖中的作用

先前的研究已经证明RUNX2与细胞增殖密切相关[32]-[34]。有研究表明,降低RUNX2能通过抑制PI3K/Akt通路的激活从而抑制癌细胞的增殖[33]。RUNX2通过调控应激信号途径中的细胞周期来发挥作用,当RUNX2功能丧失时,细胞显示出S-G2-M周期蛋白和相关蛋白激酶活性的异常升高。S-G2-M阶段是细胞周期中DNA复制和细胞分裂发生的阶段,正常情况下这些阶段被严格调控。周期蛋白和蛋白激酶是推动细胞周期进程的重要蛋白,它们的活性升高意味着细胞可能会无视存在的生长抑制信号,继续进入分裂阶段。这种信号缺陷和周期蛋白活性的异常提高可能导致细胞免疫过于正常的生长控制机制,如老化和程序性细胞死亡,增加细胞癌变的风险。因此,RUNX2的缺失打破了细胞生长的正常调控,使细胞更容易不受控制地增殖,从而可能促进肿瘤的形成[35]

3.4. RUNX2在细胞迁移、侵袭中的作用

RUNX2在维持细胞增殖能力的同时,还能激活与细胞侵袭和迁移相关的信号通路。有研究表明,RUNX2上调基质金属蛋白酶(MMPs)等因子的表达,这些蛋白酶在细胞外基质降解中起关键作用,为细胞穿越基质屏障提供了条件[36]。RUNX2的表达支持多发性骨髓瘤MM的侵袭性表型,并与不良预后相关,作为MM进展的主要调节因子[37]。RUNX2是促进结直肠癌转移的关键转录因子,维持去乙酰化组蛋白H3K27状态,抑制RUNX2能抑制肿瘤细胞迁移、侵袭[38]。体内高侵袭性转移性乳腺癌细胞中,RUNX2的缺失限制了乳腺中肿瘤的形成,并在体外将癌细胞聚集恢复为更正常的腺泡蛋白样结构[14]。RUNX2介导人转移性乳腺癌细胞骨涎蛋白的表达[39]。前列腺癌细胞中PTEN的频繁缺失导致FOXO1失活,导致RUNX2的致癌活性不受抑制,从而导致肿瘤细胞的迁移和侵袭[17]。RUNX2的刺激可能与分泌机制有关,促进细胞间和细胞–基质相互作用,从而促进肿瘤转移[40]。RUNX2通过转录激活ITGBL1靶点,通过激活TGF-β信号通路促进乳腺癌骨转移[41]

3.5. RUNX2对EMT的调控

有研究表明,利用全基因组表达阵列进行转录组分析和计算机分析,RUNX2上调了许多具有突变癌症相关功能的基因。它们包括分泌因子(CSF2, SDF-1)、蛋白水解酶(MMP9, CST7)、细胞骨架调节剂(SDC2, Twinfilin, SH3PXD2A)、细胞内信号分子(DUSP1, SPHK1, RASD1)和转录因子(Sox9, SNAI2, SMAD3),这些因子在上皮到间质转化(EMT)、组织侵袭以及归巢和附着到骨骼中起作用。诱导RUNX2增强了肿瘤侵袭性。它还通过阻断细胞周期进程中的G1/S相变促进细胞静止[42]。RUNX2招募转移相关的1 (MTA1)/NuRD和Cullin 4B (CUL4B)-Ring E3连接酶(CRL4B)复合物,形成转录抑制复合物,催化组蛋白去乙酰化和泛素化,与乳腺癌EMT密切相关[11]。下调RUNX2的表达能通过调控半乳糖凝集素-3抑制肝癌细胞的EMT [43]。直肠癌肿瘤干细胞中RUNX2可能通过激活CD44介导EMT [44]。RUNX2的过表达可以在正常乳腺上皮细胞中诱导类上皮间质转化(EMT)的变化[45]

3.6. RUNX2对肿瘤微环境的调控

肿瘤微环境(tumor microenvironment, TME)是指肿瘤细胞周围的局部环境,包括各种细胞类型、细胞外基质(ECM)、细胞因子和化学信号等,这些组成部分共同影响肿瘤的发展、进展和对治疗的响应。有研究表明,RUNX2杂合缺失阻止了PTEN敲除引起的恶性上皮细胞外多层SMA阳性基质的形成,而癌细胞向周围基质生态位的侵袭是发生远处转移的必要步骤,这说明RUNX2异常激活在PTEN缺失诱导的IAS和TME重塑中起着关键作用[46]。成骨细胞中RUNX2缺乏通过改变新骨部位的骨微环境来促进骨髓瘤的进展[47]。沉默骨髓瘤细胞中的RUNX2抑制了骨桥蛋白mRNA和蛋白的表达,参与MM诱导的血管生成的病理生理[48]。肿瘤微环境的这些特征共同作用,形成一个复杂的生物学系统,不仅支持肿瘤的生长和发展,还使肿瘤对许多传统疗法表现出抵抗性。

3.7. RUNX2在细胞耐药性中的作用

RUNX2在肿瘤化疗耐药中被广泛研究。其中RUNX2依赖性DNA修复调控在化疗耐药中可能起着关键作用。RUNX2通过调节多种DNA修复途径对肿瘤细胞的化疗药物反应产生影响,包括基础切除修复(BER)、同源重组修复(HR)和非同源末端连接(NHEJ)。RUNX2的表达可以降低某些关键DNA修复基因的活性,使细胞对DNA损伤更敏感。通过RNA干扰技术沉默RUNX2表达的细胞,其对多种化疗药物(如阿霉素和顺铂)的敏感性有所增加。这表明通过靶向RUNX2可能改善某些癌症治疗的效果[49] [50]

有研究表明,RUNX2通过直接与TGF-β结合调控肿瘤干细胞的干细胞性来影响化疗耐药。肿瘤干细胞高表达RUNX2,且沉默RUNX2可以通过激活p53家族依赖性细胞死亡途径,减弱DNA修复,从而增强肿瘤对DNA损伤诱导的抗癌药物的疗效[49]。通过全基因组多组学方法发现,筛选药物抑制RUNX2通路,结合基于替莫唑胺的GBM标准治疗,会导致胶质瘤细胞生长明显受损[51]。RUNX2在胃癌耐药细胞和组织中显著表达,同时RUNX2负向调控p53凋亡通路,降低胃癌化疗效果[52]。RUNX2在骨肉瘤中的过表达与化疗反应差异有关[16]

4. RUNX2作为治疗靶点

RUNX2似乎是许多癌症类型的预后生物标志物。通过使用特定的小分子抑制剂来阻断RUNX2的活性,或是通过小分子RNA技术降低RUNX2的表达,有望增强化疗的效果,减少癌症治疗中的耐药现象。有研究表明,miR-135和miR-203靶向RUNX2抑制乳腺癌和转移性骨病的进展[53]。环状RNA-CGNL1通过NUDT4-HDAC4-RUNX2-GAMT介导的细胞凋亡调控胰腺癌进展[12]

CADD522是一种双氯苯胺类衍生化合物,它作为线粒体ATP合酶抑制剂,能够抑制RUNX2与DNA的结合,并显示出抗肿瘤活性。在对RUNX2的影响中,CADD522还能调节RUNX2靶基因的转录,例如降低基质金属蛋白酶-13、血管内皮生长因子和葡萄糖转运蛋白-1的表达,同时通过增加RUNX2的稳定性来提高RUNX2的表达量[54]。CADD522通过多种机制发挥其对RUNX2-DNA结合的抑制作用,包括与RUNX2竞争DNA结合位点、抑制葡萄糖摄取导致细胞周期阻滞、降低CBF-β的表达和减少RUNX2在S451位点的磷酸化。CADD522通过抑制线粒体ATP合成来减少ATP的产生,从而抑制癌细胞的能量代谢。此外,CADD522还能增加线粒体产生的活性氧种(ROS),进一步诱导癌细胞死亡[55]。这些发现表明CADD522具有作为抗肿瘤药物的潜力。

HDAC (组蛋白去乙酰化酶,histone deacetylases)是一类重要的酶,它们的主要功能是去除染色质上组蛋白尾部赖氨酸残基的乙酰基。这种去乙酰化作用导致染色质结构更为紧密,从而抑制基因的转录活性。HDAC抑制剂通过增加组蛋白的乙酰化水平,放松染色质结构,从而激活被抑制的基因表达,具有促进细胞死亡、抑制炎症和阻止肿瘤生长的潜力。有研究表明,抑制遗传调控因子HDAC的活性显著抑制RUNX2的表达[56]。组蛋白去乙酰化酶抑制剂(HDACi)抑制了RUNX2的肿瘤表达[57]。HDAC抑制剂PXD-101能抑制骨肉瘤细胞的增殖,诱导凋亡[58]

综上所述,RUNX2是一种在多种癌症中发挥关键作用的转录因子,它通过影响细胞的增殖、分化和生存途径,参与癌症的发生和发展。RUNX2的异常表达与肿瘤的侵袭性、转移以及化疗抗性密切相关[10]。RUNX2的深入研究将有助于揭示其在肿瘤发展中的分子机制,为开发针对RUNX2的靶向治疗策略提供新的思路和依据。此外,作为癌症治疗的潜在新靶点,RUNX2的抑制剂正在被积极开发,但仍需要更多的研究以合成更具有特异性、效力更高和药代动力学特性更优的新化合物。随着研究的深入,针对RUNX2的新型靶向药物有望为治疗癌症提供更有效的治疗方案。

基金项目

国家自然科学基金面上项目(NSFC 82172613)。

NOTES

*通讯作者。

参考文献

[1] Zhao, W., Yang, H., Chai, J. and Xing, L. (2021) RUNX2 as a Promising Therapeutic Target for Malignant Tumors. Cancer Management and Research, 13, 2539-2548.
https://doi.org/10.2147/cmar.s302173
[2] Kagoshima, H., Shigesada, K., Satake, M., Ito, Y., Miyoshi, H., Ohki, M., et al. (1993) The Runt Domain Identifies a New Family of Heterometric Transcriptional Regulators. Trends in Genetics, 9, 338-341.
https://doi.org/10.1016/0168-9525(93)90026-e
[3] Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K., Yin, Y., Albu, M., et al. (2018) The Human Transcription Factors. Cell, 172, 650-665.
https://doi.org/10.1016/j.cell.2018.01.029
[4] Papavassiliou, K.A. and Papavassiliou, A.G. (2016) Transcription Factor Drug Targets. Journal of Cellular Biochemistry, 117, 2693-2696.
https://doi.org/10.1002/jcb.25605
[5] Pan, S., Sun, S., Liu, B. and Hou, Y. (2022) Pan-Cancer Landscape of the RUNX Protein Family Reveals Their Potential as Carcinogenic Biomarkers and the Mechanisms Underlying Their Action. Journal of Translational Internal Medicine, 10, 156-174.
https://doi.org/10.2478/jtim-2022-0013
[6] Komori, T. (2019) Regulation of Proliferation, Differentiation and Functions of Osteoblasts by RUNX2. International Journal of Molecular Sciences, 20, Article 1694.
https://doi.org/10.3390/ijms20071694
[7] Ito, Y., Bae, S. and Chuang, L.S.H. (2015) The RUNX Family: Developmental Regulators in Cancer. Nature Reviews Cancer, 15, 81-95.
https://doi.org/10.1038/nrc3877
[8] Endo, T. and Kobayashi, T. (2010) Runx2 Deficiency in Mice Causes Decreased Thyroglobulin Expression and Hypothyroidism. Molecular Endocrinology, 24, 1267-1273.
https://doi.org/10.1210/me.2010-0056
[9] Ferrari, N., McDonald, L., Morris, J.S., Cameron, E.R. and Blyth, K. (2013) RUNX2 in Mammary Gland Development and Breast Cancer. Journal of Cellular Physiology, 228, 1137-1142.
https://doi.org/10.1002/jcp.24285
[10] Lin, T. (2023) RUNX2 and Cancer. International Journal of Molecular Sciences, 24, Article 7001.
https://doi.org/10.3390/ijms24087001
[11] Yin, X., Teng, X., Ma, T., Yang, T., Zhang, J., Huo, M., et al. (2022) RUNX2 Recruits the NuRD(MTA1)/CRL4B Complex to Promote Breast Cancer Progression and Bone Metastasis. Cell Death & Differentiation, 29, 2203-2217.
https://doi.org/10.1038/s41418-022-01010-2
[12] Yuan, H., Chen, C., Li, H., Qu, G., Chen, L., Liu, Y., et al. (2024) Role of a Novel CircRNA-CGNL1 in Regulating Pancreatic Cancer Progression via NUDT4-HDAC4-RUNX2-GAMT-Mediated Apoptosis. Molecular Cancer, 23, Article No. 27.
https://doi.org/10.1186/s12943-023-01923-7
[13] Yamada, D., Fujikawa, K., Kawabe, K., Furuta, T., Nakada, M. and Takarada, T. (2018) RUNX2 Promotes Malignant Progression in Glioma. Neurochemical Research, 43, 2047-2054.
https://doi.org/10.1007/s11064-018-2626-4
[14] Pratap, J., Imbalzano, K.M., Underwood, J.M., Cohet, N., Gokul, K., Akech, J., et al. (2009) Ectopic RUNX2 Expression in Mammary Epithelial Cells Disrupts Formation of Normal Acini Structure: Implications for Breast Cancer Progression. Cancer Research, 69, 6807-6814.
https://doi.org/10.1158/0008-5472.can-09-1471
[15] Tandon, M., Gokul, K., Ali, S.A., Chen, Z., Lian, J., Stein, G.S., et al. (2012) RUNX2 Mediates Epigenetic Silencing of the Bone Morphogenetic Protein-3B (BMP-3B/GDF10) in Lung Cancer Cells. Molecular Cancer, 11, Article No. 27.
https://doi.org/10.1186/1476-4598-11-27
[16] Sadikovic, B., Thorner, P., Chilton-MacNeill, S., Martin, J.W., Cervigne, N.K., Squire, J., et al. (2010) Expression Analysis of Genes Associated with Human Osteosarcoma Tumors Shows Correlation of RUNX2 Overexpression with Poor Response to Chemotherapy. BMC Cancer, 10, Article No. 202.
https://doi.org/10.1186/1471-2407-10-202
[17] Zhang, H., Pan, Y., Zheng, L., Choe, C., Lindgren, B., Jensen, E.D., et al. (2011) FOXO1 Inhibits RUNX2 Transcriptional Activity and Prostate Cancer Cell Migration and Invasion. Cancer Research, 71, 3257-3267.
https://doi.org/10.1158/0008-5472.can-10-2603
[18] Krajnović, M., Kožik, B., Božović, A. and Jovanović-Ćupić, S. (2023) Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells, 12, Article 2303.
https://doi.org/10.3390/cells12182303
[19] Matthijssens, F., Sharma, N.D., Nysus, M., Nickl, C.K., Kang, H., Perez, D.R., et al. (2021) RUNX2 Regulates Leukemic Cell Metabolism and Chemotaxis in High-Risk T Cell Acute Lymphoblastic Leukemia. Journal of Clinical Investigation, 131, e141566.
https://doi.org/10.1172/jci141566
[20] Morita, K., Suzuki, K., Maeda, S., Matsuo, A., Mitsuda, Y., Tokushige, C., et al. (2017) Genetic Regulation of the RUNX Transcription Factor Family Has Antitumor Effects. Journal of Clinical Investigation, 127, 2815-2828.
https://doi.org/10.1172/jci91788
[21] Wang, C., Shi, Z., Zhang, Y., Li, M., Zhu, J., Huang, Z., et al. (2021) CBFβ Promotes Colorectal Cancer Progression through Transcriptionally Activating OPN, FAM129A, and UPP1 in a RUNX2-Dependent Manner. Cell Death & Differentiation, 28, 3176-3192.
https://doi.org/10.1038/s41418-021-00810-2
[22] Wray, J.P., Deltcheva, E.M., Boiers, C., Richardson, S.Е., Chhetri, J.B., Brown, J., et al. (2022) Regulome Analysis in B-Acute Lymphoblastic Leukemia Exposes Core Binding Factor Addiction as a Therapeutic Vulnerability. Nature Communications, 13, Article No. 7124.
https://doi.org/10.1038/s41467-022-34653-3
[23] Ashe, H., Krakowiak, P., Hasterok, S., Sleppy, R., Roller, D.G. and Gioeli, D. (2021) Role of the Runt‐Related Transcription Factor (RUNX) Family in Prostate Cancer. The FEBS Journal, 288, 6112-6126.
https://doi.org/10.1111/febs.15804
[24] Cohen-Solal, K.A., Boregowda, R.K. and Lasfar, A. (2015) RUNX2 and the PI3K/AKT Axis Reciprocal Activation as a Driving Force for Tumor Progression. Molecular Cancer, 14, Article No. 137.
https://doi.org/10.1186/s12943-015-0404-3
[25] Bai, Y., Yang, Y., Yan, Y., Zhong, J., Blee, A.M., Pan, Y., et al. (2019) RUNX2 Overexpression and PTEN Haploinsufficiency Cooperate to Promote CXCR7 Expression and Cellular Trafficking, AKT Hyperactivation and Prostate Tumorigenesis. Theranostics, 9, 3459-3475.
https://doi.org/10.7150/thno.33292
[26] Chua, C., Chiu, Y., Yuen, H., Chan, K., Man, K., Wang, X., et al. (2009) Suppression of Androgen-Independent Prostate Cancer Cell Aggressiveness by FTY720: Validating RUNX2 as a Potential Antimetastatic Drug Screening Platform. Clinical Cancer Research, 15, 4322-4335.
https://doi.org/10.1158/1078-0432.ccr-08-3157
[27] Kurek, K.C., Del Mare, S., Salah, Z., Abdeen, S., Sadiq, H., Lee, S., et al. (2010) Frequent Attenuation of the WWOX Tumor Suppressor in Osteosarcoma Is Associated with Increased Tumorigenicity and Aberrant RUNX2 Expression. Cancer Research, 70, 5577-5586.
https://doi.org/10.1158/0008-5472.can-09-4602
[28] van der Weyden, L., Papaspyropoulos, A., Poulogiannis, G., Rust, A.G., Rashid, M., Adams, D.J., et al. (2012) Loss of Rassf1a Synergizes with Deregulated RUNX2 Signaling in Tumorigenesis. Cancer Research, 72, 3817-3827.
https://doi.org/10.1158/0008-5472.can-11-3343
[29] Blyth, K., Vaillant, F., Hanlon, L., Mackay, N., Bell, M., Jenkins, A., et al. (2006) Runx2 and MYC Collaborate in Lymphoma Development by Suppressing Apoptotic and Growth Arrest Pathways in Vivo. Cancer Research, 66, 2195-2201.
https://doi.org/10.1158/0008-5472.can-05-3558
[30] Stewart, M., Mackay, N., Hanlon, L., Blyth, K., Scobie, L., Cameron, E., et al. (2007) Insertional Mutagenesis Reveals Progression Genes and Checkpoints in MYC/Runx2 Lymphomas. Cancer Research, 67, 5126-5133.
https://doi.org/10.1158/0008-5472.can-07-0433
[31] Kubota, S., Tokunaga, K., Umezu, T., Yokomizo-Nakano, T., Sun, Y., Oshima, M., et al. (2019) Lineage-Specific RUNX2 Super-Enhancer Activates MYC and Promotes the Development of Blastic Plasmacytoid Dendritic Cell Neoplasm. Nature Communications, 10, Article No. 1653.
https://doi.org/10.1038/s41467-019-09710-z
[32] Cruz-De la Rosa, M.I., Jiménez-Wences, H., Alarcón-Millán, J., Romero-López, M.J., Castañón-Sánchez, C.A., Salmerón-Bárcenas, E.G., et al. (2022) miR-218-5p/RUNX2 Axis Positively Regulates Proliferation and Is Associated with Poor Prognosis in Cervical Cancer. International Journal of Molecular Sciences, 23, Article 6993.
https://doi.org/10.3390/ijms23136993
[33] Wang, P., Zhang, J., Zhang, H. and Zhang, F. (2022) The Role of MACF1 on Acute Myeloid Leukemia Cell Proliferation Is Involved in RUNX2-Targeted PI3K/Akt Signaling. Molecular and Cellular Biochemistry, 478, 433-441.
https://doi.org/10.1007/s11010-022-04517-x
[34] Chen, Y., Zhang, D., Cao, Q. and He, C. (2022) LncRNA HCG18 Promotes Osteosarcoma Cells Proliferation, Migration, and Invasion in by Regulating miR-34a/RUNX2 Pathway. Biochemical Genetics, 61, 1035-1049.
https://doi.org/10.1007/s10528-022-10294-5
[35] Kilbey, A., Blyth, K., Wotton, S., Terry, A., Jenkins, A., Bell, M., et al. (2007) RUNX2 Disruption Promotes Immortalization and Confers Resistance to Oncogene-Induced Senescence in Primary Murine Fibroblasts. Cancer Research, 67, 11263-11271.
https://doi.org/10.1158/0008-5472.can-07-3016
[36] Mak, I.W.Y., Cowan, R.W., Popovic, S., Colterjohn, N., Singh, G. and Ghert, M. (2009) Upregulation of MMP-13 via RUNX2 in the Stromal Cell of Giant Cell Tumor of Bone. Bone, 45, 377-386.
https://doi.org/10.1016/j.bone.2009.04.253
[37] Trotter, T.N., Li, M., Pan, Q., Peker, D., Rowan, P.D., Li, J., et al. (2015) Myeloma Cell-Derived RUNX2 Promotes Myeloma Progression in Bone. Blood, 125, 3598-3608.
https://doi.org/10.1182/blood-2014-12-613968
[38] Wang, X., Li, L., Wu, Y., Zhang, R., Zhang, M., Liao, D., et al. (2016) CBX4 Suppresses Metastasis via Recruitment of HDAC3 to the Runx2 Promoter in Colorectal Carcinoma. Cancer Research, 76, 7277-7289.
https://doi.org/10.1158/0008-5472.can-16-2100
[39] Barnes, G.L. Javed, A., Waller, S.M. Kamal, M.H. Hebert, K.E., Hassan, M.Q., et al. (2003) Osteoblast-Related Transcription Factors RUNX2 (Cbfa1/AML3) and MSX2 Mediate the Expression of Bone Sialoprotein in Human Metastatic Breast Cancer Cells. Cancer Research, 63, 2631-2637.
[40] Little, G.H., Noushmehr, H., Baniwal, S.K., Berman, B.P., Coetzee, G.A. and Frenkel, B. (2011) Genome-Wide RUNX2 Occupancy in Prostate Cancer Cells Suggests a Role in Regulating Secretion. Nucleic Acids Research, 40, 3538-3547.
https://doi.org/10.1093/nar/gkr1219
[41] Li, X., Du, X., Li, D., Kong, P., Sun, Y., Liu, P., et al. (2015) ITGBL1 Is a RUNX2 Transcriptional Target and Promotes Breast Cancer Bone Metastasis by Activating the TGFβ Signaling Pathway. Cancer Research, 75, 3302-3313.
https://doi.org/10.1158/0008-5472.can-15-0240
[42] Baniwal, S.K., Khalid, O., Gabet, Y., Shah, R.R., Purcell, D.J., Mav, D., et al. (2010) RUNX2 Transcriptome of Prostate Cancer Cells: Insights into Invasiveness and Bone Metastasis. Molecular Cancer, 9, Article No. 258.
https://doi.org/10.1186/1476-4598-9-258
[43] Cao, Z., Sun, B., Zhao, X., Zhang, Y., Gu, Q., Liang, X., et al. (2017) The Expression and Functional Significance of RUNX2 in Hepatocellular Carcinoma: Its Role in Vasculogenic Mimicry and Epithelial-Mesenchymal Transition. International Journal of Molecular Sciences, 18, Article 500.
https://doi.org/10.3390/ijms18030500
[44] Yan, X., Han, D., Chen, Z., Han, C., Dong, W., Han, L., et al. (2020) RUNX2 Interacts with BRG1 to Target CD44 for Promoting Invasion and Migration of Colorectal Cancer Cells. Cancer Cell International, 20, Article No. 505.
https://doi.org/10.1186/s12935-020-01544-w
[45] Owens, T.W., Rogers, R.L., Best, S.A., Ledger, A., Mooney, A., Ferguson, A., et al. (2014) RUNX2 Is a Novel Regulator of Mammary Epithelial Cell Fate in Development and Breast Cancer. Cancer Research, 74, 5277-5286.
https://doi.org/10.1158/0008-5472.can-14-0053
[46] Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., et al. (2018) PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 24, 834-846.
https://doi.org/10.1158/1078-0432.ccr-17-2006
[47] Xu, X., Zhang, C., Trotter, T.N., Gowda, P.S., Lu, Y., Ponnazhagan, S., et al. (2020) RUNX2 Deficiency in Osteoblasts Promotes Myeloma Progression by Altering the Bone Microenvironment at New Bone Sites. Cancer Research, 80, 1036-1048.
https://doi.org/10.1158/0008-5472.can-19-0284
[48] Colla, S., Morandi, F., Lazzaretti, M., Rizzato, R., Lunghi, P., Bonomini, S., et al. (2005) Human Myeloma Cells Express the Bone Regulating Gene RUNX2/CBFA1 and Produce Osteopontin That Is Involved in Angiogenesis in Multiple Myeloma Patients. Leukemia, 19, 2166-2176.
https://doi.org/10.1038/sj.leu.2403976
[49] Ozaki, T., Nakamura, M. and Shimozato, O. (2015) Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between P53 Family and RUNX2. Biomolecules, 5, 2854-2876.
https://doi.org/10.3390/biom5042854
[50] Krishnan, V. (2023) The RUNX Family of Proteins, DNA Repair, and Cancer. Cells, 12, Article 1106.
https://doi.org/10.3390/cells12081106
[51] Santamarina‐Ojeda, P., Tejedor, J.R., Pérez, R.F., López, V., Roberti, A., Mangas, C., et al. (2023) Multi‐Omic Integration of DNA Methylation and Gene Expression Data Reveals Molecular Vulnerabilities in Glioblastoma. Molecular Oncology, 17, 1726-1743.
https://doi.org/10.1002/1878-0261.13479
[52] Huang, Y., Liang, L., Zhao, Y., Yao, B., Zhang, R., Song, L., et al. (2023) RUNX2 Reverses P53-Induced Chemotherapy Resistance in Gastric Cancer. Pharmacogenomics and Personalized Medicine, 16, 253-261.
https://doi.org/10.2147/pgpm.s394393
[53] Taipaleenmäki, H., Browne, G., Akech, J., Zustin, J., van Wijnen, A.J., Stein, J.L., et al. (2015) Targeting of RUNX2 by miR-135 and miR-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease. Cancer Research, 75, 1433-1444.
https://doi.org/10.1158/0008-5472.can-14-1026
[54] Kim, M.S., Gernapudi, R., Choi, E.Y., Lapidus, R.G. and Passaniti, A. (2017) Characterization of CADD522, a Small Molecule That Inhibits RUNX2-DNA Binding and Exhibits Antitumor Activity. Oncotarget, 8, 70916-70940.
https://doi.org/10.18632/oncotarget.20200
[55] Kim, M.S., Gernapudi, R., Cedeño, Y.C., Polster, B.M., Martinez, R., Shapiro, P., et al. (2020) Targeting Breast Cancer Metabolism with a Novel Inhibitor of Mitochondrial ATP Synthesis. Oncotarget, 11, 3863-3885.
https://doi.org/10.18632/oncotarget.27743
[56] Manzotti, G., Torricelli, F., Donati, B., Sancisi, V., Gugnoni, M. and Ciarrocchi, A. (2019) HDACs Control RUNX2 Expression in Cancer Cells through Redundant and Cell Context-Dependent Mechanisms. Journal of Experimental & Clinical Cancer Research, 38, Article No. 346.
https://doi.org/10.1186/s13046-019-1350-5
[57] Sancisi, V., Gandolfi, G., Ambrosetti, D.C. and Ciarrocchi, A. (2015) Histone Deacetylase Inhibitors Repress Tumoral Expression of the Proinvasive Factor RUNX2. Cancer Research, 75, 1868-1882.
https://doi.org/10.1158/0008-5472.can-14-2087
[58] Rossi, M., De Martino, V., Di Giuseppe, L., Battafarano, G., Di Gregorio, J., Terreri, S., et al. (2023) Anti-Proliferative, Pro-Apototic and Anti-Migratory Properties of HDAC Inhibitor PXD-101 on Osteosarcoma Cell Lines. Archives of Biochemistry and Biophysics, 734, Article ID: 109489.
https://doi.org/10.1016/j.abb.2022.109489