[1]
|
Zhao, W., Yang, H., Chai, J. and Xing, L. (2021) RUNX2 as a Promising Therapeutic Target for Malignant Tumors. Cancer Management and Research, 13, 2539-2548. https://doi.org/10.2147/cmar.s302173
|
[2]
|
Kagoshima, H., Shigesada, K., Satake, M., Ito, Y., Miyoshi, H., Ohki, M., et al. (1993) The Runt Domain Identifies a New Family of Heterometric Transcriptional Regulators. Trends in Genetics, 9, 338-341. https://doi.org/10.1016/0168-9525(93)90026-e
|
[3]
|
Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K., Yin, Y., Albu, M., et al. (2018) The Human Transcription Factors. Cell, 172, 650-665. https://doi.org/10.1016/j.cell.2018.01.029
|
[4]
|
Papavassiliou, K.A. and Papavassiliou, A.G. (2016) Transcription Factor Drug Targets. Journal of Cellular Biochemistry, 117, 2693-2696. https://doi.org/10.1002/jcb.25605
|
[5]
|
Pan, S., Sun, S., Liu, B. and Hou, Y. (2022) Pan-Cancer Landscape of the RUNX Protein Family Reveals Their Potential as Carcinogenic Biomarkers and the Mechanisms Underlying Their Action. Journal of Translational Internal Medicine, 10, 156-174. https://doi.org/10.2478/jtim-2022-0013
|
[6]
|
Komori, T. (2019) Regulation of Proliferation, Differentiation and Functions of Osteoblasts by RUNX2. International Journal of Molecular Sciences, 20, Article 1694. https://doi.org/10.3390/ijms20071694
|
[7]
|
Ito, Y., Bae, S. and Chuang, L.S.H. (2015) The RUNX Family: Developmental Regulators in Cancer. Nature Reviews Cancer, 15, 81-95. https://doi.org/10.1038/nrc3877
|
[8]
|
Endo, T. and Kobayashi, T. (2010) Runx2 Deficiency in Mice Causes Decreased Thyroglobulin Expression and Hypothyroidism. Molecular Endocrinology, 24, 1267-1273. https://doi.org/10.1210/me.2010-0056
|
[9]
|
Ferrari, N., McDonald, L., Morris, J.S., Cameron, E.R. and Blyth, K. (2013) RUNX2 in Mammary Gland Development and Breast Cancer. Journal of Cellular Physiology, 228, 1137-1142. https://doi.org/10.1002/jcp.24285
|
[10]
|
Lin, T. (2023) RUNX2 and Cancer. International Journal of Molecular Sciences, 24, Article 7001. https://doi.org/10.3390/ijms24087001
|
[11]
|
Yin, X., Teng, X., Ma, T., Yang, T., Zhang, J., Huo, M., et al. (2022) RUNX2 Recruits the NuRD(MTA1)/CRL4B Complex to Promote Breast Cancer Progression and Bone Metastasis. Cell Death & Differentiation, 29, 2203-2217. https://doi.org/10.1038/s41418-022-01010-2
|
[12]
|
Yuan, H., Chen, C., Li, H., Qu, G., Chen, L., Liu, Y., et al. (2024) Role of a Novel CircRNA-CGNL1 in Regulating Pancreatic Cancer Progression via NUDT4-HDAC4-RUNX2-GAMT-Mediated Apoptosis. Molecular Cancer, 23, Article No. 27. https://doi.org/10.1186/s12943-023-01923-7
|
[13]
|
Yamada, D., Fujikawa, K., Kawabe, K., Furuta, T., Nakada, M. and Takarada, T. (2018) RUNX2 Promotes Malignant Progression in Glioma. Neurochemical Research, 43, 2047-2054. https://doi.org/10.1007/s11064-018-2626-4
|
[14]
|
Pratap, J., Imbalzano, K.M., Underwood, J.M., Cohet, N., Gokul, K., Akech, J., et al. (2009) Ectopic RUNX2 Expression in Mammary Epithelial Cells Disrupts Formation of Normal Acini Structure: Implications for Breast Cancer Progression. Cancer Research, 69, 6807-6814. https://doi.org/10.1158/0008-5472.can-09-1471
|
[15]
|
Tandon, M., Gokul, K., Ali, S.A., Chen, Z., Lian, J., Stein, G.S., et al. (2012) RUNX2 Mediates Epigenetic Silencing of the Bone Morphogenetic Protein-3B (BMP-3B/GDF10) in Lung Cancer Cells. Molecular Cancer, 11, Article No. 27. https://doi.org/10.1186/1476-4598-11-27
|
[16]
|
Sadikovic, B., Thorner, P., Chilton-MacNeill, S., Martin, J.W., Cervigne, N.K., Squire, J., et al. (2010) Expression Analysis of Genes Associated with Human Osteosarcoma Tumors Shows Correlation of RUNX2 Overexpression with Poor Response to Chemotherapy. BMC Cancer, 10, Article No. 202. https://doi.org/10.1186/1471-2407-10-202
|
[17]
|
Zhang, H., Pan, Y., Zheng, L., Choe, C., Lindgren, B., Jensen, E.D., et al. (2011) FOXO1 Inhibits RUNX2 Transcriptional Activity and Prostate Cancer Cell Migration and Invasion. Cancer Research, 71, 3257-3267. https://doi.org/10.1158/0008-5472.can-10-2603
|
[18]
|
Krajnović, M., Kožik, B., Božović, A. and Jovanović-Ćupić, S. (2023) Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells, 12, Article 2303. https://doi.org/10.3390/cells12182303
|
[19]
|
Matthijssens, F., Sharma, N.D., Nysus, M., Nickl, C.K., Kang, H., Perez, D.R., et al. (2021) RUNX2 Regulates Leukemic Cell Metabolism and Chemotaxis in High-Risk T Cell Acute Lymphoblastic Leukemia. Journal of Clinical Investigation, 131, e141566. https://doi.org/10.1172/jci141566
|
[20]
|
Morita, K., Suzuki, K., Maeda, S., Matsuo, A., Mitsuda, Y., Tokushige, C., et al. (2017) Genetic Regulation of the RUNX Transcription Factor Family Has Antitumor Effects. Journal of Clinical Investigation, 127, 2815-2828. https://doi.org/10.1172/jci91788
|
[21]
|
Wang, C., Shi, Z., Zhang, Y., Li, M., Zhu, J., Huang, Z., et al. (2021) CBFβ Promotes Colorectal Cancer Progression through Transcriptionally Activating OPN, FAM129A, and UPP1 in a RUNX2-Dependent Manner. Cell Death & Differentiation, 28, 3176-3192. https://doi.org/10.1038/s41418-021-00810-2
|
[22]
|
Wray, J.P., Deltcheva, E.M., Boiers, C., Richardson, S.Е., Chhetri, J.B., Brown, J., et al. (2022) Regulome Analysis in B-Acute Lymphoblastic Leukemia Exposes Core Binding Factor Addiction as a Therapeutic Vulnerability. Nature Communications, 13, Article No. 7124. https://doi.org/10.1038/s41467-022-34653-3
|
[23]
|
Ashe, H., Krakowiak, P., Hasterok, S., Sleppy, R., Roller, D.G. and Gioeli, D. (2021) Role of the Runt‐Related Transcription Factor (RUNX) Family in Prostate Cancer. The FEBS Journal, 288, 6112-6126. https://doi.org/10.1111/febs.15804
|
[24]
|
Cohen-Solal, K.A., Boregowda, R.K. and Lasfar, A. (2015) RUNX2 and the PI3K/AKT Axis Reciprocal Activation as a Driving Force for Tumor Progression. Molecular Cancer, 14, Article No. 137. https://doi.org/10.1186/s12943-015-0404-3
|
[25]
|
Bai, Y., Yang, Y., Yan, Y., Zhong, J., Blee, A.M., Pan, Y., et al. (2019) RUNX2 Overexpression and PTEN Haploinsufficiency Cooperate to Promote CXCR7 Expression and Cellular Trafficking, AKT Hyperactivation and Prostate Tumorigenesis. Theranostics, 9, 3459-3475. https://doi.org/10.7150/thno.33292
|
[26]
|
Chua, C., Chiu, Y., Yuen, H., Chan, K., Man, K., Wang, X., et al. (2009) Suppression of Androgen-Independent Prostate Cancer Cell Aggressiveness by FTY720: Validating RUNX2 as a Potential Antimetastatic Drug Screening Platform. Clinical Cancer Research, 15, 4322-4335. https://doi.org/10.1158/1078-0432.ccr-08-3157
|
[27]
|
Kurek, K.C., Del Mare, S., Salah, Z., Abdeen, S., Sadiq, H., Lee, S., et al. (2010) Frequent Attenuation of the WWOX Tumor Suppressor in Osteosarcoma Is Associated with Increased Tumorigenicity and Aberrant RUNX2 Expression. Cancer Research, 70, 5577-5586. https://doi.org/10.1158/0008-5472.can-09-4602
|
[28]
|
van der Weyden, L., Papaspyropoulos, A., Poulogiannis, G., Rust, A.G., Rashid, M., Adams, D.J., et al. (2012) Loss of Rassf1a Synergizes with Deregulated RUNX2 Signaling in Tumorigenesis. Cancer Research, 72, 3817-3827. https://doi.org/10.1158/0008-5472.can-11-3343
|
[29]
|
Blyth, K., Vaillant, F., Hanlon, L., Mackay, N., Bell, M., Jenkins, A., et al. (2006) Runx2 and MYC Collaborate in Lymphoma Development by Suppressing Apoptotic and Growth Arrest Pathways in Vivo. Cancer Research, 66, 2195-2201. https://doi.org/10.1158/0008-5472.can-05-3558
|
[30]
|
Stewart, M., Mackay, N., Hanlon, L., Blyth, K., Scobie, L., Cameron, E., et al. (2007) Insertional Mutagenesis Reveals Progression Genes and Checkpoints in MYC/Runx2 Lymphomas. Cancer Research, 67, 5126-5133. https://doi.org/10.1158/0008-5472.can-07-0433
|
[31]
|
Kubota, S., Tokunaga, K., Umezu, T., Yokomizo-Nakano, T., Sun, Y., Oshima, M., et al. (2019) Lineage-Specific RUNX2 Super-Enhancer Activates MYC and Promotes the Development of Blastic Plasmacytoid Dendritic Cell Neoplasm. Nature Communications, 10, Article No. 1653. https://doi.org/10.1038/s41467-019-09710-z
|
[32]
|
Cruz-De la Rosa, M.I., Jiménez-Wences, H., Alarcón-Millán, J., Romero-López, M.J., Castañón-Sánchez, C.A., Salmerón-Bárcenas, E.G., et al. (2022) miR-218-5p/RUNX2 Axis Positively Regulates Proliferation and Is Associated with Poor Prognosis in Cervical Cancer. International Journal of Molecular Sciences, 23, Article 6993. https://doi.org/10.3390/ijms23136993
|
[33]
|
Wang, P., Zhang, J., Zhang, H. and Zhang, F. (2022) The Role of MACF1 on Acute Myeloid Leukemia Cell Proliferation Is Involved in RUNX2-Targeted PI3K/Akt Signaling. Molecular and Cellular Biochemistry, 478, 433-441. https://doi.org/10.1007/s11010-022-04517-x
|
[34]
|
Chen, Y., Zhang, D., Cao, Q. and He, C. (2022) LncRNA HCG18 Promotes Osteosarcoma Cells Proliferation, Migration, and Invasion in by Regulating miR-34a/RUNX2 Pathway. Biochemical Genetics, 61, 1035-1049. https://doi.org/10.1007/s10528-022-10294-5
|
[35]
|
Kilbey, A., Blyth, K., Wotton, S., Terry, A., Jenkins, A., Bell, M., et al. (2007) RUNX2 Disruption Promotes Immortalization and Confers Resistance to Oncogene-Induced Senescence in Primary Murine Fibroblasts. Cancer Research, 67, 11263-11271. https://doi.org/10.1158/0008-5472.can-07-3016
|
[36]
|
Mak, I.W.Y., Cowan, R.W., Popovic, S., Colterjohn, N., Singh, G. and Ghert, M. (2009) Upregulation of MMP-13 via RUNX2 in the Stromal Cell of Giant Cell Tumor of Bone. Bone, 45, 377-386. https://doi.org/10.1016/j.bone.2009.04.253
|
[37]
|
Trotter, T.N., Li, M., Pan, Q., Peker, D., Rowan, P.D., Li, J., et al. (2015) Myeloma Cell-Derived RUNX2 Promotes Myeloma Progression in Bone. Blood, 125, 3598-3608. https://doi.org/10.1182/blood-2014-12-613968
|
[38]
|
Wang, X., Li, L., Wu, Y., Zhang, R., Zhang, M., Liao, D., et al. (2016) CBX4 Suppresses Metastasis via Recruitment of HDAC3 to the Runx2 Promoter in Colorectal Carcinoma. Cancer Research, 76, 7277-7289. https://doi.org/10.1158/0008-5472.can-16-2100
|
[39]
|
Barnes, G.L. Javed, A., Waller, S.M. Kamal, M.H. Hebert, K.E., Hassan, M.Q., et al. (2003) Osteoblast-Related Transcription Factors RUNX2 (Cbfa1/AML3) and MSX2 Mediate the Expression of Bone Sialoprotein in Human Metastatic Breast Cancer Cells. Cancer Research, 63, 2631-2637.
|
[40]
|
Little, G.H., Noushmehr, H., Baniwal, S.K., Berman, B.P., Coetzee, G.A. and Frenkel, B. (2011) Genome-Wide RUNX2 Occupancy in Prostate Cancer Cells Suggests a Role in Regulating Secretion. Nucleic Acids Research, 40, 3538-3547. https://doi.org/10.1093/nar/gkr1219
|
[41]
|
Li, X., Du, X., Li, D., Kong, P., Sun, Y., Liu, P., et al. (2015) ITGBL1 Is a RUNX2 Transcriptional Target and Promotes Breast Cancer Bone Metastasis by Activating the TGFβ Signaling Pathway. Cancer Research, 75, 3302-3313. https://doi.org/10.1158/0008-5472.can-15-0240
|
[42]
|
Baniwal, S.K., Khalid, O., Gabet, Y., Shah, R.R., Purcell, D.J., Mav, D., et al. (2010) RUNX2 Transcriptome of Prostate Cancer Cells: Insights into Invasiveness and Bone Metastasis. Molecular Cancer, 9, Article No. 258. https://doi.org/10.1186/1476-4598-9-258
|
[43]
|
Cao, Z., Sun, B., Zhao, X., Zhang, Y., Gu, Q., Liang, X., et al. (2017) The Expression and Functional Significance of RUNX2 in Hepatocellular Carcinoma: Its Role in Vasculogenic Mimicry and Epithelial-Mesenchymal Transition. International Journal of Molecular Sciences, 18, Article 500. https://doi.org/10.3390/ijms18030500
|
[44]
|
Yan, X., Han, D., Chen, Z., Han, C., Dong, W., Han, L., et al. (2020) RUNX2 Interacts with BRG1 to Target CD44 for Promoting Invasion and Migration of Colorectal Cancer Cells. Cancer Cell International, 20, Article No. 505. https://doi.org/10.1186/s12935-020-01544-w
|
[45]
|
Owens, T.W., Rogers, R.L., Best, S.A., Ledger, A., Mooney, A., Ferguson, A., et al. (2014) RUNX2 Is a Novel Regulator of Mammary Epithelial Cell Fate in Development and Breast Cancer. Cancer Research, 74, 5277-5286. https://doi.org/10.1158/0008-5472.can-14-0053
|
[46]
|
Yang, Y., Bai, Y., He, Y., Zhao, Y., Chen, J., Ma, L., et al. (2018) PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 24, 834-846. https://doi.org/10.1158/1078-0432.ccr-17-2006
|
[47]
|
Xu, X., Zhang, C., Trotter, T.N., Gowda, P.S., Lu, Y., Ponnazhagan, S., et al. (2020) RUNX2 Deficiency in Osteoblasts Promotes Myeloma Progression by Altering the Bone Microenvironment at New Bone Sites. Cancer Research, 80, 1036-1048. https://doi.org/10.1158/0008-5472.can-19-0284
|
[48]
|
Colla, S., Morandi, F., Lazzaretti, M., Rizzato, R., Lunghi, P., Bonomini, S., et al. (2005) Human Myeloma Cells Express the Bone Regulating Gene RUNX2/CBFA1 and Produce Osteopontin That Is Involved in Angiogenesis in Multiple Myeloma Patients. Leukemia, 19, 2166-2176. https://doi.org/10.1038/sj.leu.2403976
|
[49]
|
Ozaki, T., Nakamura, M. and Shimozato, O. (2015) Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between P53 Family and RUNX2. Biomolecules, 5, 2854-2876. https://doi.org/10.3390/biom5042854
|
[50]
|
Krishnan, V. (2023) The RUNX Family of Proteins, DNA Repair, and Cancer. Cells, 12, Article 1106. https://doi.org/10.3390/cells12081106
|
[51]
|
Santamarina‐Ojeda, P., Tejedor, J.R., Pérez, R.F., López, V., Roberti, A., Mangas, C., et al. (2023) Multi‐Omic Integration of DNA Methylation and Gene Expression Data Reveals Molecular Vulnerabilities in Glioblastoma. Molecular Oncology, 17, 1726-1743. https://doi.org/10.1002/1878-0261.13479
|
[52]
|
Huang, Y., Liang, L., Zhao, Y., Yao, B., Zhang, R., Song, L., et al. (2023) RUNX2 Reverses P53-Induced Chemotherapy Resistance in Gastric Cancer. Pharmacogenomics and Personalized Medicine, 16, 253-261. https://doi.org/10.2147/pgpm.s394393
|
[53]
|
Taipaleenmäki, H., Browne, G., Akech, J., Zustin, J., van Wijnen, A.J., Stein, J.L., et al. (2015) Targeting of RUNX2 by miR-135 and miR-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease. Cancer Research, 75, 1433-1444. https://doi.org/10.1158/0008-5472.can-14-1026
|
[54]
|
Kim, M.S., Gernapudi, R., Choi, E.Y., Lapidus, R.G. and Passaniti, A. (2017) Characterization of CADD522, a Small Molecule That Inhibits RUNX2-DNA Binding and Exhibits Antitumor Activity. Oncotarget, 8, 70916-70940. https://doi.org/10.18632/oncotarget.20200
|
[55]
|
Kim, M.S., Gernapudi, R., Cedeño, Y.C., Polster, B.M., Martinez, R., Shapiro, P., et al. (2020) Targeting Breast Cancer Metabolism with a Novel Inhibitor of Mitochondrial ATP Synthesis. Oncotarget, 11, 3863-3885. https://doi.org/10.18632/oncotarget.27743
|
[56]
|
Manzotti, G., Torricelli, F., Donati, B., Sancisi, V., Gugnoni, M. and Ciarrocchi, A. (2019) HDACs Control RUNX2 Expression in Cancer Cells through Redundant and Cell Context-Dependent Mechanisms. Journal of Experimental & Clinical Cancer Research, 38, Article No. 346. https://doi.org/10.1186/s13046-019-1350-5
|
[57]
|
Sancisi, V., Gandolfi, G., Ambrosetti, D.C. and Ciarrocchi, A. (2015) Histone Deacetylase Inhibitors Repress Tumoral Expression of the Proinvasive Factor RUNX2. Cancer Research, 75, 1868-1882. https://doi.org/10.1158/0008-5472.can-14-2087
|
[58]
|
Rossi, M., De Martino, V., Di Giuseppe, L., Battafarano, G., Di Gregorio, J., Terreri, S., et al. (2023) Anti-Proliferative, Pro-Apototic and Anti-Migratory Properties of HDAC Inhibitor PXD-101 on Osteosarcoma Cell Lines. Archives of Biochemistry and Biophysics, 734, Article ID: 109489. https://doi.org/10.1016/j.abb.2022.109489
|