[1]
|
Dorsey, E.R., Sherer, T., Okun, M.S. and Bloem, B.R. (2018) The Emerging Evidence of the Parkinson Pandemic. Journal of Parkinson’s Disease, 8, S3-S8. https://doi.org/10.3233/jpd-181474
|
[2]
|
Coriolano, M.D.G.W.D.S., Balbino, J.M.D.S., SILVA, B.R.V.D., Cabral, E.D., Asano, A.G., Lins, O.G., et al. (2014) Pain Characterization in Patients with Parkinson’s Disease. Revista Dor, 15, 78-82. https://doi.org/10.5935/1806-0013.20140019
|
[3]
|
Malek, N. (2019) Deep Brain Stimulation in Parkinson’s Disease. Neurology India, 67, 968-978. https://doi.org/10.4103/0028-3886.266268
|
[4]
|
Wang, H., Gao, H., Jiao, T. and Luo, Z. (2016) A Meta-Analysis of the Pedunculopontine Nucleus Deep-Brain Stimulation Effects on Parkinson’s Disease. NeuroReport, 27, 1336-1344. https://doi.org/10.1097/wnr.0000000000000697
|
[5]
|
Luquin, M., Kulisevsky, J., Martinez-Martin, P., Mir, P. and Tolosa, E.S. (2017) Consensus on the Definition of Advanced Parkinson’s Disease: A Neurologists-Based Delphi Study (CEPA Study). Parkinson’s Disease, 2017, Article ID: 4047392. https://doi.org/10.1155/2017/4047392
|
[6]
|
Chou, K.L., Taylor, J.L. and Patil, P.G. (2013) The MDS-UPDRS Tracks Motor and Non-Motor Improvement Due to Subthalamic Nucleus Deep Brain Stimulation in Parkinson Disease. Parkinsonism & Related Disorders, 19, 966-969. https://doi.org/10.1016/j.parkreldis.2013.06.010
|
[7]
|
Peng, L., Fu, J., Ming, Y., Zeng, S., He, H. and Chen, L. (2018) The Long-Term Efficacy of STN vs GPI Deep Brain Stimulation for Parkinson Disease: A Meta-Analysis. Medicine, 97, e12153. https://doi.org/10.1097/md.0000000000012153
|
[8]
|
Wang, J., Pan, R., Cui, Y., Wang, Z. and Li, Q. (2021) Effects of Deep Brain Stimulation in the Subthalamic Nucleus on Neurocognitive Function in Patients with Parkinson’s Disease Compared with Medical Therapy: A Meta-Analysis. Frontiers in Neurology, 12, Article 610840. https://doi.org/10.3389/fneur.2021.610840
|
[9]
|
艾祥柏, 黄小淦, 王诒田, 等. 帕金森病不同靶点脑深部电刺激术的疗效研究进展[J]. 海南医学院学报, 2023, 29(21): 1664-1670.
|
[10]
|
Rango, M., Dossi, G., Squarcina, L. and Bonifati, C. (2020) Brain Mitochondrial Impairment in Early‐Onset Parkinson’s Disease with or without pink1 Mutation. Movement Disorders, 35, 504-507. https://doi.org/10.1002/mds.27946
|
[11]
|
Neustadt, J. and Pieczenik, S.R. (2008) Medication‐Induced Mitochondrial Damage and Disease. Molecular Nutrition & Food Research, 52, 780-788. https://doi.org/10.1002/mnfr.200700075
|
[12]
|
Blagov, A., Postnov, A., Sukhorukov, V., Popov, M., Uzokov, J. and Orekhov, A. (2024) Significance of Mitochondrial Dysfunction in the Pathogenesis of Parkinson’s Disease. Frontiers in Bioscience-Landmark, 29, Article 36. https://doi.org/10.31083/j.fbl2901036
|
[13]
|
Haque, M.E., Akther, M., Azam, S., Kim, I., Lin, Y., Lee, Y., et al. (2021) Targeting α‐Synuclein Aggregation and Its Role in Mitochondrial Dysfunction in Parkinson’s Disease. British Journal of Pharmacology, 179, 23-45. https://doi.org/10.1111/bph.15684
|
[14]
|
Mantri, S., Morley, J.F. and Siderowf, A.D. (2019) The Importance of Preclinical Diagnostics in Parkinson Disease. Parkinsonism & Related Disorders, 64, 20-28. https://doi.org/10.1016/j.parkreldis.2018.09.011
|
[15]
|
Váradi, C. (2020) Clinical Features of Parkinson’s Disease: The Evolution of Critical Symptoms. Biology, 9, Article 103. https://doi.org/10.3390/biology9050103
|
[16]
|
Matuja, W.B. and Aris, E.A. (2008) Motor and Non-Motor Features of Parkinson’s Disease. East African Medical Journal, 85, 3-9. https://doi.org/10.4314/eamj.v85i1.9599
|
[17]
|
Jankovic, J., Schwartz, K.S. and Ondo, W. (1999) Re-Emergent Tremor of Parkinson’s Disease. Journal of Neurology, Neurosurgery & Psychiatry, 67, 646-650. https://doi.org/10.1136/jnnp.67.5.646
|
[18]
|
Baradaran, N., Tan, S.N., Liu, A., Ashoori, A., Palmer, S.J., Wang, Z.J., et al. (2013) Parkinson’s Disease Rigidity: Relation to Brain Connectivity and Motor Performance. Frontiers in Neurology, 4, Article 67. https://doi.org/10.3389/fneur.2013.00067
|
[19]
|
Huang, C., Chu, H., Zhang, Y. and Wang, X. (2018) Deep Brain Stimulation to Alleviate Freezing of Gait and Cognitive Dysfunction in Parkinson’s Disease: Update on Current Research and Future Perspectives. Frontiers in Neuroscience, 12, Article 29. https://doi.org/10.3389/fnins.2018.00029
|
[20]
|
Ward, M. and Mammis, A. (2017) Deep Brain Stimulation for the Treatment of Dejerine-Roussy Syndrome. Stereotactic and Functional Neurosurgery, 95, 298-306. https://doi.org/10.1159/000479526
|
[21]
|
Sauerbier, A., Rosa-Grilo, M., Qamar, M.A. and Chaudhuri, K.R. (2017) Nonmotor Subtyping in Parkinson’s Disease. International Review of Neurobiology, 133, 447-478. https://doi.org/10.1016/bs.irn.2017.05.011
|
[22]
|
Giugni, J.C. and Okun, M.S. (2014) Treatment of Advanced Parkinson’s Disease. Current Opinion in Neurology, 27, 450-460. https://doi.org/10.1097/wco.0000000000000118
|
[23]
|
Martinez-Martin, P., Falup Pecurariu, C., Odin, P., Hilten, J.J., Antonini, A., Rojo-Abuin, J.M., et al. (2012) Gender-Related Differences in the Burden of Non-Motor Symptoms in Parkinson’s Disease. Journal of Neurology, 259, 1639-1647. https://doi.org/10.1007/s00415-011-6392-3
|
[24]
|
Hughes, K.C., Gao, X., Baker, J.M., Stephen, C.D., Kim, I.Y., Valeri, L., et al. (2021) Non-motor Features of Parkinson’s Disease in Women. Journal of Parkinson’s Disease, 11, 1237-1246. https://doi.org/10.3233/jpd-202409
|
[25]
|
Pycroft, L., Stein, J. and Aziz, T. (2018) Deep Brain Stimulation: An Overview of History, Methods, and Future Developments. Brain and Neuroscience Advances, 2, 1-6. https://doi.org/10.1177/2398212818816017
|
[26]
|
Eser, P., Kocabicak, E., Bekar, A. and Temel, Y. (2024) Insights into Neuroinflammatory Mechanisms of Deep Brain Stimulation in Parkinson’s Disease. Experimental Neurology, 374, Article ID: 114684. https://doi.org/10.1016/j.expneurol.2024.114684
|
[27]
|
Mirza, S., Yazdani, U., Dewey III, R., Patel, N., Dewey, R.B., Miocinovic, S., et al. (2017) Comparison of Globus Pallidus Interna and Subthalamic Nucleus in Deep Brain Stimulation for Parkinson Disease: An Institutional Experience and Review. Parkinson’s Disease, 2017, Article ID: 3410820. https://doi.org/10.1155/2017/3410820
|
[28]
|
Mansouri, A., Taslimi, S., Badhiwala, J.H., Witiw, C.D., Nassiri, F., Odekerken, V.J.J., et al. (2018) Deep Brain Stimulation for Parkinson’s Disease: Meta-Analysis of Results of Randomized Trials at Varying Lengths of Follow-Up. Journal of Neurosurgery, 128, 1199-1213. https://doi.org/10.3171/2016.11.jns16715
|
[29]
|
Wal, A., Wal, P., Vig, H., Jain, N.K., Rathore, S., Krishnan, K., et al. (2023) Treatment of Parkinson’s Disease: Current Treatments and Recent Therapeutic Developments. Current Drug Discovery Technologies, 20, e120523216834. https://doi.org/10.2174/1570163820666230512100340
|
[30]
|
Negida, A., Elminawy, M., El Ashal, G., Essam, A., Eysa, A. and Abd Elalem Aziz, M. (2018) Subthalamic and Pallidal Deep Brain Stimulation for Parkinson’s Disease. Cureus, 10, e2232. https://doi.org/10.7759/cureus.2232
|
[31]
|
Shapiro, M.B., Vaillancourt, D.E., Sturman, M.M., Verhagen Metman, L., Bakay, R.A.E. and Corcos, D.M. (2007) Effects of STN DBS on Rigidity in Parkinson’s Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15, 173-181. https://doi.org/10.1109/tnsre.2007.896997
|
[32]
|
Bardon, J., Kurcova, S., Chudackova, M., Otruba, P., Krahulik, D., Nevrly, M., et al. (2022) Deep Brain Stimulation Electrode Position Impact on Parkinsonian Non-Motor Symptoms. Biomedical Papers, 166, 57-62. https://doi.org/10.5507/bp.2020.034
|
[33]
|
Sun, L., Xu, F., Ma, W., Huang, Y. and Qiu, Z. (2016) Deep Brain Stimulation of Pallidal versus Subthalamic for Patients with Parkinson’s Disease: A Meta-Analysis of Controlled Clinical Trials. Neuropsychiatric Disease and Treatment, 12, 1435-1444. https://doi.org/10.2147/ndt.s105513
|
[34]
|
David, F.J., Munoz, M.J. and Corcos, D.M. (2020) The Effect of STN DBS on Modulating Brain Oscillations: Consequences for Motor and Cognitive Behavior. Experimental Brain Research, 238, 1659-1676. https://doi.org/10.1007/s00221-020-05834-7
|
[35]
|
Breit, S., Schulz, J.B. and Benabid, A. (2004) Deep Brain Stimulation. Cell and Tissue Research, 318, 275-288. https://doi.org/10.1007/s00441-004-0936-0
|
[36]
|
Williams, N.R., Foote, K.D. and Okun, M.S. (2024) Subthalamic Nucleus versus Globus Pallidus Internus Deep Brain Stimulation: Translating the Rematch into Clinical Practice. NPJ Parkinson’s Disease, 1, 24-35.
|
[37]
|
Dayal, V., Grover, T., Limousin, P., Akram, H., Cappon, D., Candelario, J., et al. (2018) The Effect of Short Pulse Width Settings on the Therapeutic Window in Subthalamic Nucleus Deep Brain Stimulation for Parkinson’s Disease. Journal of Parkinson’s Disease, 8, 273-279. https://doi.org/10.3233/jpd-171272
|
[38]
|
Ramirez-Zamora, A. and Ostrem, J.L. (2018) Globus Pallidus Interna or Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease. JAMA Neurology, 75, 367-372. https://doi.org/10.1001/jamaneurol.2017.4321
|
[39]
|
Ni, Z., Kim, S.J., Phielipp, N., Ghosh, S., Udupa, K., Gunraj, C.A., et al. (2018) Pallidal Deep Brain Stimulation Modulates Cortical Excitability and Plasticity. Annals of Neurology, 83, 352-362. https://doi.org/10.1002/ana.25156
|
[40]
|
Kubben, P., Degeneffe, A., Kuijf, M., Ackermans, L. and Temel, Y. (2018) Comparing Deep Brain Stimulation in the Ventral Intermediate Nucleus versus the Posterior Subthalamic Area in Essential Tremor Patients. Surgical Neurology International, 9, Article 244. https://doi.org/10.4103/sni.sni_234_18
|
[41]
|
Wong, J.K., Viswanathan, V.T., Nozile-Firth, K.S., Eisinger, R.S., Leone, E.L., Desai, A.M., et al. (2020) STN versus GPI Deep Brain Stimulation for Action and Rest Tremor in Parkinson’s Disease. Frontiers in Human Neuroscience, 14, Article 578615. https://doi.org/10.3389/fnhum.2020.578615
|
[42]
|
Lozano, A.M. (2000) Vim Thalamic Stimulation for Tremor. Archives of Medical Research, 31, 266-269. https://doi.org/10.1016/s0188-4409(00)00081-3
|
[43]
|
Timmermann, L. and Volkmann, J. (2010) Tiefe Hirnstimulation zur Behandlung von Dystonie und Tremor. Der Nervenarzt, 81, 680-687. https://doi.org/10.1007/s00115-010-2939-2
|
[44]
|
Liu, H., Zhang, K., Yang, A. and Zhang, J. (2015) Deep Brain Stimulation of the Subthalamic and Pedunculopontine Nucleus in a Patient with Parkinson’s Disease. Journal of Korean Neurosurgical Society, 57, 303-306. https://doi.org/10.3340/jkns.2015.57.4.303
|
[45]
|
Ramirez-Zamora, A., Smith, H., Kumar, V., Prusik, J., Phookan, S. and Pilitsis, J.G. (2016) Evolving Concepts in Posterior Subthalamic Area Deep Brain Stimulation for Treatment of Tremor: Surgical Neuroanatomy and Practical Considerations. Stereotactic and Functional Neurosurgery, 94, 283-297. https://doi.org/10.1159/000449007
|
[46]
|
Baumgartner, A.J., Thompson, J.A., Kern, D.S. and Ojemann, S.G. (2022) Novel Targets in Deep Brain Stimulation for Movement Disorders. Neurosurgical Review, 45, 2593-2613. https://doi.org/10.1007/s10143-022-01770-y
|
[47]
|
Thevathasan, W. and Moro, E. (2019) What Is the Therapeutic Mechanism of Pedunculopontine Nucleus Stimulation in Parkinson’s Disease? Neurobiology of Disease, 128, 67-74. https://doi.org/10.1016/j.nbd.2018.06.014
|