肝硬化合并门静脉血栓形成机制
The Mechanism of Portal Vein Thrombosis Combined with Liver Cirrhosis
DOI: 10.12677/acm.2025.153782, PDF, HTML, XML,   
作者: 蓝 帆*, 高 敏#:浙江大学医学院附属邵逸夫医院消化内科,浙江 杭州
关键词: 肝硬化门静脉血栓Liver Cirrhosis Portal Vein Thrombosis
摘要: 门静脉血栓(portal vein thrombosis, PVT)是肝硬化患者中的罕见并发症。肝硬化患者合并PVT可引起一系列并发症,通常指向肝硬化患者的不良预后。肝硬化患者并发PVT的机制涉及血流动力学因素、局部血管损伤、凝血功能变化、内皮功能障碍、炎症反应、肠道菌群失调、遗传因素、门静脉高压等方面。PVT的发生往往是隐匿的,探寻肝硬化合并PVT的机制有助于临床更好地诊断及治疗。现有的研究结果表明,PVT的形成是多因素共同作用的结果,其中门静脉高压和血流动力学因素是主要的驱动因素,而凝血功能变化、内皮功能障碍和炎症反应则是次要的促进因素。
Abstract: Portal vein thrombosis (PVT) is an uncommon complication for patients with cirrhosis. PVT in patients with cirrhosis can lead to a number of complications, often pointing to a poor prognosis in patients with cirrhosis. The mechanism of PVT in cirrhotic patients involves hemodynamic factors, local vascular injury, changes in coagulation function, endothelial dysfunction, inflammatory response, intestinal flora disorder, genetic factors, portal hypertension and so on. The occurrence of PVT is often hidden, and exploring the mechanism of cirrhosis complicated with PVT is helpful for better clinical diagnosis and treatment. The existing research findings indicate that the formation of PVT is the result of the combined effects of multiple factors, with portal hypertension and hemodynamic factors serving as the primary drivers, while changes in coagulation function, endothelial dysfunction, and inflammatory responses act as secondary contributing factors.
文章引用:蓝帆, 高敏. 肝硬化合并门静脉血栓形成机制[J]. 临床医学进展, 2025, 15(3): 1604-1612. https://doi.org/10.12677/acm.2025.153782

1. 前言

肝硬化(liver cirrhosis, LC)是临床常见的一系列由各种病因造成的慢性进行性肝脏疾病的终末阶段,常见病因有病毒性、酒精性、代谢及遗传相关性、自身免疫性、胆管性、血管性及药物相关性[1],我国以病毒性为主。LC往往提示疾病的不良预后,是第11位最常见的死亡原因,是45~64岁人群的第三大死亡原因[2]。门静脉血栓(portal vein thrombosis, PVT)是指门静脉主干或其分支内因血栓的形成而造成的部分或完全闭塞[3],是LC一种少见的并发症,与小肠缺血、缺血性肝炎和胃肠道出血等主要临床不良预后事件相关[4],LC患者合并PVT的发病率在10.42%~13.92% [5],在LC患者中,PVT的发生率增加7.9倍[6]。尽管肝硬化合并PVT并无明显的临床症状,PVT的发现多于临床常规影像学检查中发现,随着影像学的发展和临床应用,肝硬化合并PVT的发病率呈增长趋势[7]

PVT的形成是否与LC的不良预后存在直接关系目前暂无明确定论,在有关PVT与LC患者死亡率的相关研究中,PVT的形成与死亡率无关[8] [9],PVT可能是LC进展的标志而并非原因[9]。血栓形成的三大要素,即Virshow三要素:血液高凝、内皮损伤和血流瘀滞。LC患者的血管、凝血功能、机体内环境等多方面因素发生变化,LC合并PVT的机制考虑是多方面因素共同作用的结果,包括血流动力学因素、血管损伤及内皮功能障碍、炎症损伤等方面,关于基因相关因素方面的研究近年也取得了进展,为PVT的诊疗有极大的促进作用。

2. PVT形成的临床表现及治疗方法

LC患者合并PVT临床症状的具体类型与PVT类型(急性、亚急性、慢性)、部位(肝内、肝外)、闭塞程度(完全、部分)等因素相关,急性完全性闭塞性PVT可能会引发急性或进行性腹痛、发热、血性腹泻等症状,并伴有慢性失代偿性肝功能不全症状,如腹水的形成、静脉曲张、腹膜炎等。大多数肝硬化合并PVT无明显特异性临床症状,PVT的发现也多在检查中偶然发现,但在失代偿表现加重的LC患者中应该怀疑PVT发生的可能性[7]。PVT的进展与肠系膜血栓形成造成的肠梗死、门静脉海绵窦形成等相关[10],在合并PVT的LC患者中,静脉曲张活动性出血手术失败风险增加3倍或手术时间延长[11] [12],往往提示了PVT对于肝硬化患者的不良预后。

LC合并PVT的治疗方式取决于血栓形成的范围、闭塞程度、肝移植状态及合并肝硬化失代偿症状进展程度等,主要适应症包括急性症状性PVT、肝移植候选者和血栓延伸至肠系膜静脉的个体[13],抗凝治疗是PVT患者的常规治疗方式,抗凝治疗可以降低肝硬化合并PVT的全因死亡率[14],抗凝治疗后血栓的再通率增加[15],但有增加门静脉高压出血的风险[14]。经颈静脉肝内门静脉系统分流术(Transjugular intrahepatic portosystemic shunt, TIPS)是一种将支架置入门静脉,通过重新疏通门静脉并降低门静脉高压的手术。TIPS主要适用于伴有严重门静脉高压、难治性腹水的早期患者,复发消化道出血患者[16]。随着介入技术的进展,PVT不再是TIP手术的禁忌症[17],并且对于难治性腹水患者的早期受益,减轻PVT患者的血栓负担[18] [19]。溶栓治疗通常在抗凝治疗无效或与TIPS治疗同时进行,包括经静脉溶栓及经超声溶栓治疗,通常只能实现血管的部分再通或作为其他治疗的辅助手段。机械取栓包括囊取栓、溶血性取栓或吸力取栓[20],在TIPS放置期间或之后使用机械取栓可以成功解决PVT [21]

3. LC患者PVT的形成机制

3.1. 门静脉高压(Portal Hypertension, PH)与血流动力学因素

肝门静脉起始于脾静脉和肠系膜上静脉的汇合处,收集来自小肠、大部分大肠和脾脏的血液,进入肝脏后分支成为小血管,最后形成肝窦。各类慢性进行性肝脏疾病再进展过程中,在各类致病因素如嗜肝病毒、酒精、脂肪等作用下肝脏组织失去原有的正常结构及功能,纤维化、细胞外基质的积累等因素造成肝脏结构改变,进一步导致肝窦内皮细胞(liver sinusoidal endothelial cells, LSECs)和肝星状细胞(hepatic stellate cells, HSCs)失调[22],肝窦结构破坏压力升高,进一步造成门静脉高压(portal hypertension, PH)形成,PH进一步造成全身血管的扩张,门静脉直径增加,造成门静脉血流的减少。PH形成除了直接改变门静脉血流量,门静脉侧支血管的形成同时对门静脉的血流产生了影响,侧支血管使大量的血流直接进入体循环而并不经过肝脏[3] [13],侧支循环的形成及肝门静脉直径的增加使肝脏血流减少,形成“窃血效应”[23],在上述因素的共同作用下均可造成门静脉血流量的减少,研究表明门静脉直径的增加与PVT形成风险增加显著相关,门静脉直径 > 12.5 mm对预测PVT的发生高度敏感[24]。门静脉直径的增加及“窃血效应”在减少门静脉血流量的同时,减慢了门静脉的血流速度,血流速度的减慢及PH的严重程度均为PVT形成的独立危险因素[24] [25]

非选择性β受体阻滞剂(nonselective β-blockers, NSBB)可以阻断β1和β2肾上腺素能受体,从而降低心率和心输出量,促进内脏血管收缩,从而减少门静脉血流,在预防PH和食管胃底静脉曲张出血中发挥一定的作用[26]。近年来,对于NSBB的使用逐渐增加,因NBSS减少门静脉血流量及减慢门静脉血流速度的作用,NBSS是否与PVT的形成相关引起人们的重视。在现有的回顾性研究及荟萃分析中,接受NSBB治疗的肝硬化患者的PVT总患病率明显高于未接受NBSS治疗的患者[5],NBSS可能在PVT的形成过程中发挥一定作用[27],具体关联及机制需要进一步研究探索。

3.2. 凝血功能变化

肝脏在凝血过程中发挥中心作用,LC患者可发生复杂的凝血功能改变,包括血小板的减少、血小板功能的变化、血管性血友病因子(von Willebrand factor, vWF)和凝血因子VIII (coagulation factor VIII, FVIII:c)水平的升高及功能改变、止血蛋白合成减少、抗凝因子(蛋白C、蛋白S和抗凝血酶)合成减少[28] [29],LC患者的凝血功能变化更加倾向于止血功能平衡的紊乱而并非单纯的凝血功能的增强[30],因此LC不仅存在出血风险,同时也存在血栓风险。vWF和FVIII的升高直接促进了血小板聚集和血栓形成,尤其是在门静脉高压和血流缓慢的情况下,更进一步促进了血栓的生成。蛋白C和蛋白S的减少通过削弱抗凝机制,减少FVa和FVIIIa的降解,进一步加剧了高凝状态和血栓形成的风险。止血与出血功能之间的平衡一旦打破难以重建,常规的凝血指标监测无法正常评估LC患者的凝血功能,因此对于LC患者是否PVT高危的监测指标依旧是临床医务人员一项巨大的挑战。在发生PVT的LC患者中,蛋白C、蛋白S、抗凝血酶、可溶性F1 + 2和VIIa因子等凝血因子的含量存在差异,但其差异并不能对PVT的发生进行预测[31] [32]。在探究PVT相关凝血因素的回顾性研究中,凝血酶–抗凝血酶复合物(thrombin-antithrombin complex, TAT)、组织型纤溶酶原激活物抑制剂复合物(tissue plasminogen activator inhibitor complex, t-PAIC)、血管性血友病因子抗原(willebrand factor antigen, vWF:Ag)和FVIII:c与PVT的形成具有相关性,TAT、TAT/t-PACI比值、FVIII:c和vWF:Ag可作为预测肝硬化患者PVT的潜在生物标志物[33]。在PVT患者中,对血栓调节素抗凝作用的抵抗(resistance to the anticoagulant action of thrombomodulin, TM-R)是PVT形成的一项独立危险因素,可以作为意向预测PVT危险因素的因素[34]。LC患者D二聚体(D-dimer, DDI)及FVIII:c水平升高,但并不能作为预测PVT发生的一项判别指标,在严重肝硬化中,正常的DDI和FVIII:c可以安全地排除无症状门静脉血栓的存在[35]。凝血功能的变化在PVT形成中发挥一定的作用,具体的作用机制尚未完全明确,在PVT患者中较多的与凝血相关的生化指标发生了变化,但具体相关性未被完全证实,在近期的重多研究中,凝血功能的变化可能在PVT中发挥一定作用,但不是关键性因素。

3.3. 血管损伤与内皮功能障碍(Endothelial Dysfunction, ED)

内皮细胞是血管内壁的单层细胞,将管壁与周围组织隔开,通过分泌一些促凝及抗凝的因子,包括一氧化氮(nitric oxide, NO)、前列环素、血栓调节素、组织因子途径抑制剂(tissue factor pathway inhibitor, TFPI)和蛋白C受体、vWF、组织因子(tissue factor, TF)、p-选择素、FVIII和内皮素等,发挥阻止血小板的活化和级联、维持血流活动等作用[29] [36]。在正常的生理活动中,内皮细胞通过血小板抑制特性、肝素抗凝血酶III系统、组织因子通路、凝血酶受体、纤溶特性及凝血酶受体、凝血调节蛋白与蛋白C/S系统使促凝及抗凝作用达到一个平衡[36],而在应激状态下,出现内皮依赖性血管舒张功能障碍,称为内皮功能障碍(endothelial dysfunction, ED) [37],ED在血栓的形成中发挥重要的作用,是血栓形成的一个危险因素[36]。LC患者肝脏结构紊乱,肝内门静脉血流的阻力增加,形成HP,且因血流淤滞造成细菌异位的发生引发感染,造成肝脏门静脉血管及内皮细胞的损伤,进一步造成ED的产生。p-选择素、vWF、前列腺素等标志物的升高,可以作为评估内皮细胞功能的指标,与ED发生引起PVT产生具有相关性[38] [39],NO与环氧酶(cyclooxygenase, COX)系统在ED的形成过程中发挥重要作用,增加肝内NO的可用性并阻断增加的血管收缩剂前列腺素途径,对ED有一定的改善作用[40]。改善血管内皮细胞功能的同时,成为一种治疗的方向,使用COX抑制剂增加NO利用率[40]、利用生长转化因子-β (Transforming growth factorbeta, TGF-β)修复血管内膜[41]、使用miRNA-25-3p修复门静脉内膜改善门静脉高压[42]等新型治疗手段成为了未来可能的方向。

3.4. 炎症与免疫反应

炎症在慢性肝病的进展过程中发挥重要的作用,组织损伤或感染进而引发凝血是一种机体防御机制。血栓与炎症可被视为一种互补的过程,血栓形成闭塞的血凝块,阻碍血液流经循环系统,炎症是作用于对有害刺激(如病原体、受损细胞或刺激物)的复杂保护性免疫反应[43]。肝脏拥有密集的吞噬细胞网络,能够迅速感知肝细胞应激及损伤信号,进一步激活炎症级联反应,在病毒、酒精等造成肝脏细胞损伤的因素长期作用下,白细胞迅速浸润肝实质,通过产生可激活其他免疫细胞和非实质细胞群的可溶性介质,促进炎症和纤维化。炎症介质可以激活HSCs,活化的HSCs产生促炎介质,使肝脏炎症持续存在[44]。在对于系统性炎症与PVT关系的回顾性研究中,证实炎症激活与血栓形成具有相关性,PVT患者炎症指标,包括白细胞介素-6 (interleukin-6, IL-6)、白细胞介素-8 (interleukin-8, IL-8)、肿瘤坏死因子α (tumor necrosis factor-α, TNF-α)、降钙素原(procalcitonin, PCT)和C反应蛋白(C-reactive protein, CRP)水平显著升高,其中IL-6水平与PVT形成独立相关[45]。全身炎症导致一氧化氮介导的先前存在的内脏血管舒张的加重,导致内源性血管收缩系统的过度激活,导致免疫介导的组织损伤[46],对于肝脏的功能和结构具有严重损伤。单核/巨噬系统是机体炎症反应的重要环节,单核/巨噬细胞的数量与肝功能的分级密切相关[47],在研究炎症反应与PVT相关性的研究中,CD169作为一组独立的反映炎症指标的亚群,在反映机体炎症指标、免疫反应等方面存在价值[48],在LC进展过程中,CD169的亚群也在同步增殖,对CD169的耗竭处理后急性肝损伤的缓解表明炎症反应的抑制对于肝功能的改善有一定帮助[49]

3.5. 肠道菌群失调

人类肠道存在丰富的菌群,菌群与人体保持平衡维持机体的正常生理功能,菌群的改变或失衡也被认为与疾病的发生或表型相关,随着基因组学等科学技术的发展,肠道菌群庞大的基因组成被逐步发现[50] [51],肠道菌群对于健康及疾病的研究更进一步深入。肠道菌群的组成、分布、代谢产物等均对人体有复杂的作用[52]。肠道菌群的作用可以通过肝肠轴对肝脏产生影响,肝肠轴是肠道微生物与肝脏之间的细胞、产物相互影响的总和,肠道微生物及其代谢产物与肝脏的双向交流主要通过门静脉循环、内脏动脉和胆管系统进行,肠道微生物菌群的紊乱和代谢产物的异常可通过肝肠轴进一步影响肝窦的结构和功能,对PH的产生存在一定影响[53]。肠道菌群的失调可造成肠道屏障结构和功能的改变,人体肠道屏障包括黏液层、肠细胞屏障和血管层,防止肠道中的微生物及有害代谢产物进入血液循环,其中关键的结构包括粘附连接蛋白、紧密连接蛋白、间隙连接蛋白和桥粒[54]。肠道微生物群的改变或屏障功能的内在变化(如全身性炎症)或外源性因素(如酒精摄入滥用、非甾体抗炎药)可造成肠道通透性的改变[55]。病原菌的入侵对肠道内具有保护作用的代谢产物,包括短链脂肪酸(short-chain fatty acids, SCFAs)、由色氨酸微生物消化产生的吲哚和吲哚衍生物、胆汁酸代谢物、多胺和多酚[55],代谢产物的改变造成肠道屏障功能和结构的破坏。肠道微生物群多样性的减少与机会性物种的相对或绝对增加等原因[56]可造成肠道生态的失调,造成肠道屏障的改变,同时脂多糖(lipopolysaccharides, LPSs)随着受损的肠道屏障进入肝脏[56] [57],造成毒血症被认为是PVT产生的一种危险因素[58]

3.6. 遗传因素

遗传及基因相关的因素在PVT的形成中发挥作用,自身免疫性疾病、JAK2阳性骨髓增生性肿瘤(myeloproliferative neoplasms, MPN)、阵发性夜间血红蛋白尿(paroxysmal nocturnal hemoglobinuria, PNH)、恶性肿瘤、遗传性和获得性血栓形成疾病等都可能成为PVT的促发因素[59] [60]。在遗传性血栓性疾病对于PVT影响的研究中,往往受到样本量、诊断标准等多方面的影响导致结果不一致,其中因子V Leiden (factor V Leiden, FVL)和凝血酶原G20210A (prothrombin G20210A, PTHR)的突变[60]-[63]是目前有较多相关研究的,被认为是增加LC患者并发PVT的危险因素,且蛋白S和抗凝血酶的遗传缺陷可能不是PVT发病的主要易感因素[63]。然而,遗传性血栓性疾病在LC及PVT患者中少见,作为常规的筛查对于疾病的诊疗无明显收益,应结合患者个体情况进行相关疾病的筛查[64]。随着血栓形成倾向测试技术的发展,获得性嗜血栓因子(acquired thrombophilic factors, JAK2 V617F)的突变可能指向血栓的形成,JAK2 V617F的突变在PVT患者中占比14%~15.3% [65] [66],JAK2 V617F突变在费城染色体阴性的骨髓增殖性肿瘤中很常见,存在于90%以上的真性红细胞增多症和60%以上的原发性血小板增多症病例中,这一特性可能在血栓性并发症中起作用[67]。在血栓形成遗传因子的研究中,亚甲基四氢叶酸还原酶C677T和纤溶酶原激活物抑制剂-1型4G-4G突变也被描述为PVT这些等位基因多态性可能会增加嗜血栓性疾病(如LC)患者的血栓形成风险[68]。在LC合并PVT的患者中,狼疮抗凝标志物阳性比例增高[69] [70],高危抗磷脂抗体(antiphospholipid antibody, aPL)谱的检测对于LC患者PVT发生危险性也有一定的指示作用[69]。在一些案例的分析中,蛋白C基因(PROC)突变引发的遗传性蛋白C缺乏(Hereditary protein C deficiency, PCD)在一例PVT患者中发现[71],指向PVT形成的基因遗传因素。

4. 总结

PVT是肝硬化患者的一种罕见但严重的并发症,其形成机制复杂,涉及多种因素的相互作用。这些因素包括血流动力学的改变、血管损伤和内皮功能障碍、凝血功能的变化、炎症和免疫反应、肠道菌群失调以及遗传因素等。PVT的形成是多方面机制共同作用的结果,关于某种机制的作用占比目前尚无定论,现有的研究结果表明,门静脉高压和血流动力学因素可能是PVT形成的主要驱动因素,而凝血功能变化和内皮功能障碍则可能是次要的促进因素。PVT的发生往往是隐匿的,但其诊断对于肝硬化患者的临床治疗和预后评估至关重要。临床上需要综合考虑这些因素以实现更好地诊断和治疗。随着对PVT机制的进一步研究,未来可能会发现新的生物标志物和治疗靶点,从而改善肝硬化合并PVT患者的预后。

5. 未来展望

PVT形成机制对于未来的研究方向的作用可以体现在以下几个方面,包括多种机制相互作用、肠道菌群与PVT的关系、新型生物标志物的探索、新型治疗靶点的开发、遗传因素与PVT的关系、PVT的早期诊断和预防,以及PVT与肝移植的关系。通过这些研究,可以更深入地理解PVT的病理生理机制,并为临床诊断和治疗提供新的思路和方法。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Ginès, P., Krag, A., Abraldes, J.G., Solà, E., Fabrellas, N. and Kamath, P.S. (2021) Liver Cirrhosis. The Lancet, 398, 1359-1376.
https://doi.org/10.1016/s0140-6736(21)01374-x
[2] Wong, R.J., Kachru, N., Martinez, D.J., Moynihan, M., Ozbay, A.B. and Gordon, S.C. (2020) Real-World Comorbidity Burden, Health Care Utilization, and Costs of Nonalcoholic Steatohepatitis Patients with Advanced Liver Diseases. Journal of Clinical Gastroenterology, 55, 891-902.
https://doi.org/10.1097/mcg.0000000000001409
[3] Northup, P.G., Garcia‐Pagan, J.C., Garcia‐Tsao, G., Intagliata, N.M., Superina, R.A., Roberts, L.N., et al. (2021) Vascular Liver Disorders, Portal Vein Thrombosis, and Procedural Bleeding in Patients with Liver Disease: 2020 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 73, 366-413.
https://doi.org/10.1002/hep.31646
[4] Basit, S.A., Stone, C.D. and Gish, R. (2015) Portal Vein Thrombosis. Clinics in Liver Disease, 19, 199-221.
https://doi.org/10.1016/j.cld.2014.09.012
[5] Pan, J., Wang, L., Gao, F., An, Y., Yin, Y., Guo, X., et al. (2022) Epidemiology of Portal Vein Thrombosis in Liver Cirrhosis: A Systematic Review and Meta-analysis. European Journal of Internal Medicine, 104, 21-32.
https://doi.org/10.1016/j.ejim.2022.05.032
[6] Ögren, M. (2006) Portal Vein Thrombosis: Prevalence, Patient Characteristics and Lifetime Risk: A Population Study Based on 23796 Consecutive Autopsies. World Journal of Gastroenterology, 12, 2115-2119.
https://doi.org/10.3748/wjg.v12.i13.2115
[7] Intagliata, N.M., Caldwell, S.H. and Tripodi, A. (2019) Diagnosis, Development, and Treatment of Portal Vein Thrombosis in Patients with and without Cirrhosis. Gastroenterology, 156, 1582-1599.e1.
https://doi.org/10.1053/j.gastro.2019.01.265
[8] Lv, Y., He, C., Wang, Z., Guo, W., Wang, J., Bai, W., et al. (2017) Association of Nonmalignant Portal Vein Thrombosis and Outcomes after Transjugular Intrahepatic Portosystemic Shunt in Patients with Cirrhosis. Radiology, 285, 999-1010.
https://doi.org/10.1148/radiol.2017162266
[9] Lv, Y., Bai, W., Zhu, X., Xue, H., Zhao, J., Zhuge, Y., et al. (2023) Association of Nonmalignant Portal Vein Thrombosis and Clinical Outcomes in Patients with Cirrhosis and Acute Variceal Bleeding: A Multicenter Observational Study. Hepatology International, 17, 1192-1204.
https://doi.org/10.1007/s12072-023-10493-1
[10] Mantaka, A. (2018) Portal Vein Thrombosis in Cirrhosis: Diagnosis, Natural History, and Therapeutic Challenges. Annals of Gastroenterology, 31, 1-5.
https://doi.org/10.20524/aog.2018.0245
[11] D’Amico, G. and De Franchis, R. (2003) Upper Digestive Bleeding in Cirrhosis. Post-Therapeutic Outcome and Prognostic Indicators. Hepatology, 38, 599-612.
https://doi.org/10.1053/jhep.2003.50385
[12] Dell’Era, A., Iannuzzi, F., Fabris, F.M., Fontana, P., Reati, R., Grillo, P., et al. (2014) Impact of Portal Vein Thrombosis on the Efficacy of Endoscopic Variceal Band Ligation. Digestive and Liver Disease, 46, 152-156.
https://doi.org/10.1016/j.dld.2013.08.138
[13] Shukla, A. and Giri, S. (2022) Portal Vein Thrombosis in Cirrhosis. Journal of Clinical and Experimental Hepatology, 12, 965-979.
https://doi.org/10.1016/j.jceh.2021.11.003
[14] Guerrero, A., Campo, L.d., Piscaglia, F., Scheiner, B., Han, G., Violi, F., et al. (2023) Anticoagulation Improves Survival in Patients with Cirrhosis and Portal Vein Thrombosis: The IMPORTAL Competing-Risk Meta-Analysis. Journal of Hepatology, 79, 69-78.
https://doi.org/10.1016/j.jhep.2023.02.023
[15] Qi, X., De Stefano, V., Li, H., Dai, J., Guo, X. and Fan, D. (2015) Anticoagulation for the Treatment of Portal Vein Thrombosis in Liver Cirrhosis: A Systematic Review and Meta-Analysis of Observational Studies. European Journal of Internal Medicine, 26, 23-29.
https://doi.org/10.1016/j.ejim.2014.12.002
[16] Zhang, J., Chen, J., Zhou, J., Wang, X., Chen, S., Chu, J., et al. (2021) Systematic Review and Meta-Analysis of Trans-Jugular Intrahepatic Portosystemic Shunt for Cirrhotic Patients with Portal Vein Thrombosis. World Journal of Clinical Cases, 9, 5179-5190.
https://doi.org/10.12998/wjcc.v9.i19.5179
[17] Ju, C., Li, X., Gadani, S., Kapoor, B. and Partovi, S. (2021) Portal Vein Thrombosis: Diagnosis and Endovascular Management. RöFoFortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 194, 169-180.
https://doi.org/10.1055/a-1642-0990
[18] Zhan, C., Prabhu, V., Kang, S.K., Li, C., Zhu, Y., Kim, S., et al. (2021) Comparison of Non-Tumoral Portal Vein Thrombosis Management in Cirrhotic Patients: TIPS versus Anticoagulation versus No Treatment. Journal of Clinical Medicine, 10, Article 2316.
https://doi.org/10.3390/jcm10112316
[19] Rajesh, S., George, T., Philips, C.A., Ahamed, R., Kumbar, S., Mohan, N., et al. (2020) Transjugular Intrahepatic Portosystemic Shunt in Cirrhosis: An Exhaustive Critical Update. World Journal of Gastroenterology, 26, 5561-5596.
https://doi.org/10.3748/wjg.v26.i37.5561
[20] Seedial, S., Mouli, S. and Desai, K. (2018) Acute Portal Vein Thrombosis: Current Trends in Medical and Endovascular Management. Seminars in Interventional Radiology, 35, 198-202.
https://doi.org/10.1055/s-0038-1660798
[21] Sullivan, I.W., Fonseca, A., Brown, M., Ness, J., Borge, M., Amin, P., et al. (2022) Large Bore Portal Vein Thrombectomy: An Inari Flowtriever Case Series. CardioVascular and Interventional Radiology, 46, 136-141.
https://doi.org/10.1007/s00270-022-03286-w
[22] Iwakiri, Y. and Trebicka, J. (2021) Portal Hypertension in Cirrhosis: Pathophysiological Mechanisms and Therapy. JHEP Reports, 3, Article ID: 100316.
https://doi.org/10.1016/j.jhepr.2021.100316
[23] Zocco, M.A., Stasio, E.D., Cristofaro, R.D., et al. (2009) Thrombotic Risk Factors in Patients with Liver Cirrhosis: Correlation with MELD Scoring System and Portal Vein Thrombosis Development. Journal of Hepatology, 51, 682-689.
[24] Dong, G., Huang, X.Q., Zhu, Y.L., Ding, H., Li, F. and Chen, S.Y. (2021) Increased Portal Vein Diameter Is Predictive of Portal Vein Thrombosis Development in Patients with Liver Cirrhosis. Annals of Translational Medicine, 9, 289.
[25] Turon, F., Driever, E.G., Baiges, A., Cerda, E., García-Criado, Á., Gilabert, R., et al. (2021) Predicting Portal Thrombosis in Cirrhosis: A Prospective Study of Clinical, Ultrasonographic and Hemostatic Factors. Journal of Hepatology, 75, 1367-1376.
https://doi.org/10.1016/j.jhep.2021.07.020
[26] Kamath, P.S. and Mookerjee, R.P. (2015) Individualized Care for Portal Hypertension: Not Quite Yet. Journal of Hepatology, 63, 543-545.
https://doi.org/10.1016/j.jhep.2015.07.001
[27] Giannitrapani, L., Granà, W., Licata, A., Schiavone, C., Montalto, G. and Soresi, M. (2018) Nontumorous Portal Vein Thrombosis in Liver Cirrhosis: Possible Role of β-Blockers. Medical Principles and Practice, 27, 466-471.
https://doi.org/10.1159/000492893
[28] Zanetto, A., Campello, E., Senzolo, M. and Simioni, P. (2023) The Evolving Knowledge on Primary Hemostasis in Patients with Cirrhosis: A Comprehensive Review. Hepatology, 79, 460-481.
https://doi.org/10.1097/hep.0000000000000349
[29] Anton, A., Campreciós, G., Pérez-Campuzano, V., Orts, L., García-Pagán, J.C. and Hernández-Gea, V. (2022) The Pathophysiology of Portal Vein Thrombosis in Cirrhosis: Getting Deeper into Virchow’s Triad. Journal of Clinical Medicine, 11, Article 800.
https://doi.org/10.3390/jcm11030800
[30] Lisman, T. and Porte, R.J. (2010) Rebalanced Hemostasis in Patients with Liver Disease: Evidence and Clinical Consequences. Blood, 116, 878-885.
https://doi.org/10.1182/blood-2010-02-261891
[31] Chen, H., Qi, X., He, C., Yin, Z., Fan, D. and Han, G. (2013) Coagulation Imbalance May Not Contribute to the Development of Portal Vein Thrombosis in Patients with Cirrhosis. Thrombosis Research, 131, 173-177.
https://doi.org/10.1016/j.thromres.2012.11.003
[32] Tang, W., Wang, Y., Zhao, X., Wang, X., Zhang, T., Ou, X., et al. (2015) Procoagulant Imbalance Aggravated with Falling Liver Function Reserve, but Not Associated with the Presence of Portal Vein Thrombosis in Cirrhosis. European Journal of Gastroenterology & Hepatology, 27, 672-678.
https://doi.org/10.1097/meg.0000000000000352
[33] Ren, W., Zhang, J., Chen, Y., Wen, M., Su, Y., Zhao, Y., et al. (2020) Evaluation of Coagulation, Fibrinolysis and Endothelial Biomarkers in Cirrhotic Patients with or without Portal Venous Thrombosis. Clinical and Applied Thrombosis/Hemostasis, 26, 1-7.
https://doi.org/10.1177/1076029620982666
[34] La Mura, V., Tripodi, A., Tosetti, G., Cavallaro, F., Chantarangkul, V., Colombo, M., et al. (2016) Resistance to Thrombomodulin Is Associated with de Novo Portal Vein Thrombosis and Low Survival in Patients with Cirrhosis. Liver International, 36, 1322-1330.
https://doi.org/10.1111/liv.13087
[35] Fimognari, F.L., De Santis, A., Piccheri, C., Moscatelli, R., Gigliotti, F., Vestri, A., et al. (2005) Evaluation of D-Dimer and Factor VIII in Cirrhotic Patients with Asymptomatic Portal Venous Thrombosis. Journal of Laboratory and Clinical Medicine, 146, 238-243.
https://doi.org/10.1016/j.lab.2005.06.003
[36] Neubauer, K. and Zieger, B. (2021) Endothelial Cells and Coagulation. Cell and Tissue Research, 387, 391-398.
https://doi.org/10.1007/s00441-021-03471-2
[37] Bosch, J., Abraldes, J.G., Fernández, M. and García-Pagán, J.C. (2010) Hepatic Endothelial Dysfunction and Abnormal Angiogenesis: New Targets in the Treatment of Portal Hypertension. Journal of Hepatology, 53, 558-567.
https://doi.org/10.1016/j.jhep.2010.03.021
[38] Wannhoff, A., Müller, O.J., Friedrich, K., Rupp, C., Klöters-Plachky, P., Leopold, Y., et al. (2014) Effects of Increased Von Willebrand Factor Levels on Primary Hemostasis in Thrombocytopenic Patients with Liver Cirrhosis. PLOS ONE, 9, e112583.
https://doi.org/10.1371/journal.pone.0112583
[39] Lisman, T., Bongers, T.N., Adelmeijer, J., Janssen, H.L.A., de Maat, M.P.M., de Groot, P.G., et al. (2006) Elevated Levels of Von Willebrand Factor in Cirrhosis Support Platelet Adhesion Despite Reduced Functional Capacity. Hepatology, 44, 53-61.
https://doi.org/10.1002/hep.21231
[40] Rosado, E., Rodríguez‐Vilarrupla, A., Gracia‐Sancho, J., Monclús, M., Bosch, J. and García‐Pagán, J. (2012) Interaction between No and Cox Pathways Modulating Hepatic Endothelial Cells from Control and Cirrhotic Rats. Journal of Cellular and Molecular Medicine, 16, 2461-2470.
https://doi.org/10.1111/j.1582-4934.2012.01563.x
[41] Jiang, S., Ai, Y., Ni, L., Wu, L., Huang, X. and Chen, S. (2022) Platelet-Derived TGF-β1 Is Related to Portal Vein Thrombosis in Cirrhosis by Promoting Hypercoagulability and Endothelial Dysfunction. Frontiers in Cardiovascular Medicine, 9, Article 938397.
https://doi.org/10.3389/fcvm.2022.938397
[42] Nie, G., Zhang, H., Luo, W., Zhu, X., Xie, D., Yan, J., et al. (2024) Enhancement of Endothelial Function and Attenuation of Portal Vein Injury Using Mesenchymal Stem Cells Carrying miRNA-25-3p. Scientific Reports, 14, Article No. 15113.
https://doi.org/10.1038/s41598-024-64263-6
[43] Jackson, S.P., Darbousset, R. and Schoenwaelder, S.M. (2019) Thromboinflammation: Challenges of Therapeutically Targeting Coagulation and Other Host Defense Mechanisms. Blood, 133, 906-918.
https://doi.org/10.1182/blood-2018-11-882993
[44] Hammerich, L. and Tacke, F. (2023) Hepatic Inflammatory Responses in Liver Fibrosis. Nature Reviews Gastroenterology & Hepatology, 20, 633-646.
https://doi.org/10.1038/s41575-023-00807-x
[45] Huang, X., Fan, X., Zhang, R., Jiang, S., Yang, K. and Chen, S. (2020) Systemic Inflammation and Portal Vein Thrombosis in Cirrhotic Patients with Gastroesophageal Varices. European Journal of Gastroenterology & Hepatology, 32, 401-405.
https://doi.org/10.1097/meg.0000000000001526
[46] Arroyo, V., Angeli, P., Moreau, R., Jalan, R., Clària, J., Trebicka, J., et al. (2021) The Systemic Inflammation Hypothesis: Towards a New Paradigm of Acute Decompensation and Multiorgan Failure in Cirrhosis. Journal of Hepatology, 74, 670-685.
https://doi.org/10.1016/j.jhep.2020.11.048
[47] Albillos, A., Lario, M. and Álvarez-Mon, M. (2014) Cirrhosis-associated Immune Dysfunction: Distinctive Features and Clinical Relevance. Journal of Hepatology, 61, 1385-1396.
https://doi.org/10.1016/j.jhep.2014.08.010
[48] Chãvez-Galãn, L., Olleros, M.L., Vesin, D. and Garcia, I. (2015) Much More than M1 and M2 Macrophages, There Are Also CD169+ and TCR+ Macrophages. Frontiers in Immunology, 6, Article 263.
https://doi.org/10.3389/fimmu.2015.00263
[49] Xu, L., Huang, C., Zheng, X., Gao, H., Zhang, S., Zhu, M., et al. (2024) Elevated CD169 Expressing Monocyte/Macrophage Promotes Systemic Inflammation and Disease Progression in Cirrhosis. Clinical and Experimental Medicine, 24, Article No. 45.
https://doi.org/10.1007/s10238-024-01305-3
[50] Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65.
https://doi.org/10.1038/nature08821
[51] Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al. (2015) Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host & Microbe, 17, 690-703.
https://doi.org/10.1016/j.chom.2015.04.004
[52] Adak, A. and Khan, M.R. (2018) An Insight into Gut Microbiota and Its Functionalities. Cellular and Molecular Life Sciences, 76, 473-493.
https://doi.org/10.1007/s00018-018-2943-4
[53] Huang, X., Zhang, Y., Yi, S., Lei, L., Ma, T., Huang, R., et al. (2023) Potential Contribution of the Gut Microbiota to the Development of Portal Vein Thrombosis in Liver Cirrhosis. Frontiers in Microbiology, 14, Article 1217338.
https://doi.org/10.3389/fmicb.2023.1217338
[54] Farquhar, M.G. and Palade, G.E. (1963) Junctional Complexes in Various Epithelia. The Journal of Cell Biology, 17, 375-412.
https://doi.org/10.1083/jcb.17.2.375
[55] Ghosh, S., Whitley, C.S., Haribabu, B. and Jala, V.R. (2021) Regulation of Intestinal Barrier Function by Microbial Metabolites. Cellular and Molecular Gastroenterology and Hepatology, 11, 1463-1482.
https://doi.org/10.1016/j.jcmgh.2021.02.007
[56] Trebicka, J., Bork, P., Krag, A. and Arumugam, M. (2020) Utilizing the Gut Microbiome in Decompensated Cirrhosis and Acute-on-Chronic Liver Failure. Nature Reviews Gastroenterology & Hepatology, 18, 167-180.
https://doi.org/10.1038/s41575-020-00376-3
[57] Fukui, H. (2015) Gut-Liver Axis in Liver Cirrhosis: How to Manage Leaky Gut and Endotoxemia. World Journal of Hepatology, 7, 425-442.
https://doi.org/10.4254/wjh.v7.i3.425
[58] Violi, F., Pignatelli, P., Castellani, V., Carnevale, R. and Cammisotto, V. (2023) Gut Dysbiosis, Endotoxemia and Clotting Activation: A Dangerous Trio for Portal Vein Thrombosis in Cirrhosis. Blood Reviews, 57, Article ID: 100998.
https://doi.org/10.1016/j.blre.2022.100998
[59] Klute, K., DeFilippis, E.M., Shillingford, K., Chapin, J. and DeSancho, M.T. (2016) Clinical Presentations, Risk Factors, Treatment and Outcomes in Patients with Splanchnic Vein Thrombosis: A Single-Center Experience. Journal of Thrombosis and Thrombolysis, 42, 267-271.
https://doi.org/10.1007/s11239-016-1337-4
[60] Galli, M., Gianni, M., Ageno, W. and Dentali, F. (2008) Inherited Thrombophilic Abnormalities and Risk of Portal Vein Thrombosis. Thrombosis and Haemostasis, 99, 675-682.
https://doi.org/10.1160/th07-08-0526
[61] Ma, S.D., Wang, J., Bezinover, D., Kadry, Z., Northup, P.G. and Stine, J.G. (2019) Inherited Thrombophilia and Portal Vein Thrombosis in Cirrhosis: A Systematic Review and Meta‐analysis. Research and Practice in Thrombosis and Haemostasis, 3, 658-667.
https://doi.org/10.1002/rth2.12253
[62] Qi, X., Ren, W., De Stefano, V. and Fan, D. (2014) Associations of Coagulation Factor V Leiden and Prothrombin G20210A Mutations with Budd-Chiari Syndrome and Portal Vein Thrombosis: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 12, 1801-1812.e7.
https://doi.org/10.1016/j.cgh.2014.04.026
[63] Janssen, H.L.A., Meinardi, J.R., Vleggaar, F.P. and van Hattum, J. (2000) Factor V Leiden Mutation, Prothrombin Gene Mutation, and Deficiencies in Coagulation Inhibitors Associated with Budd-Chiari Syndrome and Portal Vein Thrombosis: Results of a Case-Control Study. Blood, 96, 2364-2368.
[64] Fortea, J.I., Carrera, I.G., Puente, Á., Cuadrado, A., Huelin, P., Tato, C.Á., et al. (2020) Portal Thrombosis in Cirrhosis: Role of Thrombophilic Disorders. Journal of Clinical Medicine, 9, Article 2822.
https://doi.org/10.3390/jcm9092822
[65] Tremblay, D., Naymagon, L., Troy, K., Cromwell, C., Edwards, C., Schiano, T., et al. (2020) The Utility of Thrombophilia Testing in Patients with Newly Diagnosed Portal Vein Thrombosis. Blood Coagulation & Fibrinolysis, 31, 213-218.
https://doi.org/10.1097/mbc.0000000000000901
[66] Zarrouk, M., Salim, S., Elf, J., Gottsäter, A. and Acosta, S. (2017) Testing for Thrombophilia in Mesenteric Venous Thrombosis—Retrospective Original Study and Systematic Review. Best Practice & Research Clinical Gastroenterology, 31, 39-48.
https://doi.org/10.1016/j.bpg.2016.11.002
[67] Shetty, S., Kulkarni, B., Pai, N., Mukundan, P., Kasatkar, P. and Ghosh, K. (2010) JAK2 Mutations across a Spectrum of Venous Thrombosis Cases. American Journal of Clinical Pathology, 134, 82-85.
https://doi.org/10.1309/ajcp7vo4haizyatp
[68] Pasta, L., Pasta, F. and D’Amico, M. (2016) PAI-1 4G-4G, MTHFR 677TT, V Leiden 506Q, and Prothrombin 20210A in Splanchnic Vein Thrombosis: Analysis of Individual Patient Data from Three Prospective Studies. Journal of Clinical and Experimental Hepatology, 6, 10-14.
https://doi.org/10.1016/j.jceh.2015.11.002
[69] Tektonidou, M.G., Andreoli, L., Limper, M., Amoura, Z., Cervera, R., Costedoat-Chalumeau, N., et al. (2019) EULAR Recommendations for the Management of Antiphospholipid Syndrome in Adults. Annals of the Rheumatic Diseases, 78, 1296-1304.
https://doi.org/10.1136/annrheumdis-2019-215213
[70] Kirkeby, M.H., Larsen, J.B., Grønbaek, H. and Hvas, A. (2020) Thrombophilia Testing in Patients with Portal Vein Thrombosis. Scandinavian Journal of Clinical and Laboratory Investigation, 80, 694-698.
https://doi.org/10.1080/00365513.2020.1827289
[71] Zou, C., Li, T., Long, L., Liu, L. and Zhu, J. (2022) Hereditary Protein C Deficiency with Portal Vein Thrombosis in a Chinese Male: A Case Report. Experimental and Therapeutic Medicine, 24, Article No. 751.
https://doi.org/10.3892/etm.2022.11688