[1]
|
Ogawa, S. (2019) Genetics of MDS. Blood, 133, 1049-1059. https://doi.org/10.1182/blood-2018-10-844621
|
[2]
|
Shallis, R.M., Ahmad, R. and Zeidan, A.M. (2018) The Genetic and Molecular Pathogenesis of Myelodysplastic Syndromes. European Journal of Haematology, 101, 260-271. https://doi.org/10.1111/ejh.13092
|
[3]
|
Hosono, N. (2019) Genetic Abnormalities and Pathophysiology of MDS. International Journal of Clinical Oncology, 24, 885-892. https://doi.org/10.1007/s10147-019-01462-6
|
[4]
|
Pellagatti, A. and Boultwood, J. (2015) The Molecular Pathogenesis of the Myelodysplastic Syndromes. European Journal of Haematology, 95, 3-15. https://doi.org/10.1111/ejh.12515
|
[5]
|
Hirai, H. (2002) Molecular Pathogenesis of MDS. International Journal of Hematology, 76, 213-221. https://doi.org/10.1007/bf03165120
|
[6]
|
Kennedy, J.A. and Ebert, B.L. (2017) Clinical Implications of Genetic Mutations in Myelodysplastic Syndrome. Journal of Clinical Oncology, 35, 968-974. https://doi.org/10.1200/jco.2016.71.0806
|
[7]
|
Sperling, A.S., Gibson, C.J. and Ebert, B.L. (2016) The Genetics of Myelodysplastic Syndrome: From Clonal Haematopoiesis to Secondary Leukaemia. Nature Reviews Cancer, 17, 5-19. https://doi.org/10.1038/nrc.2016.112
|
[8]
|
Sallman, D.A., Cluzeau, T., Basiorka, A.A. and List, A. (2016) Unraveling the Pathogenesis of MDS: The NLRP3 Inflammasome and Pyroptosis Drive the MDS Phenotype. Frontiers in Oncology, 6, Article 151. https://doi.org/10.3389/fonc.2016.00151
|
[9]
|
Kennedy, A.L. and Shimamura, A. (2019) Genetic Predisposition to MDS: Clinical Features and Clonal Evolution. Blood, 133, 1071-1085. https://doi.org/10.1182/blood-2018-10-844662
|
[10]
|
Ganguly, B.B. and Kadam, N.N. (2016) Mutations of Myelodysplastic Syndromes (MDS): An Update. Mutation Research/Reviews in Mutation Research, 769, 47-62. https://doi.org/10.1016/j.mrrev.2016.04.009
|
[11]
|
Zeidan, A.M., Al Ali, N., Barnard, J., Padron, E., Lancet, J.E., Sekeres, M.A., et al. (2017) Comparison of Clinical Outcomes and Prognostic Utility of Risk Stratification Tools in Patients with Therapy-Related vs De Novo Myelodysplastic Syndromes: A Report on Behalf of the MDS Clinical Research Consortium. Leukemia, 31, 1391-1397. https://doi.org/10.1038/leu.2017.33
|
[12]
|
Nazha, A., Komrokji, R.S., Meggendorfer, M., Mukherjee, S., Al Ali, N., Walter, W., et al. (2018) A Personalized Prediction Model to Risk Stratify Patients with Myelodysplastic Syndromes. Blood, 132, 793-793. https://doi.org/10.1182/blood-2018-99-114774
|
[13]
|
Duetz, C., Westers, T.M. and van de Loosdrecht, A.A. (2018) Clinical Implication of Multi-Parameter Flow Cytometry in Myelodysplastic Syndromes. Pathobiology, 86, 14-23. https://doi.org/10.1159/000490727
|
[14]
|
Platzbecker, U. (2019) Treatment of MDS. Blood, 133, 1096-1107. https://doi.org/10.1182/blood-2018-10-844696
|
[15]
|
Sauta, E., Robin, M., Bersanelli, M., Travaglino, E., Meggendorfer, M., Zhao, L., et al. (2023) Real-World Validation of Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. Journal of Clinical Oncology, 41, 2827-2842. https://doi.org/10.1200/jco.22.01784
|
[16]
|
Lee, E., Podoltsev, N., Gore, S.D. and Zeidan, A.M. (2016) The Evolving Field of Prognostication and Risk Stratification in MDS: Recent Developments and Future Directions. Blood Reviews, 30, 1-10. https://doi.org/10.1016/j.blre.2015.06.004
|
[17]
|
Haase, D., Stevenson, K.E., Neuberg, D., Maciejewski, J.P., Nazha, A., Sekeres, M.A., et al. (2019) TP53 Mutation Status Divides Myelodysplastic Syndromes with Complex Karyotypes into Distinct Prognostic Subgroups. Leukemia, 33, 1747-1758. https://doi.org/10.1038/s41375-018-0351-2
|
[18]
|
Winter, S., Shoaie, S., Kordasti, S. and Platzbecker, U. (2020) Integrating the “Immunome” in the Stratification of Myelodysplastic Syndromes and Future Clinical Trial Design. Journal of Clinical Oncology, 38, 1723-1735. https://doi.org/10.1200/jco.19.01823
|
[19]
|
van Spronsen, M.F., Ossenkoppele, G.J., Holman, R. and van de Loosdrecht, A.A. (2014) Improved Risk Stratification by the Integration of the Revised International Prognostic Scoring System with the Myelodysplastic Syndromes Comorbidity Index. European Journal of Cancer, 50, 3198-3205. https://doi.org/10.1016/j.ejca.2014.09.016
|
[20]
|
de Swart, L., Smith, A., Johnston, T.W., Haase, D., Droste, J., Fenaux, P., et al. (2015) Validation of the Revised International Prognostic Scoring System (IPSS‐R) in Patients with Lower‐risk Myelodysplastic Syndromes: A Report from the Prospective European Leukaemianet MDS (EUMDS) Registry. British Journal of Haematology, 170, 372-383. https://doi.org/10.1111/bjh.13450
|
[21]
|
Pfeilstöcker, M., Tuechler, H., Sanz, G., Schanz, J., Garcia-Manero, G., Solé, F., et al. (2016) Time-Dependent Changes in Mortality and Transformation Risk in MDS. Blood, 128, 902-910. https://doi.org/10.1182/blood-2016-02-700054
|
[22]
|
Bejar, R., Papaemmanuil, E., Haferlach, T., Garcia-Manero, G., Maciejewski, J.P., Sekeres, M.A., et al. (2015) Somatic Mutations in MDS Patients Are Associated with Clinical Features and Predict Prognosis Independent of the IPSS-R: Analysis of Combined Datasets from the International Working Group for Prognosis in MDS-Molecular Committee. Blood, 126, 907-907. https://doi.org/10.1182/blood.v126.23.907.907
|
[23]
|
Bersanelli, M., Travaglino, E., Meggendorfer, M., Matteuzzi, T., Sala, C., Mosca, E., et al. (2021) Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. Journal of Clinical Oncology, 39, 1223-1233. https://doi.org/10.1200/jco.20.01659
|
[24]
|
Fenaux, P., Giagounidis, A., Selleslag, D., Beyne-Rauzy, O., Mufti, G., Mittelman, M., et al. (2011) A Randomized Phase 3 Study of Lenalidomide versus Placebo in RBC Transfusion-Dependent Patients with Low-/Intermediate-1-Risk Myelodysplastic Syndromes with del5q. Blood, 118, 3765-3776. https://doi.org/10.1182/blood-2011-01-330126
|
[25]
|
Saygin, C. and Carraway, H.E. (2021) Current and Emerging Strategies for Management of Myelodysplastic Syndromes. Blood Reviews, 48, Article ID: 100791. https://doi.org/10.1016/j.blre.2020.100791
|
[26]
|
Bazinet, A., Jabbour, E.J., Kantarjian, H., Chien, K.S., DiNardo, C.D., Ohanian, M., et al. (2021) A Phase I/II Study of Venetoclax in Combination with 5-Azacytidine in Treatment-Naïve and Relapsed/Refractory High-Risk Myelodysplastic Syndrome (MDS) or Chronic Myelomonocytic Leukemia (CMML). Blood, 138, 535-535. https://doi.org/10.1182/blood-2021-153086
|
[27]
|
Yang, W., Gao, S., Yan, X., Guo, R., Han, L., Li, F., et al. (2024) Latest Results of a Phase 2 Study of IMM01 Combined with Azacitidine (AZA) as the First-Line Treatment in Adults with Higher Risk Myelodysplastic Syndromes (MDS). Journal of Clinical Oncology, 42, 6510-6510. https://doi.org/10.1200/jco.2024.42.16_suppl.6510
|
[28]
|
Greenberg, P.L., Stone, R.M., Al-Kali, A., Barta, S.K., Bejar, R., Bennett, J.M., et al. (2016) Myelodysplastic Syndromes, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 15, 60-87. https://doi.org/10.6004/jnccn.2017.0007
|
[29]
|
Bewersdorf, J.P. and Zeidan, A.M. (2021) Risk-Adapted, Individualized Treatment Strategies of Myelodysplastic Syndromes (MDS) and Chronic Myelomonocytic Leukemia (CMML). Cancers, 13, Article 1610. https://doi.org/10.3390/cancers13071610Lee, E., Podoltsev, N., Gore, S. and Zeidan, A. (2016) The Evolving Field of Prognostication and Risk Stratification in MDS: Recent Developments and Future Directions. Blood Reviews, 30, 1-10.
|
[30]
|
Jackewicz, S.H., Coloma, H.S., Cortiana, V., Joshi, M., Menon, G.P., Balasubramanian, M., et al. (2023) The Evolving Landscape: Exploring the Future of Myelodysplastic Syndrome Treatment with Dr. Rami Komrokji. Cancers, 15, Article 5170. https://doi.org/10.3390/cancers15215170
|
[31]
|
Bond, D.R., Lee, H.J. and Enjeti, A.K. (2020) Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers, 12, Article 3128. https://doi.org/10.3390/cancers12113128
|