|
[1]
|
Ogawa, S. (2019) Genetics of MDS. Blood, 133, 1049-1059. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Shallis, R.M., Ahmad, R. and Zeidan, A.M. (2018) The Genetic and Molecular Pathogenesis of Myelodysplastic Syndromes. European Journal of Haematology, 101, 260-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hosono, N. (2019) Genetic Abnormalities and Pathophysiology of MDS. International Journal of Clinical Oncology, 24, 885-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pellagatti, A. and Boultwood, J. (2015) The Molecular Pathogenesis of the Myelodysplastic Syndromes. European Journal of Haematology, 95, 3-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hirai, H. (2002) Molecular Pathogenesis of MDS. International Journal of Hematology, 76, 213-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kennedy, J.A. and Ebert, B.L. (2017) Clinical Implications of Genetic Mutations in Myelodysplastic Syndrome. Journal of Clinical Oncology, 35, 968-974. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Sperling, A.S., Gibson, C.J. and Ebert, B.L. (2016) The Genetics of Myelodysplastic Syndrome: From Clonal Haematopoiesis to Secondary Leukaemia. Nature Reviews Cancer, 17, 5-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Sallman, D.A., Cluzeau, T., Basiorka, A.A. and List, A. (2016) Unraveling the Pathogenesis of MDS: The NLRP3 Inflammasome and Pyroptosis Drive the MDS Phenotype. Frontiers in Oncology, 6, Article 151. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kennedy, A.L. and Shimamura, A. (2019) Genetic Predisposition to MDS: Clinical Features and Clonal Evolution. Blood, 133, 1071-1085. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ganguly, B.B. and Kadam, N.N. (2016) Mutations of Myelodysplastic Syndromes (MDS): An Update. Mutation Research/Reviews in Mutation Research, 769, 47-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zeidan, A.M., Al Ali, N., Barnard, J., Padron, E., Lancet, J.E., Sekeres, M.A., et al. (2017) Comparison of Clinical Outcomes and Prognostic Utility of Risk Stratification Tools in Patients with Therapy-Related vs De Novo Myelodysplastic Syndromes: A Report on Behalf of the MDS Clinical Research Consortium. Leukemia, 31, 1391-1397. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Nazha, A., Komrokji, R.S., Meggendorfer, M., Mukherjee, S., Al Ali, N., Walter, W., et al. (2018) A Personalized Prediction Model to Risk Stratify Patients with Myelodysplastic Syndromes. Blood, 132, 793-793. [Google Scholar] [CrossRef]
|
|
[13]
|
Duetz, C., Westers, T.M. and van de Loosdrecht, A.A. (2018) Clinical Implication of Multi-Parameter Flow Cytometry in Myelodysplastic Syndromes. Pathobiology, 86, 14-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Platzbecker, U. (2019) Treatment of MDS. Blood, 133, 1096-1107. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sauta, E., Robin, M., Bersanelli, M., Travaglino, E., Meggendorfer, M., Zhao, L., et al. (2023) Real-World Validation of Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. Journal of Clinical Oncology, 41, 2827-2842. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lee, E., Podoltsev, N., Gore, S.D. and Zeidan, A.M. (2016) The Evolving Field of Prognostication and Risk Stratification in MDS: Recent Developments and Future Directions. Blood Reviews, 30, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Haase, D., Stevenson, K.E., Neuberg, D., Maciejewski, J.P., Nazha, A., Sekeres, M.A., et al. (2019) TP53 Mutation Status Divides Myelodysplastic Syndromes with Complex Karyotypes into Distinct Prognostic Subgroups. Leukemia, 33, 1747-1758. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Winter, S., Shoaie, S., Kordasti, S. and Platzbecker, U. (2020) Integrating the “Immunome” in the Stratification of Myelodysplastic Syndromes and Future Clinical Trial Design. Journal of Clinical Oncology, 38, 1723-1735. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
van Spronsen, M.F., Ossenkoppele, G.J., Holman, R. and van de Loosdrecht, A.A. (2014) Improved Risk Stratification by the Integration of the Revised International Prognostic Scoring System with the Myelodysplastic Syndromes Comorbidity Index. European Journal of Cancer, 50, 3198-3205. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
de Swart, L., Smith, A., Johnston, T.W., Haase, D., Droste, J., Fenaux, P., et al. (2015) Validation of the Revised International Prognostic Scoring System (IPSS‐R) in Patients with Lower‐risk Myelodysplastic Syndromes: A Report from the Prospective European Leukaemianet MDS (EUMDS) Registry. British Journal of Haematology, 170, 372-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Pfeilstöcker, M., Tuechler, H., Sanz, G., Schanz, J., Garcia-Manero, G., Solé, F., et al. (2016) Time-Dependent Changes in Mortality and Transformation Risk in MDS. Blood, 128, 902-910. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bejar, R., Papaemmanuil, E., Haferlach, T., Garcia-Manero, G., Maciejewski, J.P., Sekeres, M.A., et al. (2015) Somatic Mutations in MDS Patients Are Associated with Clinical Features and Predict Prognosis Independent of the IPSS-R: Analysis of Combined Datasets from the International Working Group for Prognosis in MDS-Molecular Committee. Blood, 126, 907-907. [Google Scholar] [CrossRef]
|
|
[23]
|
Bersanelli, M., Travaglino, E., Meggendorfer, M., Matteuzzi, T., Sala, C., Mosca, E., et al. (2021) Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. Journal of Clinical Oncology, 39, 1223-1233. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fenaux, P., Giagounidis, A., Selleslag, D., Beyne-Rauzy, O., Mufti, G., Mittelman, M., et al. (2011) A Randomized Phase 3 Study of Lenalidomide versus Placebo in RBC Transfusion-Dependent Patients with Low-/Intermediate-1-Risk Myelodysplastic Syndromes with del5q. Blood, 118, 3765-3776. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Saygin, C. and Carraway, H.E. (2021) Current and Emerging Strategies for Management of Myelodysplastic Syndromes. Blood Reviews, 48, Article ID: 100791. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bazinet, A., Jabbour, E.J., Kantarjian, H., Chien, K.S., DiNardo, C.D., Ohanian, M., et al. (2021) A Phase I/II Study of Venetoclax in Combination with 5-Azacytidine in Treatment-Naïve and Relapsed/Refractory High-Risk Myelodysplastic Syndrome (MDS) or Chronic Myelomonocytic Leukemia (CMML). Blood, 138, 535-535. [Google Scholar] [CrossRef]
|
|
[27]
|
Yang, W., Gao, S., Yan, X., Guo, R., Han, L., Li, F., et al. (2024) Latest Results of a Phase 2 Study of IMM01 Combined with Azacitidine (AZA) as the First-Line Treatment in Adults with Higher Risk Myelodysplastic Syndromes (MDS). Journal of Clinical Oncology, 42, 6510-6510. [Google Scholar] [CrossRef]
|
|
[28]
|
Greenberg, P.L., Stone, R.M., Al-Kali, A., Barta, S.K., Bejar, R., Bennett, J.M., et al. (2016) Myelodysplastic Syndromes, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 15, 60-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bewersdorf, J.P. and Zeidan, A.M. (2021) Risk-Adapted, Individualized Treatment Strategies of Myelodysplastic Syndromes (MDS) and Chronic Myelomonocytic Leukemia (CMML). Cancers, 13, Article 1610. E., Podoltsev, N., Gore, S. and Zeidan, A. (2016) The Evolving Field of Prognostication and Risk Stratification in MDS: Recent Developments and Future Directions. Blood Reviews, 30, 1-10. [Google Scholar] [CrossRef]
|
|
[30]
|
Jackewicz, S.H., Coloma, H.S., Cortiana, V., Joshi, M., Menon, G.P., Balasubramanian, M., et al. (2023) The Evolving Landscape: Exploring the Future of Myelodysplastic Syndrome Treatment with Dr. Rami Komrokji. Cancers, 15, Article 5170. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bond, D.R., Lee, H.J. and Enjeti, A.K. (2020) Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers, 12, Article 3128. [Google Scholar] [CrossRef] [PubMed]
|