[1]
|
Li, Y., Yang, W., Li, X., Zhang, X., Wang, C., Meng, X., et al. (2015) Improving Osteointegration and Osteogenesis of Three-Dimensional Porous Ti6Al4V Scaffolds by Polydopamine-Assisted Biomimetic Hydroxyapatite Coating. ACS Applied Materials & Interfaces, 7, 5715-5724. https://doi.org/10.1021/acsami.5b00331
|
[2]
|
Cai, Y., Wang, X., Poh, C.K., Tan, H.C., Soe, M.T., Zhang, S., et al. (2014) Accelerated Bone Growth in Vitro by the Conjugation of BMP2 Peptide with Hydroxyapatite on Titanium Alloy. Colloids and Surfaces B: Biointerfaces, 116, 681-686. https://doi.org/10.1016/j.colsurfb.2013.11.004
|
[3]
|
Weng, Y., Jian, Y., Huang, W., Xie, Z., Zhou, Y. and Pei, X. (2023) Alkaline Earth Metals for Osteogenic Scaffolds: From Mechanisms to Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 111, 1447-1474. https://doi.org/10.1002/jbm.b.35246
|
[4]
|
Cerqueira, A., Romero-Gavilán, F., García-Arnáez, I., Martinez-Ramos, C., Ozturan, S., Izquierdo, R., et al. (2021) Characterization of Magnesium Doped Sol-Gel Biomaterial for Bone Tissue Regeneration: The Effect of Mg Ion in Protein Adsorption. Materials Science and Engineering: C, 125, Article ID: 112114. https://doi.org/10.1016/j.msec.2021.112114
|
[5]
|
Gehrke, S.A., Maté Sánchez de Val, J.E., Fernández Domínguez, M., de Aza Moya, P.N., Gómez Moreno, G. and Calvo Guirado, J.L. (2016) Effects on the Osseointegration of Titanium Implants Incorporating Calcium-Magnesium: A Resonance Frequency and Histomorphometric Analysis in Rabbit Tibia. Clinical Oral Implants Research, 29, 785-791. https://doi.org/10.1111/clr.12909
|
[6]
|
Wang, J., Liu, Y., Lin, G., Chang, H., Li, Y., Yang, Y., et al. (2020) Flame-Sprayed Strontium-and Magnesium-Doped Hydroxyapatite on Titanium Implants for Osseointegration Enhancement. Surface and Coatings Technology, 386, Article ID: 125452. https://doi.org/10.1016/j.surfcoat.2020.125452
|
[7]
|
Xie, Y., Zhai, W., Chen, L., Chang, J., Zheng, X. and Ding, C. (2009) Preparation and in Vitro Evaluation of Plasma-Sprayed Mg2SiO4 Coating on Titanium Alloy. Acta Biomaterialia, 5, 2331-2337. https://doi.org/10.1016/j.actbio.2009.03.003
|
[8]
|
Zreiqat, H., Valenzuela, S.M., Nissan, B.B., Roest, R., Knabe, C., Radlanski, R.J., et al. (2005) The Effect of Surface Chemistry Modification of Titanium Alloy on Signalling Pathways in Human Osteoblasts. Biomaterials, 26, 7579-7586. https://doi.org/10.1016/j.biomaterials.2005.05.024
|
[9]
|
Wang, S., Zhao, X., Hsu, Y., He, Y., Wang, F., Yang, F., et al. (2023) Surface Modification of Titanium Implants with Mg-Containing Coatings to Promote Osseointegration. Acta Biomaterialia, 169, 19-44. https://doi.org/10.1016/j.actbio.2023.07.048
|
[10]
|
Cho, L., Kim, D., Kim, J., Byon, E., Jeong, Y. and Park, C. (2010) Bone Response of Mg Ion‐Implanted Clinical Implants with the Plasma Source Ion Implantation Method. Clinical Oral Implants Research, 21, 848-856. https://doi.org/10.1111/j.1600-0501.2009.01862.x
|
[11]
|
Lee, S., Chang, Y., Lee, J., Madhurakkat Perikamana, S.K., Kim, E.M., Jung, Y., et al. (2020) Surface Engineering of Titanium Alloy Using Metal-Polyphenol Network Coating with Magnesium Ions for Improved Osseointegration. Biomaterials Science, 8, 3404-3417. https://doi.org/10.1039/d0bm00566e
|
[12]
|
Okuzu, Y., Fujibayashi, S., Yamaguchi, S., Yamamoto, K., Shimizu, T., Sono, T., et al. (2017) Strontium and Magnesium Ions Released from Bioactive Titanium Metal Promote Early Bone Bonding in a Rabbit Implant Model. Acta Biomaterialia, 63, 383-392. https://doi.org/10.1016/j.actbio.2017.09.019
|
[13]
|
Park, J., Hanawa, T. and Chung, J. (2019) The Relative Effects of Ca and Mg Ions on MSC Osteogenesis in the Surface Modification of Microrough Ti Implants. International Journal of Nanomedicine, 14, 5697-5711. https://doi.org/10.2147/ijn.s214363
|
[14]
|
Qiao, X., Yang, J., Shang, Y., Deng, S., Yao, S., Wang, Z., et al. (2020) Magnesium-Doped Nanostructured Titanium Surface Modulates Macrophage-Mediated Inflammatory Response for Ameliorative Osseointegration. International Journal of Nanomedicine, 15, 7185-7198. https://doi.org/10.2147/ijn.s239550
|
[15]
|
Yao, M., Cheng, S., Zhong, G., Zhou, J., Shao, H., Ma, L., et al. (2021) Enhanced Osteogenesis of Titanium with Nano-Mg(OH)2 Film and a Mechanism Study via Whole Genome Expression Analysis. Bioactive Materials, 6, 2729-2741. https://doi.org/10.1016/j.bioactmat.2021.02.003
|
[16]
|
Yin, Y., Jian, L., Li, B., Liang, C., Han, X., Zhao, X., et al. (2021) Mg-Fe Layered Double Hydroxides Modified Titanium Enhanced the Adhesion of Human Gingival Fibroblasts through Regulation of Local pH Level. Materials Science and Engineering: C, 131, Article ID: 112485. https://doi.org/10.1016/j.msec.2021.112485
|
[17]
|
Liu, Y., Wu, J., Zhang, H., Wu, Y. and Tang, C. (2021) Covalent Immobilization of the Phytic Acid-Magnesium Layer on Titanium Improves the Osteogenic and Antibacterial Properties. Colloids and Surfaces B: Biointerfaces, 203, Article ID: 111768. https://doi.org/10.1016/j.colsurfb.2021.111768
|
[18]
|
Sul, Y.T., Johansson, C., Wennerberg, A., Cho, L.R., Chang, B.S. and Albrektsson, T. (2005) Optimum Surface Properties of Oxidized Implants for Reinforcement of Osseointegration: Surface Chemistry, Oxide Thickness, Porosity, Roughness, and Crystal Structure. The International Journal of Oral & Maxillofacial Implants, 20, 349-359.
|
[19]
|
Pang, K., Lee, J., Lee, J., Lee, J., Kim, S., Kim, M., et al. (2012) Clinical Outcomes of Magnesium‐Incorporated Oxidised Implants: A Randomised Double‐Blind Clinical Trial. Clinical Oral Implants Research, 25, 616-621. https://doi.org/10.1111/clr.12091
|
[20]
|
Zhao, Q., Yi, L., Jiang, L., Ma, Y., Lin, H. and Dong, J. (2019) Osteogenic Activity and Antibacterial Ability on Titanium Surfaces Modified with Magnesium-Doped Titanium Dioxide Coating. Nanomedicine, 14, 1109-1133. https://doi.org/10.2217/nnm-2018-0413
|
[21]
|
Zhao, S., Jiang, Q., Peel, S., Wang, X. and He, F. (2011) Effects of Magnesium‐Substituted Nanohydroxyapatite Coating on Implant Osseointegration. Clinical Oral Implants Research, 24, 34-41. https://doi.org/10.1111/j.1600-0501.2011.02362.x
|
[22]
|
Jassim, R.K., Rahman, Z.A. and Fatihallah, A.A. (2017) The Effect of Implant Screw Coating with Nano-Hydroxyapatite and Magnesium Chloride Mixture on Osseointegration: Biomechanical and Histological Study. International Journal of Medical Research & Health Sciences, 6, 41-53.
|
[23]
|
Jiang, X., Wang, G., Li, J., Zhang, W., Xu, L., Pan, H., et al. (2014) Magnesium Ion Implantation on a Micro/Nanostructured Titanium Surface Promotes Its Bioactivity and Osteogenic Differentiation Function. International Journal of Nanomedicine, 9, 2387-2398. https://doi.org/10.2147/ijn.s58357
|
[24]
|
Galli, S., Andersson, M., Jinno, Y., Karlsson, J., He, W., Xue, Y., et al. (2016) Magnesium Release from Mesoporous Carriers on Endosseus Implants Does Not Influence Bone Maturation at 6 Weeks in Rabbit Bone. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105, 2118-2125. https://doi.org/10.1002/jbm.b.33752
|
[25]
|
Galli, S., Naito, Y., Karlsson, J., He, W., Miyamoto, I., Xue, Y., et al. (2014) Local Release of Magnesium from Mesoporous TiO2 Coatings Stimulates the Peri-Implant Expression of Osteogenic Markers and Improves Osteoconductivity in Vivo. Acta Biomaterialia, 10, 5193-5201. https://doi.org/10.1016/j.actbio.2014.08.011
|
[26]
|
Galli, S., Naito, Y., Karlsson, J., He, W., Andersson, M., Wennerberg, A., et al. (2014) Osteoconductive Potential of Mesoporous Titania Implant Surfaces Loaded with Magnesium: An Experimental Study in the Rabbit. Clinical Implant Dentistry and Related Research, 17, 1048-1059. https://doi.org/10.1111/cid.12211
|
[27]
|
Wang, J., Xu, J., Hopkins, C., Chow, D.H. and Qin, L. (2020) Biodegradable Magnesium‐Based Implants in Orthopedics—A General Review and Perspectives. Advanced Science, 7, Article ID: 1902443. https://doi.org/10.1002/advs.201902443
|
[28]
|
Kim, K., Choi, S., Sang Cho, Y., Yang, S., Cho, Y. and Kim, K.K. (2017) Magnesium Ions Enhance Infiltration of Osteoblasts in Scaffolds via Increasing Cell Motility. Journal of Materials Science: Materials in Medicine, 28, Article No. 96. https://doi.org/10.1007/s10856-017-5908-5
|
[29]
|
Hung, C., Chaya, A., Liu, K., Verdelis, K. and Sfeir, C. (2019) The Role of Magnesium Ions in Bone Regeneration Involves the Canonical Wnt Signaling Pathway. Acta Biomaterialia, 98, 246-255. https://doi.org/10.1016/j.actbio.2019.06.001
|
[30]
|
Lin, S., Yang, G., Jiang, F., Zhou, M., Yin, S., Tang, Y., et al. (2019) A Magnesium‐Enriched 3D Culture System That Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration. Advanced Science, 6, Article ID: 1900209. https://doi.org/10.1002/advs.201900209
|
[31]
|
Lin, S., Yang, G., Jiang, F., Zhou, M., Yin, S., Tang, Y., et al. (2019) A Magnesium‐Enriched 3D Culture System That Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration. Advanced Science, 6, Article ID: 1900209. https://doi.org/10.1002/advs.201900209
|
[32]
|
Zhang, Y., Xu, J., Ruan, Y.C., Yu, M.K., O’Laughlin, M., Wise, H., et al. (2016) Implant-Derived Magnesium Induces Local Neuronal Production of CGRP to Improve Bone-Fracture Healing in Rats. Nature Medicine, 22, 1160-1169. https://doi.org/10.1038/nm.4162
|
[33]
|
Zhang, X., Zu, H., Zhao, D., Yang, K., Tian, S., Yu, X., et al. (2017) Ion Channel Functional Protein Kinase TRPM7 Regulates Mg Ions to Promote the Osteoinduction of Human Osteoblast via PI3K Pathway: In Vitro Simulation of the Bone-Repairing Effect of Mg-Based Alloy Implant. Acta Biomaterialia, 63, 369-382. https://doi.org/10.1016/j.actbio.2017.08.051
|
[34]
|
Wang, M., Yu, Y., Dai, K., Ma, Z., Liu, Y., Wang, J., et al. (2016) Improved Osteogenesis and Angiogenesis of Magnesium-Doped Calcium Phosphate Cement via Macrophage Immunomodulation. Biomaterials Science, 4, 1574-1583. https://doi.org/10.1039/c6bm00290k
|
[35]
|
Costantino, M.D., Schuster, A., Helmholz, H., Meyer-Rachner, A., Willumeit-Römer, R. and Luthringer-Feyerabend, B.J.C. (2020) Inflammatory Response to Magnesium-Based Biodegradable Implant Materials. Acta Biomaterialia, 101, 598-608. https://doi.org/10.1016/j.actbio.2019.10.014
|
[36]
|
Bessa-Gonçalves, M., Silva, A.M., Brás, J.P., Helmholz, H., Luthringer-Feyerabend, B.J.C., Willumeit-Römer, R., et al. (2020) Fibrinogen and Magnesium Combination Biomaterials Modulate Macrophage Phenotype, NF-κB Signaling and Crosstalk with Mesenchymal Stem/Stromal Cells. Acta Biomaterialia, 114, 471-484. https://doi.org/10.1016/j.actbio.2020.07.028
|
[37]
|
Ma, L., Cheng, S., Ji, X., Zhou, Y., Zhang, Y., Li, Q., et al. (2020) Immobilizing Magnesium Ions on 3D Printed Porous Tantalum Scaffolds with Polydopamine for Improved Vascularization and Osteogenesis. Materials Science and Engineering: C, 117, Article ID: 111303. https://doi.org/10.1016/j.msec.2020.111303
|
[38]
|
Kusumbe, A.P., Ramasamy, S.K. and Adams, R.H. (2014) Coupling of Angiogenesis and Osteogenesis by a Specific Vessel Subtype in Bone. Nature, 507, 323-328. https://doi.org/10.1038/nature13145
|
[39]
|
Wei, X., Zhou, W., Tang, Z., Wu, H., Liu, Y., Dong, H., et al. (2023) Magnesium Surface-Activated 3D Printed Porous PEEK Scaffolds for in Vivo Osseointegration by Promoting Angiogenesis and Osteogenesis. Bioactive Materials, 20, 16-28. https://doi.org/10.1016/j.bioactmat.2022.05.011
|
[40]
|
Gao, P., Fan, B., Yu, X., Liu, W., Wu, J., Shi, L., et al. (2020) Biofunctional Magnesium Coated Ti6Al4V Scaffold Enhances Osteogenesis and Angiogenesis in Vitro and in Vivo for Orthopedic Application. Bioactive Materials, 5, 680-693. https://doi.org/10.1016/j.bioactmat.2020.04.019
|
[41]
|
Han, X., Ji, X., Zhao, M. and Li, D. (2020) Mg/Ag Ratios Induced in Vitro Cell Adhesion and Preliminary Antibacterial Properties of Tin on Medical Ti-6Al-4V Alloy by Mg and Ag Implantation. Surface and Coatings Technology, 397, Article ID: 126020. https://doi.org/10.1016/j.surfcoat.2020.126020
|
[42]
|
Xie, Y. and Yang, L. (2016) Calcium and Magnesium Ions Are Membrane-Active against Stationary-Phase Staphylococcus Aureus with High Specificity. Scientific Reports, 6, Article No. 20628. https://doi.org/10.1038/srep20628
|
[43]
|
Tian, J., Shen, S., Zhou, C., Dang, X., Jiao, Y., Li, L., et al. (2015) Investigation of the Antimicrobial Activity and Biocompatibility of Magnesium Alloy Coated with HA and Antimicrobial Peptide. Journal of Materials Science: Materials in Medicine, 26, Article No. 66. https://doi.org/10.1007/s10856-015-5389-3
|
[44]
|
de Baaij, J.H.F. (2023) Magnesium Reabsorption in the Kidney. American Journal of Physiology-Renal Physiology, 324, F227-F244. https://doi.org/10.1152/ajprenal.00298.2022
|
[45]
|
Wang, J., Witte, F., Xi, T., Zheng, Y., Yang, K., Yang, Y., et al. (2015) Recommendation for Modifying Current Cytotoxicity Testing Standards for Biodegradable Magnesium-Based Materials. Acta Biomaterialia, 21, 237-249. https://doi.org/10.1016/j.actbio.2015.04.011
|
[46]
|
Windhagen, H., Radtke, K., Weizbauer, A., Diekmann, J., Noll, Y., Kreimeyer, U., et al. (2013) Biodegradable Magnesium-Based Screw Clinically Equivalent to Titanium Screw in Hallux Valgus Surgery: Short Term Results of the First Prospective, Randomized, Controlled Clinical Pilot Study. BioMedical Engineering OnLine, 12, Article No. 62. https://doi.org/10.1186/1475-925x-12-62
|
[47]
|
Zhang, E., Xu, L., Yu, G., Pan, F. and Yang, K. (2008) In Vivo Evaluation of Biodegradable Magnesium Alloy Bone Implant in the First 6 Months Implantation. Journal of Biomedical Materials Research Part A, 90, 882-893. https://doi.org/10.1002/jbm.a.32132
|
[48]
|
Li, H.F., Xie, X.H., Zhao, K., Wang, Y.B., Zheng, Y.F., Wang, W.H., et al. (2013) In Vitro and in Vivo Studies on Biodegradable CaMgZnSrYb High-Entropy Bulk Metallic Glass. Acta Biomaterialia, 9, 8561-8573. https://doi.org/10.1016/j.actbio.2013.01.029
|
[49]
|
Wang, Y.B., Xie, X.H., Li, H.F., Wang, X.L., Zhao, M.Z., Zhang, E.W., et al. (2011) Biodegradable CaMgZn Bulk Metallic Glass for Potential Skeletal Application. Acta Biomaterialia, 7, 3196-3208. https://doi.org/10.1016/j.actbio.2011.04.027
|
[50]
|
Gu, X., Zheng, Y., Cheng, Y., Zhong, S. and Xi, T. (2009) In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys. Biomaterials, 30, 484-498. https://doi.org/10.1016/j.biomaterials.2008.10.021
|
[51]
|
Zheng, L., Zhang, R., Chen, X., Luo, Y., Du, W., Zhu, Y., et al. (2024) Chronic Kidney Disease: A Contraindication for Using Biodegradable Magnesium or Its Alloys as Potential Orthopedic Implants? Biomedical Materials, 19, Article ID: 045023. https://doi.org/10.1088/1748-605x/ad5241
|
[52]
|
Li, X., Gao, P., Wan, P., Pei, Y., Shi, L., Fan, B., et al. (2017) Novel Bio-Functional Magnesium Coating on Porous Ti6Al4V Orthopaedic Implants: In Vitro and in Vivo Study. Scientific Reports, 7, Article No. 40755. https://doi.org/10.1038/srep40755
|