镁涂层修饰的多孔钛合金骨科植入物研究进展
Advancements in Research on Magnesium-Coated Porous Titanium Alloy Orthopedic Implants
DOI: 10.12677/acm.2025.153798, PDF, HTML, XML,   
作者: 郑增辉:西安医学院研究生院,陕西 西安
关键词: 镁涂层骨整合多孔钛合金生物活性Magnesium Coating Osseointegration Porous Titanium Alloy Bioactivity
摘要: 多孔钛合金作为一种生物惰性材料,表面缺乏有效的生物活性成分,骨整合性不足。表面改性是提升其骨整合性的有效策略。镁作为人体必需微量元素,其离子可显著促进成骨作用,但纯镁耐腐蚀性差与力学强度低,这限制了其应用。将镁以涂层形式修饰于多孔钛合金表面,可结合两者的优势,但目前尚未见相关临床应用的系统性报道。本文综述了镁涂层修饰的多孔钛合金骨科植入物研究进展,重点探讨其在骨整合促进、促血管生成及感染风险降低等方面的潜力,并分析其安全性及制备工艺,以期为临床转化提供理论支持。
Abstract: Porous titanium alloys, as bioinert materials, lack effective bioactive components on their surfaces, resulting in insufficient osseointegration. Surface modification is an effective strategy to enhance their osseointegration. Magnesium, an essential trace element in the human body, can significantly promote osteogenesis through its ions. However, pure magnesium suffers from poor corrosion resistance and low mechanical strength, limiting its application. Modifying the surface of porous titanium alloys with magnesium in the form of a coating can combine the advantages of both materials, yet systematic reports on related clinical applications are currently lacking. This article reviews the research progress on magnesium-coated porous titanium alloy orthopedic implants, focusing on their potential to enhance osseointegration, promote angiogenesis, and reduce infection risk. It also analyzes their safety and preparation processes, aiming to provide theoretical support for clinical translation.
文章引用:郑增辉. 镁涂层修饰的多孔钛合金骨科植入物研究进展[J]. 临床医学进展, 2025, 15(3): 1731-1737. https://doi.org/10.12677/acm.2025.153798

1. 引言

在骨科领域,四肢大段骨缺损的修复一直是临床面临的重要挑战。随着材料科学的发展及加工工艺的进步,个性化医疗器械在临床治疗中的应用日益广泛,特别是3D打印技术的出现为制造个性化多孔钛合金假体提供了新方法。但钛合金表面生物活性低,骨传导能力不足,孔隙深部的骨长入困难[1] [2]。为了解决这一问题,研究者开始探索各种表面改性技术,以提高钛合金的骨诱导能力。镁离子可通过调控成骨细胞分化、血管生成及免疫微环境,促进骨再生[3] [4]。然而,纯镁植入物因降解速率快、力学性能不足难以直接应用。将镁作为涂层修饰钛合金表面,既能保留钛的结构优势,又可赋予其生物活性,成为当前研究热点。本文系统分析该技术的制备方法、生物功能、安全性及临床应用挑战,旨在为未来研究提供方向。

2. 用于制备镁涂层修饰的多孔钛合金工艺

多孔钛合金表面镁涂层的制备工艺可分为三种:物理修饰、化学修饰和混合修饰。物理修饰方法主要包括:喷砂、火焰喷涂、真空等离子喷涂(Vacuum Plasma Spraying, VPS)、离子体浸没式离子注入、浸泡法等。喷砂使用氧化镁颗粒高速冲击钛表面,形成粗糙的多孔结构,能够增加表面粗糙度,但可能残留喷砂颗粒[5]。火焰喷涂将镁化合物(如Mg(OH)2溶液)通过火焰熔化并喷涂至钛表面,可形成较厚涂层(1~30 μm),但结合强度较低[6]。VPS在真空环境下,通过等离子体将镁硅酸盐(Mg2SiO4)粉末喷涂至钛表面,这种涂层结合强度高(41.5 MPa),但需高温操作[7]。离子体浸没式离子注有等离子体源离子注入(Plasma Source Ion Implantation, PSII)和等离子体浸入离子注入(Plasma Immersion Ion Implantation, PIII),通过离子束将镁等离子体注入钛表面,形成纳米级薄膜(10~60 nm),能精确控制涂层成分,但设备成本高[8]-[10]。浸泡法将钛植入物浸泡于MgCl2溶液中,使镁离子沉积至表面,此方法操作简单,但需结合介孔涂层提高负载效率[9] [11]。化学修饰方法有:碱热处理、水热处理、电泳沉积、微弧氧化(Microarc Oxidation, MAO)、等离子电解氧化(Plasma Electrolytic Oxidation, PEO)。碱热处理法是用强碱溶液(如NaOH)蚀刻钛表面,随后高温处理形成纳米结构,再浸渍镁离子,但这样可能降低假体的力学稳定性[12]。水热处理在高压反应釜中,通过水热反应生成Mg(OH)2纳米结构涂层,制作出来的涂层均匀且生物活性高,但操作方式比较复杂[13]-[17]。MAO通过电化学氧化在钛表面生成含镁的多孔氧化钛层,该涂层结合强度高(30 MPa),孔隙率可控(19%~31%) [9] [18] [19]。PEO在含镁电解液中通过等离子放电生成Mg-TiO2复合涂层,形成的多层结构(致密层 + 多孔层),生物相容性优异[9] [20]。电泳沉积在电场作用下,将纳米羟基磷灰石(Hydroxyapatite, HA)与镁离子共沉积至钛表面,这种方法成本低,但涂层较薄(<200 nm) [21] [22]。混合修饰有水热处理 + 离子注入、介孔涂层 + 浸泡法等。水热处理 + 离子注入先通过水热法生成纳米结构,再注入镁等离子体,这两种方式结合协同增强表面活性和力学性能[23]。介孔涂层 + 浸泡法在钛表面制备介孔TiO2层,随后浸泡于MgCl2溶液中负载镁离子,虽能提高镁离子缓释能力,但长期稳定性需验证[24]-[26]

3. 镁涂层修饰多孔钛合金的生物学性能

3.1. 促进骨整合

镁涂层通过镁金属降解产生的镁离子可促进血管生成、免疫调节和抗炎作用以及增强细胞迁移和粘附[27] [28]。镁离子通过整合素家族(介导细胞粘附的跨膜蛋白)和Fak相关信号通路之间的结合相互作用促进细胞黏附,通过激活ERK/c-Fos、PI3K、Notch、经典Wnt、BMP-4相关信号通路和TRPM7蛋白通道诱导骨整合[9] [29]。骨髓间充质干细胞的成骨分化是镁离子调节骨再生的主要途径,可通过激活MAPK/ERK信号通路[30]和经典Wnt信号通路[29],促进骨髓间充质干细胞成骨分化,并且具有浓度依赖性。有研究报道,10 mmol/L镁离子通过经典Wnt信号通路诱导骨髓间充质干细胞成骨分化,而(2.5~5.0) × 103 mol/L通过激活MAPK/ERK信号通路诱导骨髓间充质干细胞成骨分化[29] [31]。镁离子还可影响其他细胞分泌细胞因子促进间充质干细胞成骨分化。例如,对于神经细胞,促进其分泌降钙素相关肽,从而促进骨膜干细胞成骨分化增强[32]。对于成骨细胞,激活成骨细胞内TRPM7/PI3K信号通路,促进细胞增殖[33]。对于巨噬细胞,镁离子可以促进M1型巨噬细胞向M2型巨噬细胞转化,抑制促炎因子TNF-α、IL-1 β及IL-6的分泌,促进BMP-2和TGF-β的表达,促进骨再生[34]-[36]。Yao等人通过水热处理制备的生物活性氢氧化镁薄膜,发现其纳米结构能够释放镁离子,激活BMP-4相关信号通路,从而促进成骨作用[15]。综上所述,镁离子可以通过多个路径促进骨再生,不同的镁离子浓度可能激活不同的信号通路,促进间充质干细胞增殖、黏附及成骨分化。但目前最佳的浓度范围还尚不明确,高浓度还可能抑制骨再生,这些都还需进一步探索。

3.2. 促进血管生成

血管能够运输营养物质,因此血管的形成在骨生成过程中非常重要。有研究报道镁离子能够在体内共同促进血管和骨生长[37]。KUSUMBE等人发现H型血管为骨骼特有的血管,骨祖细胞选择性聚集在此型血管周围[38]。Wei等人将与镁离子螯合的聚多巴胺(PDA)涂层涂覆在3D打印多孔聚醚醚酮(PEEK)支架表面,研究发现该支架释放的镁离子可上调人脐静脉内皮细胞(Human Umbilical Vein Endothelial Cells, HUVECs)中H型血管标记物CD31和EMCN的表达,促进血管生成[39]。Gao等人的研究发现镁涂层Ti6Al4V支架能促进HUVECs增殖、黏附、迁移,降解产生的镁离子可能通过激活低氧诱导因子-1α (Hypoxia-Inducible Factor-1α, HIF-1α)转录活性,促进血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)表达来发挥促血管生成作用[40]。这些研究充分说明,镁离子可以促进血管生成,在骨修复材料的血管化过程中意义重大,为提升骨修复效果提供了有力支持。

3.3. 减少感染风险

镁涂层还具有一定的抗菌、抗炎性能,一定程度上可以降低术后感染风险。有研究报道镁能够下调炎症相关基因IL-1β、IL-6、TNF-α的表达,上调抗炎基因IL-10等的表达[11] [14] [17] [20] [41]。此外,镁对金黄色葡萄球菌具有抗菌特性,可以阻止细菌附着和生物膜的形成[42] [43]

4. 镁涂层修饰的多孔钛合金植入物的安全性

含镁植入物在体内降解时会产生镁离子、氢气并导致碱性环境,若降解的速率超过周围组织的代谢能力则会导致毒副作用。人体内的多余的镁通过肾脏代谢,从尿液中排出体外。每天大约有2400毫克的镁被肾小球过滤,经过肾小管重吸收约95%~99%,剩余的镁离子通过尿液排出体外[44]。镁基合金材料的细胞毒性实验,在Wang等[45]建议修改可生物降解镁基材料现行细胞毒性试验标准前,已有大量动物体内实验及可降解镁基植入物的临床评估表明,镁基植入物的降解产物在整个治疗期间中在体内可以耐受[46] [47]。但是,根据之前ISO 10993系列标准中记录的体外细胞毒性试验设计时没有考虑体内循环对降解产生的离子有清除作用,这可能导致体外和体内研究的离子浓度不一致[48]-[50],体外研究时使用的镁离子浓度高于体内,因此使用修改后的标准,镁基合金材料的安全性更高。Zheng等[51]将高纯镁和镁基合金植入慢性肾病模型的大鼠体内,在心脏、肝脏、脾脏、肺部或肾脏等主要器官中没有观察到镁离子浓度显著升高,在长期随访中未观察到对慢性肾病大鼠造成额外健康风险。而镁涂层修饰的3D打印个性化多孔钛合金四肢骨假体中镁元素的含量低于镁基合金材料中的镁元素含量,因此该涂层假体相对安全。并且Li等人的研究[52]发现镁涂层修饰的多孔钛合金材料在体外降解时4天内腐蚀速度较快,4天后腐蚀速度较为缓慢稳定,并且初步证明了生物功能镁涂层可以促进骨整合,并且没有明显的镁腐蚀副作用。

5. 临床应用现状

目前生物功能镁涂层3D打印多孔钛合金支架仍处于临床前期阶段,骨科尚无有关应用于临床的报道。Li等人[52]采用电弧离子镀的方法在3D打印多孔钛合金表面成功制备了具有生物活性的镁涂层,MC3T3-E1 (小鼠胚胎成骨细胞前体细胞)细胞的体外毒性和增殖研究表明,镁涂层修饰的3D打印多孔Ti6Al4V支架具有良好的降解和生物相容性。体内研究发现在植入兔股骨髁缺损4周和8周后可显著促进骨再生,具有比裸多孔钛合金更好的成骨性和骨整合性。Gao等人[40]使用镁涂层修饰的3D打印多孔Ti6Al4V支架体进行研究表明,与裸3D打印多孔Ti6Al4V支架共培养相比,镁涂层修饰的3D打印多孔Ti6Al4V支架与MC3T3-E1细胞共培养可以改善细胞增殖、粘附、细胞外基质(ECM)矿化和碱性磷酸酶(ALP)活性;体内研究表明,植入后兔子的新骨再生显著增加。以上研究都表明,生物活性镁涂层修饰的3D打印多孔Ti6Al4V支架具有更好的骨整合和成骨功能,有望用于骨科应用。

6. 挑战与展望

随着3D打印技术和生物材料科学的不断进步,镁涂层修饰的3D打印个性化多孔钛合金植入物有望在临床治疗中发挥更大的作用。通过深入研究镁涂层的作用机制和优化其制备工艺,有望开发出更加安全、有效和个性化的骨修复材料,为骨缺损患者提供更好的治疗选择。尽管镁涂层修饰的3D打印多孔钛合金植入物在临床应用中展现出诸多优势,但仍面临一些挑战。目前关于镁涂层修饰假体的临床效果和安全性数据仍然有限,大多数研究还处于动物实验阶段,临床上骨科尚无有关临床应用数据,需要进一步的临床试验来验证其应用的可靠性。此外,镁涂层的制备工艺和质量控制也需要进一步优化,以提高涂层的均匀性和稳定性。

参考文献

[1] Li, Y., Yang, W., Li, X., Zhang, X., Wang, C., Meng, X., et al. (2015) Improving Osteointegration and Osteogenesis of Three-Dimensional Porous Ti6Al4V Scaffolds by Polydopamine-Assisted Biomimetic Hydroxyapatite Coating. ACS Applied Materials & Interfaces, 7, 5715-5724.
https://doi.org/10.1021/acsami.5b00331
[2] Cai, Y., Wang, X., Poh, C.K., Tan, H.C., Soe, M.T., Zhang, S., et al. (2014) Accelerated Bone Growth in Vitro by the Conjugation of BMP2 Peptide with Hydroxyapatite on Titanium Alloy. Colloids and Surfaces B: Biointerfaces, 116, 681-686.
https://doi.org/10.1016/j.colsurfb.2013.11.004
[3] Weng, Y., Jian, Y., Huang, W., Xie, Z., Zhou, Y. and Pei, X. (2023) Alkaline Earth Metals for Osteogenic Scaffolds: From Mechanisms to Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 111, 1447-1474.
https://doi.org/10.1002/jbm.b.35246
[4] Cerqueira, A., Romero-Gavilán, F., García-Arnáez, I., Martinez-Ramos, C., Ozturan, S., Izquierdo, R., et al. (2021) Characterization of Magnesium Doped Sol-Gel Biomaterial for Bone Tissue Regeneration: The Effect of Mg Ion in Protein Adsorption. Materials Science and Engineering: C, 125, Article ID: 112114.
https://doi.org/10.1016/j.msec.2021.112114
[5] Gehrke, S.A., Maté Sánchez de Val, J.E., Fernández Domínguez, M., de Aza Moya, P.N., Gómez Moreno, G. and Calvo Guirado, J.L. (2016) Effects on the Osseointegration of Titanium Implants Incorporating Calcium-Magnesium: A Resonance Frequency and Histomorphometric Analysis in Rabbit Tibia. Clinical Oral Implants Research, 29, 785-791.
https://doi.org/10.1111/clr.12909
[6] Wang, J., Liu, Y., Lin, G., Chang, H., Li, Y., Yang, Y., et al. (2020) Flame-Sprayed Strontium-and Magnesium-Doped Hydroxyapatite on Titanium Implants for Osseointegration Enhancement. Surface and Coatings Technology, 386, Article ID: 125452.
https://doi.org/10.1016/j.surfcoat.2020.125452
[7] Xie, Y., Zhai, W., Chen, L., Chang, J., Zheng, X. and Ding, C. (2009) Preparation and in Vitro Evaluation of Plasma-Sprayed Mg2SiO4 Coating on Titanium Alloy. Acta Biomaterialia, 5, 2331-2337.
https://doi.org/10.1016/j.actbio.2009.03.003
[8] Zreiqat, H., Valenzuela, S.M., Nissan, B.B., Roest, R., Knabe, C., Radlanski, R.J., et al. (2005) The Effect of Surface Chemistry Modification of Titanium Alloy on Signalling Pathways in Human Osteoblasts. Biomaterials, 26, 7579-7586.
https://doi.org/10.1016/j.biomaterials.2005.05.024
[9] Wang, S., Zhao, X., Hsu, Y., He, Y., Wang, F., Yang, F., et al. (2023) Surface Modification of Titanium Implants with Mg-Containing Coatings to Promote Osseointegration. Acta Biomaterialia, 169, 19-44.
https://doi.org/10.1016/j.actbio.2023.07.048
[10] Cho, L., Kim, D., Kim, J., Byon, E., Jeong, Y. and Park, C. (2010) Bone Response of Mg Ion‐Implanted Clinical Implants with the Plasma Source Ion Implantation Method. Clinical Oral Implants Research, 21, 848-856.
https://doi.org/10.1111/j.1600-0501.2009.01862.x
[11] Lee, S., Chang, Y., Lee, J., Madhurakkat Perikamana, S.K., Kim, E.M., Jung, Y., et al. (2020) Surface Engineering of Titanium Alloy Using Metal-Polyphenol Network Coating with Magnesium Ions for Improved Osseointegration. Biomaterials Science, 8, 3404-3417.
https://doi.org/10.1039/d0bm00566e
[12] Okuzu, Y., Fujibayashi, S., Yamaguchi, S., Yamamoto, K., Shimizu, T., Sono, T., et al. (2017) Strontium and Magnesium Ions Released from Bioactive Titanium Metal Promote Early Bone Bonding in a Rabbit Implant Model. Acta Biomaterialia, 63, 383-392.
https://doi.org/10.1016/j.actbio.2017.09.019
[13] Park, J., Hanawa, T. and Chung, J. (2019) The Relative Effects of Ca and Mg Ions on MSC Osteogenesis in the Surface Modification of Microrough Ti Implants. International Journal of Nanomedicine, 14, 5697-5711.
https://doi.org/10.2147/ijn.s214363
[14] Qiao, X., Yang, J., Shang, Y., Deng, S., Yao, S., Wang, Z., et al. (2020) Magnesium-Doped Nanostructured Titanium Surface Modulates Macrophage-Mediated Inflammatory Response for Ameliorative Osseointegration. International Journal of Nanomedicine, 15, 7185-7198.
https://doi.org/10.2147/ijn.s239550
[15] Yao, M., Cheng, S., Zhong, G., Zhou, J., Shao, H., Ma, L., et al. (2021) Enhanced Osteogenesis of Titanium with Nano-Mg(OH)2 Film and a Mechanism Study via Whole Genome Expression Analysis. Bioactive Materials, 6, 2729-2741.
https://doi.org/10.1016/j.bioactmat.2021.02.003
[16] Yin, Y., Jian, L., Li, B., Liang, C., Han, X., Zhao, X., et al. (2021) Mg-Fe Layered Double Hydroxides Modified Titanium Enhanced the Adhesion of Human Gingival Fibroblasts through Regulation of Local pH Level. Materials Science and Engineering: C, 131, Article ID: 112485.
https://doi.org/10.1016/j.msec.2021.112485
[17] Liu, Y., Wu, J., Zhang, H., Wu, Y. and Tang, C. (2021) Covalent Immobilization of the Phytic Acid-Magnesium Layer on Titanium Improves the Osteogenic and Antibacterial Properties. Colloids and Surfaces B: Biointerfaces, 203, Article ID: 111768.
https://doi.org/10.1016/j.colsurfb.2021.111768
[18] Sul, Y.T., Johansson, C., Wennerberg, A., Cho, L.R., Chang, B.S. and Albrektsson, T. (2005) Optimum Surface Properties of Oxidized Implants for Reinforcement of Osseointegration: Surface Chemistry, Oxide Thickness, Porosity, Roughness, and Crystal Structure. The International Journal of Oral & Maxillofacial Implants, 20, 349-359.
[19] Pang, K., Lee, J., Lee, J., Lee, J., Kim, S., Kim, M., et al. (2012) Clinical Outcomes of Magnesium‐Incorporated Oxidised Implants: A Randomised Double‐Blind Clinical Trial. Clinical Oral Implants Research, 25, 616-621.
https://doi.org/10.1111/clr.12091
[20] Zhao, Q., Yi, L., Jiang, L., Ma, Y., Lin, H. and Dong, J. (2019) Osteogenic Activity and Antibacterial Ability on Titanium Surfaces Modified with Magnesium-Doped Titanium Dioxide Coating. Nanomedicine, 14, 1109-1133.
https://doi.org/10.2217/nnm-2018-0413
[21] Zhao, S., Jiang, Q., Peel, S., Wang, X. and He, F. (2011) Effects of Magnesium‐Substituted Nanohydroxyapatite Coating on Implant Osseointegration. Clinical Oral Implants Research, 24, 34-41.
https://doi.org/10.1111/j.1600-0501.2011.02362.x
[22] Jassim, R.K., Rahman, Z.A. and Fatihallah, A.A. (2017) The Effect of Implant Screw Coating with Nano-Hydroxyapatite and Magnesium Chloride Mixture on Osseointegration: Biomechanical and Histological Study. International Journal of Medical Research & Health Sciences, 6, 41-53.
[23] Jiang, X., Wang, G., Li, J., Zhang, W., Xu, L., Pan, H., et al. (2014) Magnesium Ion Implantation on a Micro/Nanostructured Titanium Surface Promotes Its Bioactivity and Osteogenic Differentiation Function. International Journal of Nanomedicine, 9, 2387-2398.
https://doi.org/10.2147/ijn.s58357
[24] Galli, S., Andersson, M., Jinno, Y., Karlsson, J., He, W., Xue, Y., et al. (2016) Magnesium Release from Mesoporous Carriers on Endosseus Implants Does Not Influence Bone Maturation at 6 Weeks in Rabbit Bone. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105, 2118-2125.
https://doi.org/10.1002/jbm.b.33752
[25] Galli, S., Naito, Y., Karlsson, J., He, W., Miyamoto, I., Xue, Y., et al. (2014) Local Release of Magnesium from Mesoporous TiO2 Coatings Stimulates the Peri-Implant Expression of Osteogenic Markers and Improves Osteoconductivity in Vivo. Acta Biomaterialia, 10, 5193-5201.
https://doi.org/10.1016/j.actbio.2014.08.011
[26] Galli, S., Naito, Y., Karlsson, J., He, W., Andersson, M., Wennerberg, A., et al. (2014) Osteoconductive Potential of Mesoporous Titania Implant Surfaces Loaded with Magnesium: An Experimental Study in the Rabbit. Clinical Implant Dentistry and Related Research, 17, 1048-1059.
https://doi.org/10.1111/cid.12211
[27] Wang, J., Xu, J., Hopkins, C., Chow, D.H. and Qin, L. (2020) Biodegradable Magnesium‐Based Implants in Orthopedics—A General Review and Perspectives. Advanced Science, 7, Article ID: 1902443.
https://doi.org/10.1002/advs.201902443
[28] Kim, K., Choi, S., Sang Cho, Y., Yang, S., Cho, Y. and Kim, K.K. (2017) Magnesium Ions Enhance Infiltration of Osteoblasts in Scaffolds via Increasing Cell Motility. Journal of Materials Science: Materials in Medicine, 28, Article No. 96.
https://doi.org/10.1007/s10856-017-5908-5
[29] Hung, C., Chaya, A., Liu, K., Verdelis, K. and Sfeir, C. (2019) The Role of Magnesium Ions in Bone Regeneration Involves the Canonical Wnt Signaling Pathway. Acta Biomaterialia, 98, 246-255.
https://doi.org/10.1016/j.actbio.2019.06.001
[30] Lin, S., Yang, G., Jiang, F., Zhou, M., Yin, S., Tang, Y., et al. (2019) A Magnesium‐Enriched 3D Culture System That Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration. Advanced Science, 6, Article ID: 1900209.
https://doi.org/10.1002/advs.201900209
[31] Lin, S., Yang, G., Jiang, F., Zhou, M., Yin, S., Tang, Y., et al. (2019) A Magnesium‐Enriched 3D Culture System That Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration. Advanced Science, 6, Article ID: 1900209.
https://doi.org/10.1002/advs.201900209
[32] Zhang, Y., Xu, J., Ruan, Y.C., Yu, M.K., O’Laughlin, M., Wise, H., et al. (2016) Implant-Derived Magnesium Induces Local Neuronal Production of CGRP to Improve Bone-Fracture Healing in Rats. Nature Medicine, 22, 1160-1169.
https://doi.org/10.1038/nm.4162
[33] Zhang, X., Zu, H., Zhao, D., Yang, K., Tian, S., Yu, X., et al. (2017) Ion Channel Functional Protein Kinase TRPM7 Regulates Mg Ions to Promote the Osteoinduction of Human Osteoblast via PI3K Pathway: In Vitro Simulation of the Bone-Repairing Effect of Mg-Based Alloy Implant. Acta Biomaterialia, 63, 369-382.
https://doi.org/10.1016/j.actbio.2017.08.051
[34] Wang, M., Yu, Y., Dai, K., Ma, Z., Liu, Y., Wang, J., et al. (2016) Improved Osteogenesis and Angiogenesis of Magnesium-Doped Calcium Phosphate Cement via Macrophage Immunomodulation. Biomaterials Science, 4, 1574-1583.
https://doi.org/10.1039/c6bm00290k
[35] Costantino, M.D., Schuster, A., Helmholz, H., Meyer-Rachner, A., Willumeit-Römer, R. and Luthringer-Feyerabend, B.J.C. (2020) Inflammatory Response to Magnesium-Based Biodegradable Implant Materials. Acta Biomaterialia, 101, 598-608.
https://doi.org/10.1016/j.actbio.2019.10.014
[36] Bessa-Gonçalves, M., Silva, A.M., Brás, J.P., Helmholz, H., Luthringer-Feyerabend, B.J.C., Willumeit-Römer, R., et al. (2020) Fibrinogen and Magnesium Combination Biomaterials Modulate Macrophage Phenotype, NF-κB Signaling and Crosstalk with Mesenchymal Stem/Stromal Cells. Acta Biomaterialia, 114, 471-484.
https://doi.org/10.1016/j.actbio.2020.07.028
[37] Ma, L., Cheng, S., Ji, X., Zhou, Y., Zhang, Y., Li, Q., et al. (2020) Immobilizing Magnesium Ions on 3D Printed Porous Tantalum Scaffolds with Polydopamine for Improved Vascularization and Osteogenesis. Materials Science and Engineering: C, 117, Article ID: 111303.
https://doi.org/10.1016/j.msec.2020.111303
[38] Kusumbe, A.P., Ramasamy, S.K. and Adams, R.H. (2014) Coupling of Angiogenesis and Osteogenesis by a Specific Vessel Subtype in Bone. Nature, 507, 323-328.
https://doi.org/10.1038/nature13145
[39] Wei, X., Zhou, W., Tang, Z., Wu, H., Liu, Y., Dong, H., et al. (2023) Magnesium Surface-Activated 3D Printed Porous PEEK Scaffolds for in Vivo Osseointegration by Promoting Angiogenesis and Osteogenesis. Bioactive Materials, 20, 16-28.
https://doi.org/10.1016/j.bioactmat.2022.05.011
[40] Gao, P., Fan, B., Yu, X., Liu, W., Wu, J., Shi, L., et al. (2020) Biofunctional Magnesium Coated Ti6Al4V Scaffold Enhances Osteogenesis and Angiogenesis in Vitro and in Vivo for Orthopedic Application. Bioactive Materials, 5, 680-693.
https://doi.org/10.1016/j.bioactmat.2020.04.019
[41] Han, X., Ji, X., Zhao, M. and Li, D. (2020) Mg/Ag Ratios Induced in Vitro Cell Adhesion and Preliminary Antibacterial Properties of Tin on Medical Ti-6Al-4V Alloy by Mg and Ag Implantation. Surface and Coatings Technology, 397, Article ID: 126020.
https://doi.org/10.1016/j.surfcoat.2020.126020
[42] Xie, Y. and Yang, L. (2016) Calcium and Magnesium Ions Are Membrane-Active against Stationary-Phase Staphylococcus Aureus with High Specificity. Scientific Reports, 6, Article No. 20628.
https://doi.org/10.1038/srep20628
[43] Tian, J., Shen, S., Zhou, C., Dang, X., Jiao, Y., Li, L., et al. (2015) Investigation of the Antimicrobial Activity and Biocompatibility of Magnesium Alloy Coated with HA and Antimicrobial Peptide. Journal of Materials Science: Materials in Medicine, 26, Article No. 66.
https://doi.org/10.1007/s10856-015-5389-3
[44] de Baaij, J.H.F. (2023) Magnesium Reabsorption in the Kidney. American Journal of Physiology-Renal Physiology, 324, F227-F244.
https://doi.org/10.1152/ajprenal.00298.2022
[45] Wang, J., Witte, F., Xi, T., Zheng, Y., Yang, K., Yang, Y., et al. (2015) Recommendation for Modifying Current Cytotoxicity Testing Standards for Biodegradable Magnesium-Based Materials. Acta Biomaterialia, 21, 237-249.
https://doi.org/10.1016/j.actbio.2015.04.011
[46] Windhagen, H., Radtke, K., Weizbauer, A., Diekmann, J., Noll, Y., Kreimeyer, U., et al. (2013) Biodegradable Magnesium-Based Screw Clinically Equivalent to Titanium Screw in Hallux Valgus Surgery: Short Term Results of the First Prospective, Randomized, Controlled Clinical Pilot Study. BioMedical Engineering OnLine, 12, Article No. 62.
https://doi.org/10.1186/1475-925x-12-62
[47] Zhang, E., Xu, L., Yu, G., Pan, F. and Yang, K. (2008) In Vivo Evaluation of Biodegradable Magnesium Alloy Bone Implant in the First 6 Months Implantation. Journal of Biomedical Materials Research Part A, 90, 882-893.
https://doi.org/10.1002/jbm.a.32132
[48] Li, H.F., Xie, X.H., Zhao, K., Wang, Y.B., Zheng, Y.F., Wang, W.H., et al. (2013) In Vitro and in Vivo Studies on Biodegradable CaMgZnSrYb High-Entropy Bulk Metallic Glass. Acta Biomaterialia, 9, 8561-8573.
https://doi.org/10.1016/j.actbio.2013.01.029
[49] Wang, Y.B., Xie, X.H., Li, H.F., Wang, X.L., Zhao, M.Z., Zhang, E.W., et al. (2011) Biodegradable CaMgZn Bulk Metallic Glass for Potential Skeletal Application. Acta Biomaterialia, 7, 3196-3208.
https://doi.org/10.1016/j.actbio.2011.04.027
[50] Gu, X., Zheng, Y., Cheng, Y., Zhong, S. and Xi, T. (2009) In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys. Biomaterials, 30, 484-498.
https://doi.org/10.1016/j.biomaterials.2008.10.021
[51] Zheng, L., Zhang, R., Chen, X., Luo, Y., Du, W., Zhu, Y., et al. (2024) Chronic Kidney Disease: A Contraindication for Using Biodegradable Magnesium or Its Alloys as Potential Orthopedic Implants? Biomedical Materials, 19, Article ID: 045023.
https://doi.org/10.1088/1748-605x/ad5241
[52] Li, X., Gao, P., Wan, P., Pei, Y., Shi, L., Fan, B., et al. (2017) Novel Bio-Functional Magnesium Coating on Porous Ti6Al4V Orthopaedic Implants: In Vitro and in Vivo Study. Scientific Reports, 7, Article No. 40755.
https://doi.org/10.1038/srep40755