HTGP与代谢综合征之间相关性的研究进展
Research Progress on the Correlation between HTGP and Metabolic Syndrome
DOI: 10.12677/jcpm.2025.42144, PDF, HTML, XML,   
作者: 辜荣锦, 张月荣*:重庆医科大学附属大学城医院消化内科,重庆
关键词: HTGP代谢综合征肥胖胰岛素抵抗综述HTGP Metabolic Syndrome Obesity Insulin Resistance Review
摘要: 高甘油三酯血症性胰腺炎(hypertriglyceridemic pancreatitis, HTGP)以血脂明显升高为主要特点,其病情变化快、易发展为重症胰腺炎,近年来发病率逐年上升,目前在中国已成为急性胰腺炎(acute pancreatitis, AP)的第二大分类。代谢综合征(metabolic syndrome, MS)是以肥胖、胰岛素抵抗、血脂异常、高血压等为主要特征的一组临床症候群,在人群中发病率逐年上升且有年轻化趋势。HTGP与MS间存在血脂异常、肥胖等交叉点,故可推测二者间有着密切联系,目前有研究表明与MS相关的AP发病率高且病情严重,但其具体关联及机制尚未明确。本文将总结近年来HGTP与MS的相关进展,以对临床工作的治疗及预防提供价值。
Abstract: Hypertriglyceridemic pancreatitis (HTGP) is mainly characterized by a significant increase in blood lipids. Its condition changes rapidly and it is prone to develop into severe pancreatitis. In recent years, its incidence has been increasing year by year and it has now become the second largest classification of acute pancreatitis (AP) in China. Metabolic syndrome (MS) is a group of clinical syndromes mainly characterized by obesity, insulin resistance, dyslipidemia, hypertension, etc. Its incidence in the population has been rising year by year and there is a trend of younger age. There are intersections such as dyslipidemia and obesity between HTGP and MS, so it can be speculated that there is a close connection between them. At present, studies have shown that the incidence of AP related to MS is high and the condition is severe, but its specific association and mechanism have not been clearly defined yet. This article will summarize the relevant progress of HGTP and MS in recent years, so as to provide value for the treatment and prevention in clinical work.
文章引用:辜荣锦, 张月荣. HTGP与代谢综合征之间相关性的研究进展[J]. 临床个性化医学, 2025, 4(2): 42-50. https://doi.org/10.12677/jcpm.2025.42144

1. 引言

急性胰腺炎是胰酶异常激活引起胰腺组织自我消化,导致胰腺出现局部炎症反应,最终累及全身多个脏器的一种临床急腹症,其重症病死率较高,且近年来AP的发病率逐年上升[1]。HTGP目前在中国已超过酒精性胰腺炎,成为AP的第二大分类,且近年来临床占比率逐年升高,可以推测其有超过胆源性胰腺炎,成为急性胰腺炎第一病因分类趋势。

代谢综合征是一组体内物质代谢异常引起的复杂性代谢紊乱症候群,包括中心性肥胖、脂代谢异常、糖尿病与胰岛素抵抗(IR)及高血压等其他物质代谢异常[2]。近年来,MS的发病率逐年上升,呈现年轻化趋势,且与AP之间存在一定相关性。随着AP严重程度的增加,MS的发生率亦随之增加,且与腰围、高血糖和高甘油三酯血症等成分之间存在显著关联。高甘油三酯血症是诊断HTGP的必要条件,而血脂异常同时又是MS的组成部分,可以推测HTGP及MS之间或许存在更加紧密的联系,但其具体机制及二者之间的相关性目前尚未完全明确。

目前为止,关于AP病情发展与MS关系的研究仍十分有限,尤其缺少HTGP与MS的相关研究:国内有研究显示,MS是HTGP复发的独立危险因素,且合并MS的AP患者病情严重程度更高[3] [4]。来自国内扬州大学附属医院的一项单中心研究显示:HTGP中,33.7%的患者合并MS,且合并MS患者复发率较普通HTGP患者明显升高[5]。Szentesi等来自多中心的1435例AP患者的相关分析发现,合并MS的AP患者预后更差,且随着MS成分的增多其预后越差[6]。Mikolasevic等回顾性分析609例AP患者的临床数据发现,入院时合并MS的AP患者发生中度重症AP及SAP风险更高,病死率亦更高[7]。钟瑞等回顾性分析590例AP患者的临床数据显示,合并MS的AP患者局部及全身并发症发生率、ICU转入率及病死率更高,且AP病情严重程度随着MS成分的增加而加重[8]

本文就针对HGTP与MS的相关性做一总结,为临床工作判断HGTP重症化及预后提供参考依据。

2. 肥胖

世界卫生组织将超重定义为BMI为25~29.9 kg/m2,肥胖定义为BMI > 30.0 kg/m2 [9]。目前,肥胖在世界已达到“流行病”程度,目前全球处于肥胖或超重状态的成年人已超过19亿,在中国,超过50%成年人为超重或肥胖,而平均BMI指数也呈逐年上升趋势。而HGTP患者中,高于75%人群为肥胖。相关研究表明肥胖是AP、HGTP及重症急性胰腺炎(severe acute pancreatitis, SAP)的独立危险因素,其慢性低度炎症可能引起全身性炎症反应综合征、胰腺局部并发症,并可能加重器官功能障碍,引起呼吸、循环衰竭甚至导致患者死亡[10] [11]

肥胖主要表现为大量脂肪组织在皮下及各组织器官的异常堆积。部分肥胖患者尤其是中心型肥胖患者,其胸壁和腹部的脂肪堆积导致肺扩张受限、肺容量减少,隔膜运动受限导致肺顺应性降低、气道阻力增加,多种机制共同引起低通气综合征,使机体组织呈现缺氧状态,在急性胰腺炎中,缺氧可导致缺氧诱导因子-1α的激活,会加剧炎症对细胞的潜在损害、导致胰腺腺泡细胞坏死,从而导致多器官衰竭和死亡率增加[12]

脂肪组织可分为皮下脂肪和内脏脂肪,相关研究表明,内脏脂肪面积(visceral adipose tissue, VAT)与AP发生率及相关并发症发生率成正相关[13]。AshwineeNatu等人的一项研究发现,VAT可作为预测SAP、胰腺坏死以及多器官功能衰竭的工具[14]。另一项针对306名患者的倾向性评分匹配研究也证实了VAT可作为AP的独立预测因子[15]

内脏脂肪导致HTGP的发生及重症化原因可能如下:1) 内脏脂肪组织参与调控某些促炎因子的释放,如肿瘤坏死因子α (TNF-α)、白细胞介素6 (IL-6)、白细胞介素-10 (IL-10)、脂联素、白细胞介素-1b (IL-1b)和纤溶酶原激活物抑制物-1 (PAI-1)等[16]-[18],导致炎症反应,并发生瀑布样级联反应。有研究表明,IL-6在AP患者的胰腺、肺部均有靶点,可造成急性呼吸窘迫呼吸症从而加重病情[19]。2) 内脏脂肪可作为内分泌器官分泌包括脂联素、抵抗素和瘦素在内的多种脂肪因子。脂联素在内脏脂肪含量低的患者中表达较多,其作为一种保护性因子,可抑制巨噬细胞产生TNF-α和IL-6 [20],从而清除游离脂肪酸、脂肪酸氧化及中和内毒素,达到抑制炎症反应的目的。3) 此外,肥胖患者胰腺周围脂肪(peripancreaticfat, PPF)含量较正常人高,外分泌部胰腺滤泡细胞有丰富的脂肪酶,脂肪酶可损害胰腺周围脂肪细胞,促使甘油三酯水解并释放出大量游离脂肪酸,通过钙超载、直接毒性作用、加重微循环障碍、抑制线粒体复合物I和V等机制导致腺泡细胞出现坏死,从而导致坏死性胰腺炎的发生,当PPF分解范围较大时,可通过UFAs分解产生的脂毒性引起心衰、肾脏衰竭、呼吸衰竭、休克等多器官功能衰竭,因此更容易使内脏脂肪含量高的患者病情趋于重症化[14]。以上在一定程度上解释了内脏脂肪面积与AP严重程度成正相关的原因。

同时近年来,国内外开发了一些新型肥胖指标用于临床研究,可在一定程度上评估内脏脂肪程度,包括:身体形态指数(A body shape index, ABSI)、身体圆度指数(body roundness index, BRI)、脂质蓄积指数(lipid accumulation product, LAP)、心脏代谢指数(cardiac metabolic index, CMI)、内脏脂肪指数(visceral adiposity index, VAI)等指标。国内一项回顾性研究发现VAI的升高与HTGP严重程度成正相关,且与胰腺坏死、器官衰竭及全身炎症反应综合征显著相关[21]。LAP于2005年首次提出,其可有效地反映个人脂肪分布以及内脏脂肪蓄积情况。有研究显示,LAP相较于传统的肥胖指标(如BMI),可更敏感预测MS、心血管风险[22] [23]。关于ABSI,目前有1项小样本研究显示ABSI与HTGP间未发现显著相关性[24]。BRI是一种结合身高、腰围来预测体脂百分比的新型几何指数[25],其目前与AP相关研究较少,尚未发现其与AP之间存在显著关联。国内一项回顾性研究提示CMI可以视为AP向重症化方向发展的独立危险因素[26],但未进一步根据不同类型AP做进一步探讨。既往大量研究已表明,肥胖与急性胰腺炎严重程度存在一定正相关,但ABSI、LAP、VAI、CMI、BRI等作为新型肥胖指标,主要运用于肥胖、糖尿病、骨质疏松、心血管等相关疾病,目前与AP间的研究仍较少,今后还需要有更多大规模样本研究、多中心研究进一步探讨其在与AP、HTGP的关联程度,从而推动这些指数从研究工具向临床应用转化,最终改善HTGP患者的预后。

3. 血脂异常

在全世界,高甘油三酯血症(hypertriglyceridemia, HTG)是仅次于胆石症和酒精诱导AP发生的第三大常见原因。HTG引起的AP称为高甘油三酯血症性胰腺炎,其诊断标准为:(1) 符合AP的诊断标准;(2) TG > 11.3 mmol /L;(3) TG在5.56~11.3 mmol/L内,但合并乳糜血;(4) 除外其他原因导致急性胰腺炎时。在中国,随着我国人民饮食结构和生活方式的演变,HTG的发生率逐年上升,截至2019年,中国人群高脂血症发病率已达到15% [27],同时HTGP发病率亦逐年上涨,目前在中国已超过酒精性胰腺炎,成为AP的第二大分类[28]

根据美国内分泌学会临床实践指南,HTG定义为空腹状态下血清甘油三酯水平高于150 mg/dL,重度HTG定义为空腹状态下血清甘油三酯水平高于1000 mg/dL [29]。一项来自国外的META分析显示,重度HTG患者中急性胰腺炎的患病率高达14% [30]。另一项研究表明,高甘油三酯血症可明显增加AP的发病率和死亡率,AP的风险和严重程度与血清甘油三酯水平成正相关,TG ≥ 5 mmol/L时,急性胰腺炎风险增加8.7倍[31]。中国的一项来自开滦苏阿芳等人的前瞻性研究表明TG ≥ 1.52 mmol/L时增加了非肥胖人群AP的发病风险,并且随着基线TG水平值的升高,AP的发病风险相应升高[32]。入院后48小时TG水平能较好水平预测HTGP严重程度,尤其是入院后48小时TG水平 ≥ 6.95 mmol/L时进展为SAP的风险增加[33]

血脂异常可分为原发性和继发性脂蛋白代谢紊乱,可因不同原因引发AP:原发性脂蛋白代谢紊乱包括I、II、III、IV、V五种表型,I型是一种因脂蛋白脂肪酶不足或缺乏导致无法消化甘油三酯,从而引起AP并发展至SAP的常染色体隐形遗传病。V型可导致成年后出现极低密度脂蛋白和乳糜微粒升高,进而导致AP的发生。继发性脂蛋白代谢紊乱是指包括糖尿病、妊娠、甲状腺功能减退、药物和饮酒等因素,导致甘油三酯、低密度脂蛋白和乳糜微粒升高引发AP [34]

然而目前高甘油三酯引发HTGP的具体发病机制尚未完全明确,目前大部分研究认为HTGP的严重程度取决于组织损伤程度及炎症反应程度。具体机制可包括如下几个方面:1) 微循环障碍:血脂升高,尤其是甘油三酯升高时,血清脂质颗粒可阻塞胰腺血管,影响微循环供血,使血栓素A2大量释放、前列腺素2分泌减少,引起血管收缩–扩张系统平衡失调,最终导致毛细血管床过度收缩,加重微循环障碍,导致AP病情变重。2) 胰酶消化:血液中过剩的甘油三酯会被胰腺腺泡细胞中的脂肪酶降解,产生游离脂肪酸,对胰腺腺泡和血管内皮细胞产生直接的细胞毒性作用,导致胰腺腺泡细胞坏死,从而引发胰腺炎症。脂代谢异常可使胰蛋白酶前体被提前激活、胰酶原释放受阻、加速胰蛋白酶活化,诱导强烈的促炎免疫反应,从而加速胰腺损伤[35]。3) 炎症与凝血:胰腺炎发生后,机体可释放出TNF-α、IL-10及IL-6等炎性介质,进一步加重炎症反应,产生恶性循环并导致血管内皮功能障碍,促使机体形成高凝状态,进而导致胰腺组织缺血缺氧,加重胰腺损伤[36]。血浆置换、血液净化、应用肝素可以降低促炎因子的水平、改善高凝状态从而治疗HTGP。

4. 糖尿病及胰岛素抵抗

糖尿病是一种由基因和环境因素共同导致的、以高血糖状态为特点的异常代谢疾病,该疾病目前已成为全球范围内至关重要的健康问题[37]

Pang等对50万中国成年人进行的一项前瞻性队列研究及国外一项荟萃分析均显示,糖尿病患者发生AP的风险较非糖尿病患者明显升高[38] [39]。一项针对57,000名AP患者的大型回顾性队列研究表明,合并糖尿病的AP患者病情更重,ICU入住率及局部并发症发生风险更高[40]。这些研究均表明高血糖与AP的关系密切。

而国内一项单中心研究发现:HTGP中,糖尿病患者约占34.7%,胰腺炎后糖尿病发病率约为21.8%,且有糖尿病既往史的HTGP患者更容易复发[5]。一项国外的回顾性研究表明,急性胰腺炎、糖尿病酮症酸中毒(DKA)、高甘油三酯血症三联征常合并存在,AP和HTG被发现是DKA的原因或后果,AP-HTG-DKA三联征患者并发症发生率、重症率、病死率较普通AP患者高[41]。因此可以进一步推测糖尿病、DKA与HTGP的关系:糖尿病及DKA患者的糖脂代谢失调,导致HTG,从而导致HGTP;而HTGP急性发作可能会导致糖尿病失代偿并导致DKA。这亦表明糖尿病与HTGP或许存在更加密切的关系,但目前相关研究较少,仍需进一步探讨。

HTGP常合并胰岛素抵抗及血糖异常。目前关于糖尿病及其相关代谢变化的现有数据表明:1) 高血糖能损伤血管内皮细胞功能状态,容易发生微血管栓塞,毛细血管流速下降阻碍胰腺微循环,产生多种促炎因子,从而加重感染,导致AP重症化[42],在HGTP中,微循环障碍更加明显,可以推测其重症化风险较其他病因分组更高。2) 影响胰岛素抵抗的因素TNF-α、NF-κB和胰岛淀粉样多肽与高糖状态共同诱导机体产生氧化应激反应,通过增加活性氧产生、借助钙超载机制激活酶原,诱导AP及HTGP发生并引起胰腺自身消化,加重胰腺坏死。进一步增强胰岛素抵抗作用,使得血糖水平更加难以控制,造成恶性循环,促进AP及HTGP的发生发展。过程中所产生的炎症介质可使线粒体过负荷运转,从而损伤线粒体呼吸链,使活性氧清除减少而引起机体组织损伤,出现多器官功能障碍[12]。3) 2型糖尿病患者的高胰岛素血症和胰岛素抵抗可增加甘油三酯的产生并降低血浆甘油三酯的清除率,从而影响HTGP的发生。1型糖尿病患者中,胰岛素产生减少导致LPL活性显著降低,从而导致HTG,进而导致HTGP的形成。4) 糖尿病患者所使用的胰岛素可造成胰腺β细胞肥大,阻塞胰管而引发AP及HTGP [43]。5) 糖尿病患者多合并一些代谢共病,如肥胖、高脂血症等,可加速AP及HTGP的病情进展[44]。6) 细胞钙稳态中与RyR受体相关的改变也可能参与了糖尿病促进AP及HTGP发展的机制[45]

糖尿病影响AP患者预后的详细机制也尚未明确。有人提出,因为糖尿病患者可能有很高的共病负担,如高甘油三酯血症、肥胖等,这类患者对急性疾病的反应较差,因此会增加AP的严重程度和死亡风险[46],尤其是与HTGP的发生发展密切相关。一些研究也验证了这一观点,证实既往糖尿病是AP患者预后的负面因素,它增加了肾衰竭、局部并发症发生率和死亡率[47],糖尿病也是胰腺坏死的独立危险因素[48]。然而另有一些研究指出,既往糖尿病并不是影响AP严重程度的危险因素[49],对AP的并发症发生率或死亡率也无显著影响[6]。这些研究对糖尿病与AP间的关系提出了相反的意见,可能是因为回顾性研究方法未能很好地控制混杂变量,临床上糖尿病患者常常合并高脂血症、高血压、冠心病等其他疾病,在进行相关研究时难以区分单一因素的独立作用,其他共存疾病常常会对结果造成混杂,需进一步控制混杂因素;也有可能是由于急性胰腺炎不同病因分类(胆石症、酒精、HTG)与糖尿病的关系存在不同,需要进一步细化不同类型胰腺炎与糖尿病之间的关系;亦可能是因为糖尿病患者血糖控制情况不同所致机体的胰岛素抵抗程度不同,导致结果出现差异。因此,需要更多前瞻性研究来验证糖尿病对AP患者尤其是HGTP患者预后的实际影响。糖尿病对AP预后的影响可能因代谢状态、AP病因及血糖控制水平而异。现有证据提示糖尿病可能通过共病负担、代谢紊乱和免疫异常加重AP严重程度,但需更多高质量研究明确其独立作用及干预策略。

目前评估胰岛素抵抗有多种方式,包括HOMA指数、预估葡萄糖处置率、空腹甘油三酯葡萄糖(TyG)指数等。近年来,TyG指数因其方便、快捷、无创等优点被视为评估IR的新型指标[50] [51]。国内一项关于急性胰腺炎的回顾性分析发现,TyG指数可综合性反映血糖、甘油三酯情况,为SAP的独立危险因素[52],WeiY的一项研究表明TyG指数作为IR的指标与SAP及AP相关并发症密切相关,对SAP的预后有长期影响[53]。目前关于TyG指数主要聚焦于糖尿病、消化道恶性肿瘤、代谢相关肺部疾病、心血管疾病、非酒精性脂肪肝等疾病[54]-[57],急性胰腺炎与胰岛素抵抗之间的相关性研究较少,尤其缺少与高甘油三酯血症性胰腺炎的研究。因此,可进一步研究胰岛素抵抗相关机制,进一步明确急性胰腺炎及各病因分组与胰岛素抵抗之间的关系,为预防HTGP重症化提供治疗参考与研究思路。

5. 高血压

目前关于高血压与HTGP之间关系的研究相对较少。国内有研究统计,HTGP患者中约20.8%合并高血压,但其与HTGP发生无明显因果关系[5]。近期的一项研究表明,高血压是AP患者病情严重程度及肾功能衰竭的独立危险因素。关于高血压如何影响AP的机制尚不清楚,部分学者认为可能与交感神经系统激活,促进血管内壁肥厚和重塑,使得动脉扩张受限并降低血管顺应性,从而参与AP相关并发症的发生过程有关[58]。也有学者[6]推测长期血压控制不良可引发肾微小动脉管腔狭窄,进而导致缺血性肾实质损伤,并最终可能发展至肾小球硬化、肾小管萎缩和肾间质纤维化,从而增加肾衰竭的风险,进而使AP重症化。最近的证据表明,持续性高血压会进一步增加胰腺的氧化应激反应,而氧化应激在胰腺炎症中起重要作用,参与胰腺炎的病情发生及发展。

部分研究认为高血压与HTGP严重程度的增加无关。高血压病导致AP及HTGP发生的确切发病机制尚不完全清楚,还需要进一步的研究。

6. 小结与展望

综上所述,HTGP与MS有着密切联系,高脂血症、高血压、肥胖和糖尿病等因素能通过增加胰管内压力、影响微循环、直接损害等多种途径诱导HTGP的发病、加重及预后。目前已出现一些新型肥胖指数用于评估肥胖程度,未来对于肥胖的定义或许会改写,可在此基础上进一步研究各类肥胖指数与HTGP间的关联。炎症介质在多个途径中均起着重要作用,可以推测炎症因子的释放可作为HTGP与MS相互连通的桥梁。胰岛素抵抗在高血糖、肥胖及血脂异常人群中均有高比例发病率,且目前发现胰岛素抵抗指标与HTGP有较大关联,可推测胰岛素抵抗可作为预测AP及HTGP发生及重症化的重要因子,目前关于胰岛素抵抗在HTGP中的作用机制仍然较少,可进一步研究。MS中高血压对HTGP的影响较其他组分影响较小,但仍有相关研究表明其对AP的重症化有着正向作用,然而其促使HTGP发生和病情进展的原因和机制尚不明确,仍有较大空白。

目前关于MS与HTGP相关联的研究仍十分局限,还需要更多的证据证明MS中各种异常代谢因素对HTGP的影响程度,为临床预判AP及HTGP重症化、评估预后、延缓疾病进展提供可靠的参考依据。

NOTES

*通讯作者。

参考文献

[1] Schepers, N.J., Bakker, O.J., Besselink, M.G., Ahmed Ali, U., Bollen, T.L., Gooszen, H.G., et al. (2018) Impact of Characteristics of Organ Failure and Infected Necrosis on Mortality in Necrotising Pancreatitis. Gut, 68, 1044-1051.
https://doi.org/10.1136/gutjnl-2017-314657
[2] Moller, D.E. and Kaufman, K.D. (2005) Metabolic Syndrome: A Clinical and Molecular Perspective. Annual Review of Medicine, 56, 45-62.
https://doi.org/10.1146/annurev.med.56.082103.104751
[3] 彭立娜, 金雷. 代谢综合征与HTG-AP严重程度的相关性分析[J]. 中国卫生标准管理, 2024, 15(6): 119-123.
[4] 李贤秋, 刘慧, 肖春桃, 等. 代谢综合征对高脂血症急性胰腺炎患者复发的影响[J]. 临床肝胆病杂志, 2020, 36(11): 2515-2520.
[5] Tu, X., Liu, Q., Chen, L., Li, J., Yu, X., Jiao, X., et al. (2023) Number of Recurrences Is Significantly Associated with the Post-Acute Pancreatitis Diabetes Mellitus in a Population with Hypertriglyceridemic Acute Pancreatitis. Lipids in Health and Disease, 22, Article No. 82.
https://doi.org/10.1186/s12944-023-01840-0
[6] Szentesi, A., Párniczky, A., Vincze, Á., Bajor, J., Gódi, S., Sarlós, P., et al. (2019) Multiple Hits in Acute Pancreatitis: Components of Metabolic Syndrome Synergize Each Other’s Deteriorating Effects. Frontiers in Physiology, 10, Article 1202.
https://doi.org/10.3389/fphys.2019.01202
[7] Mikolasevic, I., Milic, S., Orlic, L., Poropat, G., Jakopcic, I., Franjic, N., et al. (2016) Metabolic Syndrome and Acute Pancreatitis. European Journal of Internal Medicine, 32, 79-83.
https://doi.org/10.1016/j.ejim.2016.04.004
[8] 钟瑞, 严永峰, 蒋鑫, 徐欢, 彭燕, 汪敏, 付文广, 汤小伟. 急性胰腺炎合并代谢综合征的临床特征及预后影响因素分析[J]. 临床肝胆病杂志, 2020, 36(8): 1794-1798.
[9] WHO (2022) WHO European Regional Obesity Report 2022. WHO Regional Office for Europe.
[10] Xu, T., Sheng, L., Guo, X. and Ding, Z. (2021) Free Fatty Acid Increases the Expression of NLRP3-Caspase1 in Adipose Tissue Macrophages in Obese Severe Acute Pancreatitis. Digestive Diseases and Sciences, 67, 2220-2231.
https://doi.org/10.1007/s10620-021-07027-w
[11] Abdel-Hamid, A.A.M. and Firgany, A.E.L. (2019) Correlation between Pancreatic Mast Cells and the Low Grade Inflammation in Adipose Tissue of Experimental Prediabetes. Acta Histochemica, 121, 35-42.
https://doi.org/10.1016/j.acthis.2018.10.005
[12] Biczo, G., Vegh, E.T., Shalbueva, N., Mareninova, O.A., Elperin, J., Lotshaw, E., et al. (2018) Mitochondrial Dysfunction, through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology, 154, 689-703.
https://doi.org/10.1053/j.gastro.2017.10.012
[13] Singh, R.G., Cervantes, A., Kim, J.U., Nguyen, N.N., DeSouza, S.V., Dokpuang, D., et al. (2019) Intrapancreatic Fat Deposition and Visceral Fat Volume Are Associated with the Presence of Diabetes after Acute Pancreatitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 316, G806-G815.
https://doi.org/10.1152/ajpgi.00385.2018
[14] Natu, A., Stevens, T., Kang, L., Yasinow, S., Mansoor, E., Lopez, R., et al. (2017) Visceral Adiposity Predicts Severity of Acute Pancreatitis. Pancreas, 46, 776-781.
https://doi.org/10.1097/mpa.0000000000000845
[15] Xie, J., Xu, L., Pan, Y., Li, P., Liu, Y., Pan, Y., et al. (2019) Impact of Visceral Adiposity on Severity of Acute Pancreatitis: A Propensity Score-Matched Analysis. BMC Gastroenterology, 19, Article No. 87.
https://doi.org/10.1186/s12876-019-1015-z
[16] Li, C., Liu, Y., Li, Y., Tai, R., Sun, Z., Wu, Q., et al. (2021) Collagen XV Promotes ER Stress-Induced Inflammation through Activating Integrin Β1/FAK Signaling Pathway and M1 Macrophage Polarization in Adipose Tissue. International Journal of Molecular Sciences, 22, Article 9997.
https://doi.org/10.3390/ijms22189997
[17] Feng, Z., Du, Z., Shu, X., Zhu, L., Wu, J., Gao, Q., et al. (2021) Role of RAGE in Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance. Cell Death Discovery, 7, Article No. 305.
https://doi.org/10.1038/s41420-021-00711-w
[18] Hsu, Y., Wu, C., Chiu, C., Chen, W., Chang, Y., Wabitsch, M., et al. (2021) IL‐20 Is Involved in Obesity by Modulation of Adipogenesis and Macrophage Dysregulation. Immunology, 164, 817-833.
https://doi.org/10.1111/imm.13403
[19] Xu, B. and Zhou, Y. (2021) The Effects of Blood Purification Combined with Antibiotics on Extravascular Lung Water Index, Inflammatory Factors, and Prognosis of Patients with Severe Acute Pancreatitis Complicated with Acute Respiratory Distress Syndrome. Annals of Palliative Medicine, 10, 9792-9799.
https://doi.org/10.21037/apm-21-2168
[20] Wang, C. (2014) Obesity, Inflammation, and Lung Injury (OILI): The Good. Mediators of Inflammation, 2014, Article ID: 978463.
https://doi.org/10.1155/2014/978463
[21] Xia, W., Yu, H., Huang, Y., Yang, Y. and Shi, L. (2021) The Visceral Adiposity Index Predicts the Severity of Hyperlipidaemic Acute Pancreatitis. Internal and Emergency Medicine, 17, 417-422.
https://doi.org/10.1007/s11739-021-02819-4
[22] Kahn, H.S. (2006) Erratum To: The “Lipid Accumulation Product” Performs Better than the Body Mass Index for Recognizing Cardiovascular Risk: A Population-Based Comparison. BMC Cardiovascular Disorders, 6, Article No. 5.
https://doi.org/10.1186/1471-2261-6-5
[23] 段绍杰, 刘尊敬, 陈佳良, 等. 脂质蓄积指数、内脏脂肪指数对非酒精性脂肪性肝病的预测价值[J]. 临床肝胆病杂志, 2022, 38(1): 129-134.
[24] Zhu, Y., Huang, Y., Sun, H., Chen, L., Yu, H., Shi, L., et al. (2024) Novel Anthropometric Indicators of Visceral Obesity Predict the Severity of Hyperlipidemic Acute Pancreatitis. Lipids in Health and Disease, 23, Article No. 120.
https://doi.org/10.1186/s12944-024-02112-1
[25] Thomas, D.M., Bredlau, C., Bosy-Westphal, A., Mueller, M., Shen, W., Gallagher, D., et al. (2013) Relationships between Body Roundness with Body Fat and Visceral Adipose Tissue Emerging from a New Geometrical Model. Obesity, 21, 2264-2271.
https://doi.org/10.1002/oby.20408
[26] 黄河铭, 杨慧莹, 覃颖颖, 等. 内脏脂肪相关指数与急性胰腺炎严重程度的关系[J]. 临床肝胆病杂志, 2022, 38(10): 2313-2319.
[27] Song, P.K., Man, Q.Q., Li, H., et al. (2019) Trends in Lipids Level and Dyslipidemia among Chinese Adults, 2002-2015. Biomedical and Environmental Sciences, 32, 559-570.
[28] 张娜, 张海燕, 郭晓红, 等. 中国近十年急性胰腺炎病因变化特点的Meta分析[J]. 中华消化病与影像杂志(电子版), 2016, 6(2): 71-75.
[29] Berglund, L., Brunzell, J.D., Goldberg, A.C., Goldberg, I.J., Sacks, F., Murad, M.H., et al. (2012) Evaluation and Treatment of Hypertriglyceridemia: An Endocrine Society Clinical Practice Guideline. The Journal of Clinical Endocrinology & Metabolism, 97, 2969-2989.
https://doi.org/10.1210/jc.2011-3213
[30] Carr, R.A., Rejowski, B.J., Cote, G.A., Pitt, H.A. and Zyromski, N.J. (2016) Systematic Review of Hypertriglyceridemia-Induced Acute Pancreatitis: A More Virulent Etiology? Pancreatology, 16, 469-476.
https://doi.org/10.1016/j.pan.2016.02.011
[31] Pedersen, S.B., Langsted, A. and Nordestgaard, B.G. (2016) Nonfasting Mild-To-Moderate Hypertriglyceridemia and Risk of Acute Pancreatitis. JAMA Internal Medicine, 176, 1834-1842.
https://doi.org/10.1001/jamainternmed.2016.6875
[32] Kebkalo, A., Tkachuk, O. and Reyti, A. (2019) Features of the Course of Acute Pancreatitis in Patients with Obesity. Polish Journal of Surgery, 91, 1-5.
https://doi.org/10.5604/01.3001.0013.4147
[33] 苏阿芳, 王银洁, 王凤飞, 等. 非肥胖人群基线三酰甘油水平与急性胰腺炎发病风险关系的前瞻性队列研究[J]. 中国全科医学, 2022, 25(26): 3240-3245.
[34] Yuan, G., Al-Shali, K.Z. and Hegele, R.A. (2007) Hypertriglyceridemia: Its Etiology, Effects and Treatment. Canadian Medical Association Journal, 176, 1113-1120.
https://doi.org/10.1503/cmaj.060963
[35] Sendler, M. and Algül, H. (2021) Pathogenese der Akuten Pankreatitis. Der Internist, 62, 1034-1043.
https://doi.org/10.1007/s00108-021-01158-y
[36] Yano, T., Taniguchi, M., Shirasaka, T. and Tsuneyoshi, I. (2019) Effectiveness of Soluble Recombinant Human Thrombomodulin in Patients with Severe Acute Pancreatitis Complicated by Disseminated Intravascular Coagulation. Turkish Journal of Anaesthesiology and Reanimation, 47, 320-326.
https://doi.org/10.5152/tjar.2019.42709
[37] Chen, S.M., Xiong, G.S. and Wu, S.M. (2012) Is Obesity an Indicator of Complications and Mortality in Acute Pancreatitis? an Updated Meta‐Analysis. Journal of Digestive Diseases, 13, 244-251.
https://doi.org/10.1111/j.1751-2980.2012.00587.x
[38] Pang, Y., Kartsonaki, C., Turnbull, I., Guo, Y., Yang, L., Bian, Z., et al. (2018) Metabolic and Lifestyle Risk Factors for Acute Pancreatitis in Chinese Adults: A Prospective Cohort Study of 0.5 Million People. PLOS Medicine, 15, e1002618.
https://doi.org/10.1371/journal.pmed.1002618
[39] Aune, D., Mahamat-Saleh, Y., Norat, T. and Riboli, E. (2020) Diabetes Mellitus and the Risk of Pancreatitis: A Systematic Review and Meta-Analysis of Cohort Studies. Pancreatology, 20, 602-607.
https://doi.org/10.1016/j.pan.2020.03.019
[40] Shen, H., Lu, C. and Li, C. (2012) Effect of Diabetes on Severity and Hospital Mortality in Patients with Acute Pancreatitis: A National Population-Based Study. Diabetes Care, 35, 1061-1066.
https://doi.org/10.2337/dc11-1925
[41] Simons-Linares, C.R., Jang, S., Sanaka, M., Bhatt, A., Lopez, R., Vargo, J., et al. (2019) The Triad of Diabetes Ketoacidosis, Hypertriglyceridemia and Acute Pancreatitis. How Does It Affect Mortality and Morbidity? A 10-Year Analysis of the National Inpatient Sample. Medicine, 98, e14378.
https://doi.org/10.1097/md.0000000000014378
[42] Yuan, S., Liao, J., Cai, R., Xiong, Y., Zhan, H. and Zheng, Z. (2020) Acute Pancreatitis Concomitant with Diabetic Ketoacidosis: A Cohort from South China. Journal of International Medical Research, 48, 1-9.
https://doi.org/10.1177/0300060520912128
[43] Mondragon, A., Davidsson, D., Kyriakoudi, S., Bertling, A., Gomes-Faria, R., Cohen, P., et al. (2014) Divergent Effects of Liraglutide, Exendin-4, and Sitagliptin on Beta-Cell Mass and Indicators of Pancreatitis in a Mouse Model of Hyperglycaemia. PLOS ONE, 9, e104873.
https://doi.org/10.1371/journal.pone.0104873
[44] Lee, Y., Huang, M., Hsu, C. and Su, Y. (2016) Medicine, 95, e2448.
https://doi.org/10.1097/md.0000000000002448
[45] Richardson, A. and Park, W.G. (2021) Acute Pancreatitis and Diabetes Mellitus: A Review. The Korean Journal of Internal Medicine, 36, 15-24.
https://doi.org/10.3904/kjim.2020.505
[46] Li, X., Guo, X., Ji, H., Niu, J. and Gao, P. (2019) Relationships between Metabolic Comorbidities and Occurrence, Severity, and Outcomes in Patients with Acute Pancreatitis: A Narrative Review. BioMed Research International, 2019, 1-8.
https://doi.org/10.1155/2019/2645926
[47] Mikó, A., Farkas, N., Garami, A., Szabó, I., Vincze, Á., Veres, G., et al. (2018) Preexisting Diabetes Elevates Risk of Local and Systemic Complications in Acute Pancreatitis: Systematic Review and Meta-Analysis. Pancreas, 47, 917-923.
https://doi.org/10.1097/mpa.0000000000001122
[48] Xue, E., Shi, Q., Guo, S., Zhang, X., Liu, C., Qian, B., et al. (2022) Preexisting Diabetes, Serum Calcium and D-Dimer Levels as Predictable Risk Factors for Pancreatic Necrosis of Patients with Acute Pancreatitis: A Retrospective Study. Expert Review of Gastroenterology & Hepatology, 16, 913-921.
https://doi.org/10.1080/17474124.2022.2116314
[49] Paragomi, P., Papachristou, G.I., Jeong, K., Hinton, A., Pothoulakis, I., Talukdar, R., et al. (2022) The Relationship between Pre-Existing Diabetes Mellitus and the Severity of Acute Pancreatitis: Report from a Large International Registry. Pancreatology, 22, 85-91.
https://doi.org/10.1016/j.pan.2021.10.001
[50] Lee, E.Y., Yang, H.K., Lee, J., Kang, B., Yang, Y., Lee, S., et al. (2016) Triglyceride Glucose Index, a Marker of Insulin Resistance, Is Associated with Coronary Artery Stenosis in Asymptomatic Subjects with Type 2 Diabetes. Lipids in Health and Disease, 15, Article No. 155.
https://doi.org/10.1186/s12944-016-0324-2
[51] Lin, H., Zhang, X., Liu, Y., Geng, L., Guan, L. and Li, X. (2021) Comparison of the Triglyceride Glucose Index and Blood Leukocyte Indices as Predictors of Metabolic Syndrome in Healthy Chinese Population. Scientific Reports, 11, Article No. 10036.
https://doi.org/10.1038/s41598-021-89494-9
[52] 李光耀, 韩菲, 姜鑫, 等. 甘油三酯葡萄糖指数在急性胰腺炎评估中的应用价值[J]. 胃肠病学和肝病学杂志, 2022, 31(6): 619-624.
[53] Wei, Y. and Guo, J. (2022) High Triglyceride–glucose Index Is Associated with Poor Prognosis in Patients with Acute Pancreatitis. Digestive Diseases and Sciences, 68, 978-987.
https://doi.org/10.1007/s10620-022-07567-9
[54] Wang, L., Cong, H., Zhang, J., Hu, Y., Wei, A., Zhang, Y., et al. (2020) Triglyceride-Glucose Index Predicts Adverse Cardiovascular Events in Patients with Diabetes and Acute Coronary Syndrome. Cardiovascular Diabetology, 19, Article No. 80.
https://doi.org/10.1186/s12933-020-01054-z
[55] Chen, X.X. and Rastogi, D. (2021) Triglyceride-Glucose Index: A Potential New Biomarker for Lung Disease Associated with Metabolic Dysregulation. Chest, 160, 801-802.
https://doi.org/10.1016/j.chest.2021.04.027
[56] Kim, Y.M., Kim, J., Park, J.S., Baik, S.J., Chun, J., Youn, Y.H., et al. (2021) Association between Triglyceride-Glucose Index and Gastric Carcinogenesis: A Health Checkup Cohort Study. Gastric Cancer, 25, 33-41.
https://doi.org/10.1007/s10120-021-01222-4
[57] Zhang, S., Du, T., Zhang, J., Lu, H., Lin, X., Xie, J., et al. (2017) The Triglyceride and Glucose Index (TyG) Is an Effective Biomarker to Identify Nonalcoholic Fatty Liver Disease. Lipids in Health and Disease, 16, Article No. 15.
https://doi.org/10.1186/s12944-017-0409-6
[58] Seravalle, G., Mancia, G. and Grassi, G. (2014) Role of the Sympathetic Nervous System in Hypertension and Hypertension-Related Cardiovascular Disease. High Blood Pressure & Cardiovascular Prevention, 21, 89-105.
https://doi.org/10.1007/s40292-014-0056-1