| [1] | McMahan, B., Moore, E., Ramage, D., et al. (2017) Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv: 1602.05629. | 
                     
                                
                                    
                                        | [2] | Byrd, D. and Polychroniadou, A. (2020) Differentially Private Secure Multi-Party Computation for Federated Learning in Financial Applications. Proceedings of the First ACM International Conference on AI in Finance, New York, 15-16 October 2020, 1-9. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [3] | Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J. and Wang, F. (2020) Federated Learning for Healthcare Informatics. Journal of Healthcare Informatics Research, 5, 1-19. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Muhammad, K., Wang, Q., O’Reilly-Morgan, D., Tragos, E., Smyth, B., Hurley, N., et al. (2020) FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 6-10 July 2020, 1234-1242. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Li, J. and Vincent Poor, H. (2021) Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 23, 1622-1658. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | Zeng, T., Semiari, O., Chen, M., Saad, W. and Bennis, M. (2022) Federated Learning on the Road Autonomous Controller Design for Connected and Autonomous Vehicles. IEEE Transactions on Wireless Communications, 21, 10407-10423. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Li, T., Sahu, A.K., Zaheer, M., et al. (2020) Federated Optimization in Heterogeneous Networks. Machine Learning and Systems (MLSys), 2, 429-450. | 
                     
                                
                                    
                                        | [8] | Karimi Reddy, S.P., Kale, S., Mohri, M., et al. (2020) SCAFFOLD: Stochastic Controlled Averaging for Federated Learning. arXiv: 1910.06378. | 
                     
                                
                                    
                                        | [9] | Acar D A E, Zhao Y, Navarro R M, et al. (2021) Federated Learning Based on Dynamic Regularization. arXiv: 2111.04263. | 
                     
                                
                                    
                                        | [10] | Tan, A.Z., Yu, H., Cui, L. and Yang, Q. (2023) Towards Personalized Federated Learning. IEEE Transactions on Neural Networks and Learning Systems, 34, 9587-9603. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Liang, P.P., Liu, T., Ziyin, L., et al. (2019) Think Locally, Act Globally: Federated Learning with Local and Global Representations. https://arxiv.org/abs/2001.01523
 | 
                     
                                
                                    
                                        | [12] | Chen, H.Y. and Chao, W.L. (2022) On Bridging Generic and Personalized Federated Learning for Image Classification. arXiv: 2107.00778. | 
                     
                                
                                    
                                        | [13] | Oh, J., Kim, S. and Yun, S.Y. (2022) FedBABU: Towards Enhanced Representation for Federated Image Classification. arXiv: 2106.06042. | 
                     
                                
                                    
                                        | [14] | Chen, C., Feng, X., Zhou, J., Yin, J. and Zheng, X. (2023) Federated Large Language Model: A Position Paper. arXiv: 2307.08925. | 
                     
                                
                                    
                                        | [15] | Wang, Z. and Hu, Q. (2021) Blockchain-Based Federated Learning: A Comprehensive Survey. arXiv: 2110.02182. | 
                     
                                
                                    
                                        | [16] | Li, Q., Diao, Y., Chen, Q. and He, B. (2022) Federated Learning on Non-IID Data Silos: An Experimental Study. 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, 9-12 May 2022, 965-978. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [17] | Chai, Z., Chen, Y., Zhao, L., Cheng, Y. and Rangwala, H. (2020) FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data. | 
                     
                                
                                    
                                        | [18] | Wei, K., Li, J., Ding, M., Ma, C., Yang, H.H., Farokhi, F., et al. (2020) Federated Learning with Differential Privacy: Algorithms and Performance Analysis. IEEE Transactions on Information Forensics and Security, 15, 3454-3469. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [19] | Wibawa, F., Catak, F.O., Kuzlu, M., Sarp, S. and Cali, U. (2022) Homomorphic Encryption and Federated Learning Based Privacy-Preserving CNN Training: COVID-19 Detection Use-Case. EICC 2022: Proccedings of the European Interdisciplinary Cybersecurity Conference, Barcelona, 15-16 June 2022, 85-90. [Google Scholar] [CrossRef] |