[1]
|
Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., et al. (2022) Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 524-541. https://doi.org/10.3322/caac.21754
|
[2]
|
Lovelace, D.L., McDaniel, L.R. and Golden, D. (2019) Long‐Term Effects of Breast Cancer Surgery, Treatment, and Survivor Care. Journal of Midwifery & Women's Health, 64, 713-724. https://doi.org/10.1111/jmwh.13012
|
[3]
|
Burguin, A., Diorio, C. and Durocher, F. (2021) Breast Cancer Treatments: Updates and New Challenges. Journal of Personalized Medicine, 11, Article No. 808. https://doi.org/10.3390/jpm11080808
|
[4]
|
Kaidar-Person, O., Offersen, B.V., Boersma, L.J., de Ruysscher, D., Tramm, T., Kühn, T., et al. (2021) A Multidisciplinary View of Mastectomy and Breast Reconstruction: Understanding the Challenges. The Breast, 56, 42-52. https://doi.org/10.1016/j.breast.2021.02.004
|
[5]
|
Ilonzo, N., Tsang, A., Tsantes, S., Estabrook, A. and Thu Ma, A.M. (2017) Breast Reconstruction after Mastectomy: A Ten-Year Analysis of Trends and Immediate Postoperative Outcomes. The Breast, 32, 7-12. https://doi.org/10.1016/j.breast.2016.11.023
|
[6]
|
Cordeiro, P.G. (2008) Breast Reconstruction after Surgery for Breast Cancer. New England Journal of Medicine, 359, 1590-1601. https://doi.org/10.1056/nejmct0802899
|
[7]
|
Wei, D., Weinstein, S., Hsieh, M., Pantalone, L. and Kontos, D. (2019) Three-Dimensional Whole Breast Segmentation in Sagittal and Axial Breast MRI with Dense Depth Field Modeling and Localized Self-Adaptation for Chest-Wall Line Detection. IEEE Transactions on Biomedical Engineering, 66, 1567-1579. https://doi.org/10.1109/tbme.2018.2875955
|
[8]
|
Boyd, N.F., Guo, H., Martin, L.J., Sun, L., Stone, J., Fishell, E., et al. (2007) Mammographic Density and the Risk and Detection of Breast Cancer. New England Journal of Medicine, 356, 227-236. https://doi.org/10.1056/nejmoa062790
|
[9]
|
Wang, L., Platel, B., Ivanovskaya, T., Harz, M. and Hahn, H.K. (2012) Fully Automatic Breast Segmentation in 3D Breast MRI. 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, 2-5 May 2012, 1024-1027. https://doi.org/10.1109/isbi.2012.6235732
|
[10]
|
Wu, S., Weinstein, S.P., Conant, E.F., Schnall, M.D. and Kontos, D. (2013) Automated Chest Wall Line Detection for Whole‐Breast Segmentation in Sagittal Breast MR Images. Medical Physics, 40, Article ID: 042301. https://doi.org/10.1118/1.4793255
|
[11]
|
Ivanovska, T., Laqua, R., Wang, L., Liebscher, V., Völzke, H. and Hegenscheid, K. (2014) A Level Set Based Framework for Quantitative Evaluation of Breast Tissue Density from MRI Data. PLOS ONE, 9, e112709. https://doi.org/10.1371/journal.pone.0112709
|
[12]
|
Gubern-Merida, A., Kallenberg, M., Mann, R.M., Marti, R. and Karssemeijer, N. (2015) Breast Segmentation and Density Estimation in Breast MRI: A Fully Automatic Framework. IEEE Journal of Biomedical and Health Informatics, 19, 349-357. https://doi.org/10.1109/jbhi.2014.2311163
|
[13]
|
Khalvati, F., Gallego-Ortiz, C., Balasingham, S. and Martel, A.L. (2015) Automated Segmentation of Breast in 3-D MR Images Using a Robust Atlas. IEEE Transactions on Medical Imaging, 34, 116-125. https://doi.org/10.1109/tmi.2014.2347703
|
[14]
|
Lin, M., Chen, J., Wang, X., Chan, S., Chen, S. and Su, M. (2013) Template‐Based Automatic Breast Segmentation on MRI by Excluding the Chest Region. Medical Physics, 40, Article ID: 122301. https://doi.org/10.1118/1.4828837
|
[15]
|
Martel, A.L., Gallego-Ortiz, C. and Lu, Y. (2016) Breast Segmentation in MRI Using Poisson Surface Reconstruction Initialized with Random Forest Edge Detection. Medical Imaging 2016: Image Processing, 9784, 351-356. https://doi.org/10.1117/12.2214416
|
[16]
|
Ronneberger, O., Fischer, P. and Brox, T. (2015) U-net: Convolutional Networks for Biomedical Image Segmentation. Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, 5-9 October 2015, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
|
[17]
|
Dalmış, M.U., Litjens, G., Holland, K., Setio, A., Mann, R., Karssemeijer, N., et al. (2017) Using Deep Learning to Segment Breast and Fibroglandular Tissue in MRI Volumes. Medical Physics, 44, 533-546. https://doi.org/10.1002/mp.12079
|
[18]
|
Zhang, Y., Chen, J., Chang, K., Park, V.Y., Kim, M.J., Chan, S., et al. (2019) Automatic Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural Network U-Net. Academic Radiology, 26, 1526-1535. https://doi.org/10.1016/j.acra.2019.01.012
|
[19]
|
Ma, X., Wang, J., Zheng, X., Liu, Z., Long, W., Zhang, Y., et al. (2020) Automated Fibroglandular Tissue Segmentation in Breast MRI Using Generative Adversarial Networks. Physics in Medicine & Biology, 65, Article ID: 105006. https://doi.org/10.1088/1361-6560/ab7e7f
|
[20]
|
Ha, R., Chang, P., Mema, E., Mutasa, S., Karcich, J., Wynn, R.T., et al. (2018) Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement. Journal of Digital Imaging, 32, 141-147. https://doi.org/10.1007/s10278-018-0114-7
|
[21]
|
Liu, Y., Yang, Y., Jiang, W., Wang, T. and Lei, B. (2021) 3D Deep Attentive U-Net with Transformer for Breast Tumor Segmentation from Automated Breast Volume Scanner. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 31 October-4 November 2021, 4011-4014. https://doi.org/10.1109/embc46164.2021.9629523
|
[22]
|
Crespi, L., Loiacono, D. and Sartori, P. (2022) Are 3D Better than 2D Convolutional Neural Networks for Medical Imaging Semantic Segmentation? 2022 International Joint Conference on Neural Networks (IJCNN), Padua, 18-23 July 2022, 1-8. https://doi.org/10.1109/ijcnn55064.2022.9892850
|
[23]
|
Kayar, R. and Çilengiroğlu, Ö.V. (2015) Breast Volume Asymmetry Value, Ratio, and Cancer Risk. Breast Cancer: Basic and Clinical Research, 9, 87-92. https://doi.org/10.4137/bcbcr.s32789
|
[24]
|
Dovrou, A., Nikiforaki, K., Zaridis, D., Manikis, G.C., Mylona, E., Tachos, N., et al. (2023) A Segmentation-Based Method Improving the Performance of N4 Bias Field Correction on T2weighted MR Imaging Data of the Prostate. Magnetic Resonance Imaging, 101, 1-12. https://doi.org/10.1016/j.mri.2023.03.012
|
[25]
|
Fang, L. and Wang, X. (2022) Brain Tumor Segmentation Based on the Dual-Path Network of Multi-Modal MRI Images. Pattern Recognition, 124, Article ID: 108434. https://doi.org/10.1016/j.patcog.2021.108434
|
[26]
|
Ullah, F., Ansari, S.U., Hanif, M., Ayari, M.A., Chowdhury, M.E.H., Khandakar, A.A., et al. (2021) Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net. Sensors, 21, Article No. 7528. https://doi.org/10.3390/s21227528
|
[27]
|
Mengqiao, W., Jie, Y., Yilei, C. and Hao, W. (2017) The Multimodal Brain Tumor Image Segmentation Based on Convolutional Neural Networks. 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), Beijing, 8-11 September 2017, 336-339. https://doi.org/10.1109/ciapp.2017.8167234
|
[28]
|
Saman, S. and Narayanan, S.J. (2021) Active Contour Model Driven by Optimized Energy Functionals for MR Brain Tumor Segmentation with Intensity Inhomogeneity Correction. Multimedia Tools and Applications, 80, 21925-21954. https://doi.org/10.1007/s11042-021-10738-x
|
[29]
|
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. (2018) Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Computer Vision - ECCV 2018, Springer, 833-851. https://doi.org/10.1007/978-3-030-01234-2_49
|