脑肿瘤相关癫痫的诊治研究进展
A Review on Advances in the Diagnosis and Treatment of Brain Tumor-Related Epilepsy
DOI: 10.12677/acm.2025.153802, PDF, HTML, XML,   
作者: 董新宇, 翟 瑄*:重庆医科大学附属儿童医院神经外科,重庆
关键词: 脑肿瘤癫痫抗癫痫药物Brain Tumors Epilepsy Antiepileptic Drugs
摘要: 脑肿瘤相关癫痫(BTRE)是脑肿瘤患者常见的并发症,影响生活质量和预后。BTRE的机制涉及神经递质失衡、肿瘤微环境改变和离子通道异常。目前的治疗包括药物、手术、放疗和化疗,但耐药性癫痫和复发仍是挑战。本文总结了BTRE的病理生理机制、诊断评估方法和现有治疗策略。
Abstract: Brain tumor-associated epilepsy (BTRE) is a common complication in patients with brain tumors, affecting their quality of life and prognosis. The mechanism of BTRE involves neurotransmitter imbalance, changes in tumor microenvironment, and abnormal ion channels. The current treatments include medication, surgery, radiation therapy, and chemotherapy, but drug-resistant epilepsy and recurrence remain challenges. This article summarizes the pathophysiological mechanisms, diagnostic evaluation methods, and existing treatment strategies of BTRE.
文章引用:董新宇, 翟瑄. 脑肿瘤相关癫痫的诊治研究进展[J]. 临床医学进展, 2025, 15(3): 1760-1767. https://doi.org/10.12677/acm.2025.153802

1. 引言

脑肿瘤相关癫痫(brain tumor-related epilepsy, BTRE)是指原发性或转移性颅内实体肿瘤引起的癫痫发作,是中枢神经系统肿瘤患者中最常见的神经系统并发症之一[1]。既往研究表明约10%~85%的脑肿瘤患者在病程中会出现癫痫发作,尤其是低级别胶质瘤(low-grade glioma, LGG)患者,癫痫的发生率可达80%以上[2]。此外,BTRE往往难以控制,影响患者的生活质量,甚至促进肿瘤的生长[3]。因此,深入理解BTRE的发生机制并优化管理策略,对改善患者预后具有重要意义。

BTRE的机制复杂,与肿瘤的病理特征、基因突变、神经递质失衡及炎症反应等多种因素相关[4] [5]。此外,癫痫的发生可能受肿瘤治疗(如放疗、化疗)的影响,这使得BTRE的管理更具挑战性。目前,BTRE的主要治疗方式包括抗癫痫药物(antiseizure medications, ASMs)、手术切除、放化疗以及神经调控治疗[1]。然而,抗癫痫药物的选择、药物与肿瘤治疗的相互作用、手术切除范围、手术时机与癫痫控制的关系等问题仍存在争议[6]-[8]

本综述将系统总结BTRE的流行病学、发病机制、诊断方法、治疗策略及未来研究方向,旨在为临床管理提供最新的科学依据,并探讨个体化治疗的新思路。

2. BTRE的流行病学和临床特征

2.1. BTRE的流行病学

癫痫是一种在全球范围内广泛流行的神经系统疾病,其特征是反复发作的癫痫发作,并可能引发认知、心理以及社会方面的复杂影响[9] [10]。一项研究表明癫痫的终生患病率为7.60/1000人,发病率为61.44/10万人年[11]。尽管抗癫痫药物不断发展,仍有三分之一的患者依然遭受癫痫发作,因此癫痫仍是全球重要的公共健康问题[12]

中枢神经系统(CNS)肿瘤在成人中位列第七大常见肿瘤,占儿童恶性肿瘤的25%;此外,它也是青少年癌症相关死亡的第二大主要原因[13]。脑肿瘤是癫痫的主要病因之一,并且在癫痫患者的手术标本中,属于第二常见的组织病理学诊断[14]。肿瘤相关癫痫的发生率因肿瘤类型而异,其中组织学低级别胶质瘤的发生率高于高级别胶质瘤[15]。在一项针对1028例原发性脑肿瘤患者的研究中,不同肿瘤类型的癫痫发生率分别为:低级别胶质瘤85%,间变性胶质瘤69%,胶质母细胞瘤49% [15]。此外,高级别胶质瘤患者在疾病进程中,80%的患者至少经历过一次癫痫发作[16]。神经胶质肿瘤(如节细胞胶质瘤和胚胎发育不良性神经上皮肿瘤)的癫痫发生率也很高,约为80% [2]。同时,癫痫发作是13%至24%的脑肿瘤儿童患者的首发症状[17]

2.2. BTRE的临床特征

根据国际抗癫痫联盟(international league against epilepsy, ILAE),BTRE发作类型为局灶性癫痫发作(focal seizures),通常分为以下几种类型:不伴意识障碍的局灶性发作(focal onset aware seizures):患者在发作时保持意识清晰,可能表现为局部肌肉的强直或抽搐,也可以包括感觉性症状(如麻木、刺痛)。局灶性意识障碍癫痫(focal onset impaired awareness seizures):患者在发作时伴有意识障碍,可能表现为复杂的自动症(如无意识地做出反复动作、走动、咀嚼等)或失神。这种类型的发作常见于颞叶肿瘤,特别是当肿瘤影响到该区域的情感与记忆功能时。局灶性发作继发全身性强直–阵挛癫痫(focal to bilateral tonic-clonic seizures):局灶性癫痫发作扩展至双侧半球,导致全身性强直–阵挛发作,通常伴随有意识丧失、肌肉强直和阵挛性抽搐等。此类发作通常较为剧烈,可能导致患者跌倒或受伤[10]

然而,BTRE患者也可能出现其他原因引起的反复或阵发性意识障碍,这些症状可能与癫痫发作混淆。例如,颅内压增高(如肿瘤引起的脑水肿或脑积水)常常表现为意识障碍、嗜睡、呕吐等症状,这与癫痫发作的表现相似,容易被误诊为癫痫。此外,极少数情况下,患者可能出现心理性非癫痫性发作,其临床表现与癫痫发作相似,但其根源通常是心理因素[18]

3. BTRE的病理生理机制

脑肿瘤相关癫痫(BTRE)的病理生理机制复杂,涉及多个生物学过程,包括神经递质失衡、肿瘤周围微环境变化、离子通道改变等。以下是BTRE中主要病理机制的详细描述。

3.1. 神经递质的失衡

在肿瘤相关癫痫的发生中,谷氨酸和γ-氨基丁酸能(GABA)失衡被认为是重要的病理机制之一。谷氨酸作为中枢神经系统中的主要兴奋性神经递质,发挥着关键作用。研究表明,肿瘤微环境中谷氨酸水平的升高与癫痫发作之间密切相关。这种升高通常与半胱氨酸–谷氨酸转运蛋白的表达增加有关,导致谷氨酸能信号通路的过度活跃,从而引发癫痫发作,并可能促使肿瘤的发展[19]。在高癫痫性胶质瘤患者中,谷氨酸的水平显著升高,甚至在动物模型中也能观察到类似的变化[20]。同时,谷氨酸转运蛋白的表达增加可能在肿瘤相关癫痫的发病机制中发挥重要作用[21]。研究表明与非癫痫区域脑组织相比,低级别胶质瘤患者肿瘤周围的脑组织中含有GABA的神经元数量较少[19]。从而GABA的抑制作用降低,增加神经元兴奋性,降低癫痫发作阈值。这一机制可能与谷氨酸稳态的破坏相互作用,并加剧癫痫的发生[22]

3.2. 肿瘤微环境的改变

肿瘤生长导致的局部血管新生和血脑屏障功能的破坏,使得炎症因子、电解质和其他细胞因子更容易进入脑组织,从而进一步加剧神经元的兴奋性。这种屏障的破坏可能导致大脑皮层的环境更加适合癫痫的发生,尤其是在肿瘤及其周围区域[17]

3.3. 离子通道的改变

离子通道在癫痫的发生中扮演着重要角色。研究发现,NKCC1作为一种氯离子转运蛋白,在癫痫发生中起到了重要作用。NKCC1在人体胶质母细胞瘤中被上调,并导致细胞内氯离子浓度增加[23]。在与癫痫密切相关的神经胶质瘤中,NKCC1的上调与KCC2的下调相互关联[24] [25]。此外,NKCC1的拮抗剂——布美他尼已被证明能够降低颞叶癫痫患者的发作频率[26]。因此,NKCC1可能成为治疗BTRE的一个潜在靶点,需要进一步的研究来验证其在该疾病中的作用。

脑肿瘤相关癫痫(BTRE)的病理生理机制复杂,涉及多个生物学过程,如神经递质失衡、肿瘤周围微环境变化和离子通道改变。而且近年来的研究表明,胶质瘤细胞与周围神经元之间存在复杂的双向关系,肿瘤周围的神经元能够直接与胶质瘤细胞形成突触,且这种神经–胶质瘤突触通过兴奋性谷氨酸能信号促进肿瘤细胞的增殖和侵袭。肿瘤分子特征,如IDH1基因突变,可能通过上调mTOR通路或作用于NMDA受体引发神经元过度兴奋和癫痫。PIK3CA和BRAF等基因突变也被发现通过改变细胞内信号通路和离子转运,促进癫痫发生。尽管现有研究揭示了多种机制,但关于这些机制之间相互作用的探讨仍显不足,未来研究应关注这些机制的交互作用及其对肿瘤生长和癫痫发生的双向影响,同时探索新的治疗靶点以打破肿瘤和神经元之间的恶性循环。

4. BTRE的诊断与评估

影像学确诊为肿瘤性病变,临床症状上出现癫痫发作就可以诊断。

4.1. 神经影像学

神经影像学对于识别脑肿瘤和确定癫痫灶至关重要。然而,频繁的癫痫发作可能导致短暂的影像学异常,如增强MRI上的皮质增强,这些改变在成功控制癫痫后可能消失[27]。此外,成人和儿童患者在局灶性癫痫或癫痫持续状态后,可能出现类似肿瘤的可逆性CT或MRI信号异常,因此随访影像学检查对于准确鉴别肿瘤病变与癫痫相关的短暂影像学变化至关重要[28] [29]

4.2. 脑电图

脑电图(EEG)可以辅助诊断。尽管常规EEG的许多特征缺乏特异性,但持续的局灶性δ波与累及白质纤维束的结构性病变密切相关[30]。棘波和尖波提示皮质异常,与位于肿瘤同侧的局灶性癫痫相关。然而,位于皮质下或后颅窝的肿瘤可能表现为正常EEG。在一项对114例患脑肿瘤儿童的术前EEG诊断价值研究中,54例(47%) EEG正常,62例(53%) EEG异常。其中,15例小脑幕下病变的儿童EEG异常,提示术前EEG在儿童脑肿瘤诊断中的局限性[31]

5. 治疗策略

5.1. 抗癫痫药物的使用

由于癫痫复发风险高,建议在脑肿瘤患者首次癫痫发作后尽早启动抗癫痫药物(ASM)治疗。首选单药治疗,以减少长期不良反应并提高依从性。左乙拉西坦(Levetiracetam)是神经肿瘤学领域专家推荐的首选单药[32]。此外,拉考沙胺(Lacosamide)和布立西坦(Brivaracetam)也可作为等效选择,尽管目前关于其单药治疗BTRE的证据仍有限[32]。拉莫三嗪(Lamotrigine)在允许缓慢滴定剂量的情况下(如非致残性局灶性癫痫或无肿瘤生长迹象的患者)可作为替代选择[32]

对于仍有癫痫发作的患者,应逐步增加剂量至最大耐受剂量。如果加大单药剂量治疗后仍无法控制发作,则应联合第二种ASM。推荐联合不同作用机制的药物,如左乙拉西坦 + 丙戊酸钠、拉科酰胺、拉莫三嗪或帕兰帕奈(Perampanel) [33]。研究显示,左乙拉西坦 + 丙戊酸钠的双药方案优于其他组合[33]。此外,拉科酰胺和拉莫三嗪作为附加治疗显示出良好的疗效和耐受性[34] [35],而布立西坦和帕兰帕奈的有效性也在小型研究中得到支持[36] [37]。其他可考虑的二线附加药物包括托吡酯(Topiramate)、奥卡西平(Oxcarbazepine)和佐尼酰胺(Zonisamide)。

难治性癫痫定义为经过至少两种合适的ASM治疗方案(单药或联合)仍无法实现长期发作缓解的情况[38]。低级别胶质瘤患者的难治性癫痫比例约40%,而胶质母细胞瘤患者的比例为10%~15% [39]。对于此类患者,需要评估药物依从性,排除其他导致治疗失败的因素。若仍无法控制发作,可考虑更换一种ASM或进行三联药物治疗。例如,可加入氯巴占(Clobazam)作为第三种ASM,以增强抗癫痫效果[33]

当前治疗脑肿瘤相关癫痫的抗癫痫药物(ASMs)疗效差异显著。第一代ASMs如卡马西平和苯妥英钠具有较高的无癫痫发作率,分别为6个月28%和67%~87%,12个月30%~55%和35%~77%,但因其强效的酶诱导作用和药物相互作用,通常不推荐使用[32]。第二代ASMs中,左乙拉西坦作为一线药物,6个月无癫痫发作率为39%~96%,12个月为68%~96% [32],而奥卡西平则在单药治疗中有63%的患者在16个月随访中无癫痫发作[33]。托吡酯和佐匹克隆虽然效果良好,但伴随认知和体重变化等副作用。第三代ASMs如拉科酰胺显示了较好的耐受性和效果,但在BTRE患者中的效果尚需进一步验证。整体而言,目前还没有大型的随机对照试验,尽管一些研究表明这些治疗方案在控制癫痫方面表现出一定的疗效,但不同药物的有效率、副作用和耐受性存在显著差异,亟需更多量化研究来比较其优劣,尤其是在副作用和治疗效果的综合评估上。

在患有脑肿瘤儿童中使用ASM的证据有限,管理通常类似于其他癫痫患者。但是我们不建议等待脑肿瘤患儿第二次癫痫发作。

5.2. 手术

手术切除是治疗BTRE最有效的策略,不仅有助于癫痫控制,还可改善患者的总体生存率[40]。研究表明,相比次全切除,全切除是术后无癫痫发作的最重要预测因素之一,适用于包括胶质瘤、脑转移瘤和脑膜瘤等多种病理类型[41]。然而,即使在最大程度切除后,仍有约20%的低级别肿瘤相关癫痫患者和约40%的低级别胶质瘤患者术后仍存在持续性癫痫发作[42]。术中电皮质图(intraoperative electrocorticography, iECoG)可用于术中评估癫痫灶,并指导切除范围,以提高术后癫痫控制率[43]。虽然iECoG在癫痫手术中的应用效果存在一定争议[27],但在胶质瘤相关癫痫(glioma-related epilepsy)患者中,切除iECoG记录的癫痫样放电区域可显著提高术后无癫痫发作率(142)。一项纳入1115例难治性BTRE患者的荟萃分析表明,iECoG引导的切除手术较单纯病灶切除可更有效地减少术后癫痫发作[44]。iECoG的记录方法、电极类型及放置位置可能影响癫痫样放电的识别,因此需根据个体情况优化记录时间、电极布置及特定生物标志物的识别,以提高术后预后[45]

5.3. 放疗与化疗

放疗和化疗在治疗脑肿瘤相关癫痫(BTRE)中可能具有缓解癫痫发作的作用,但相关研究仍较为有限。对于低级别胶质瘤患者,立体定向间质照射已被报道能改善40%~100%的病例癫痫控制,推测其作用机制可能与苯二氮卓受体密度增加有关[46]。伽玛刀放射外科治疗对于中颞叶相关癫痫也显示出疗效,且常常瞄准假定的肿瘤周围癫痫灶进行照射[47]。此外,规范化的放疗在难治性癫痫和低级别胶质瘤患者中可实现75%~100%的癫痫控制[48]。化疗方面,使用烷基化剂治疗低级别胶质瘤患者与癫痫发作的减少相关,尤其在使用替莫唑胺时,癫痫减轻的比例为13%~60%。这些治疗在患者的病情稳定的同时,也可能通过减少肿瘤细胞的浸润,间接改善癫痫控制[49]。然而,放疗和化疗对脑转移瘤和脑膜瘤的影响尚未得到深入研究,仍需进一步的研究以明确其在癫痫控制中的潜力。

6. 未来方向

新型抗癫痫药物与个体化治疗的发展:随着对BTRE机制的深入了解,未来可能会出现更多针对BTRE的抗癫痫药物,这些药物将具有更高的特异性和更少的副作用。个体化治疗将成为未来的治疗趋势,通过监测药物浓度、药物相互作用以及患者的遗传背景,提供更加量身定制的治疗方案。未来的重点可能是选择能够有效控制癫痫发作,同时减少对大脑功能的负面影响的药物[48]

人工智能(AI)预计将在BTRE的诊断和治疗中发挥重要作用。AI可以帮助识别EEG中的癫痫波形、分析影像学数据(如MRI、PET)以准确定位癫痫灶。此外,AI还可以支持个体化治疗策略,通过根据患者数据预测癫痫的发生情况,帮助及时调整治疗方案。

未来的研究可能将重点放在大规模、多中心的临床研究以及大数据分析上,以更好地理解BTRE的复杂机制。通过整合来自不同地区的患者群体和分析大量数据,研究者将能够揭示BTRE的发病机制,并进一步完善治疗方案。这些研究还可能帮助识别预测癫痫发作或治疗反应的遗传和分子标记,从而为更有效的治疗奠定基础[50]

7. 总结

脑肿瘤相关癫痫(BTRE)是脑肿瘤患者常见的神经系统并发症,严重影响患者的生活质量。BTRE的发生机制较为复杂,主要包括神经递质失衡、肿瘤微环境改变和离子通道功能障碍等因素。尽管目前药物治疗、手术、放疗和化疗等治疗手段已被广泛应用,但治疗过程中仍面临耐药性和癫痫复发等挑战,如何实现早期、个体化治疗至关重要。在药物治疗方面,首选抗癫痫药物如左乙拉西坦、拉莫三嗪等,但对于耐药性癫痫患者,联合用药或药物更换是常见策略。手术切除肿瘤在控制癫痫方面有效,尽管部分患者术后仍可能复发。放疗和化疗也被证实对癫痫控制有潜力,尤其在低级别胶质瘤患者中,但相关研究仍较为有限。未来,可以开展新型抗癫痫药物的开发、人工智能在癫痫诊断和影像分析中的应用。多中心研究和大数据分析的开展有助于进一步揭示BTRE的机制,推动个体化治疗策略的完善。

NOTES

*通讯作者。

参考文献

[1] Avila, E.K., Tobochnik, S., Inati, S.K., Koekkoek, J.A.F., McKhann, G.M., Riviello, J.J., et al. (2023) Brain Tumor-Related Epilepsy Management: A Society for Neuro-Oncology (SNO) Consensus Review on Current Management. Neuro-Oncology, 26, 7-24.
https://doi.org/10.1093/neuonc/noad154
[2] Villemure, J. and de Tribolet, N. (1996) Epilepsy in Patients with Central Nervous System Tumors. Current Opinion in Neurology, 9, 424-428.
https://doi.org/10.1097/00019052-199612000-00005
[3] Venkatesh, H.S., Morishita, W., Geraghty, A.C., Silverbush, D., Gillespie, S.M., Arzt, M., et al. (2019) Electrical and Synaptic Integration of Glioma into Neural Circuits. Nature, 573, 539-545.
https://doi.org/10.1038/s41586-019-1563-y
[4] Yang, Y., Mao, Q., Wang, X., Liu, Y., Mao, Y., Zhou, Q., et al. (2016) An Analysis of 170 Glioma Patients and Systematic Review to Investigate the Association between IDH-1 Mutations and Preoperative Glioma-Related Epilepsy. Journal of Clinical Neuroscience, 31, 56-62.
https://doi.org/10.1016/j.jocn.2015.11.030
[5] Venkataramani, V., Tanev, D.I., Strahle, C., Studier-Fischer, A., Fankhauser, L., Kessler, T., et al. (2019) Glutamatergic Synaptic Input to Glioma Cells Drives Brain Tumour Progression. Nature, 573, 532-538.
https://doi.org/10.1038/s41586-019-1564-x
[6] Glantz, M.J., Cole, B.F., Forsyth, P.A., Recht, L.D., Wen, P.Y., Chamberlain, M.C., et al. (2000) Practice Parameter: Anticonvulsant Prophylaxis in Patients with Newly Diagnosed Brain Tumors. Neurology, 54, 1886-1893.
https://doi.org/10.1212/wnl.54.10.1886
[7] Su, X., Chen, H., Wang, Z. and Lan, Q. (2015) Relationship between Tumour Location and Preoperative Seizure Incidence in Patients with Gliomas: A Systematic Review and Meta-Analysis. Epileptic Disorders, 17, 397-408.
https://doi.org/10.1684/epd.2015.0788
[8] Pelliccia, V., Deleo, F., Gozzo, F., Sartori, I., Mai, R., Cossu, M., et al. (2017) Early and Late Epilepsy Surgery in Focal Epilepsies Associated with Long-Term Epilepsy-Associated Tumors. Journal of Neurosurgery, 127, 1147-1152.
https://doi.org/10.3171/2016.9.jns161176
[9] Kwon, C., Wagner, R.G., Carpio, A., Jetté, N., Newton, C.R. and Thurman, D.J. (2022) The Worldwide Epilepsy Treatment Gap: A Systematic Review and Recommendations for Revised Definitions—A Report from the ILAE Epidemiology Commission. Epilepsia, 63, 551-564.
https://doi.org/10.1111/epi.17112
[10] Scheffer, I.E., Berkovic, S., Capovilla, G., Connolly, M.B., French, J., Guilhoto, L., et al. (2017) ILAE Classification of the Epilepsies: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 58, 512-521.
https://doi.org/10.1111/epi.13709
[11] Fiest, K.M., Sauro, K.M., et al. (2017) Prevalence and Incidence of Epilepsy: A Systematic Review and Meta-Analysis of International Studies. Neurology, 88, 296-303.
https://pmc.ncbi.nlm.nih.gov/articles/PMC5272794/
[12] Chiang, S., Moss, R., Stern, J.M., Hughes, I., Josephson, S.A., Pearce, J.R., et al. (2022) Development of a Core Outcome Set for Quality of Life for Adults with Drug-Resistant Epilepsy: A Multistakeholder Delphi Consensus Study. Epilepsia, 64, 170-183.
https://doi.org/10.1111/epi.17461
[13] Ostrom, Q.T., Price, M., Neff, C., Cioffi, G., Waite, K.A., Kruchko, C., et al. (2022) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro-Oncology, 24, v1-v95.
https://doi.org/10.1093/neuonc/noac202
[14] Blumcke, I., Spreafico, R., Haaker, G., Coras, R., Kobow, K., Bien, C.G., et al. (2017) Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery. New England Journal of Medicine, 377, 1648-1656.
https://doi.org/10.1056/nejmoa1703784
[15] Lote, K., Stenwig, A.E., et al. (1998) Prevalence and Prognostic Significance of Epilepsy in Patients with Gliomas. European Journal of Cancer, 34, 98-102.
https://pubmed.ncbi.nlm.nih.gov/9624245/
[16] Breemen, M.S.M., Rijsman, R.M., Taphoorn, M.J.B., Walchenbach, R., Zwinkels, H. and Vecht, C.J. (2009) Efficacy of Anti-Epileptic Drugs in Patients with Gliomas and Seizures. Journal of Neurology, 256, 1519-1526.
https://doi.org/10.1007/s00415-009-5156-9
[17] Malbari, F., Zhu, H., Riviello, J.J. and Clarke, D. (2021) Antiepileptic Drug Management in Pediatric Patients with Brain Tumor-Related Epilepsy. Epilepsy & Behavior, 125, Article 108359.
https://doi.org/10.1016/j.yebeh.2021.108359
[18] Lin, A.L. and Avila, E.K. (2016) Neurologic Emergencies in the Patients with Cancer. Journal of Intensive Care Medicine, 32, 99-115.
https://doi.org/10.1177/0885066615619582
[19] Armstrong, T.S., Grant, R., Gilbert, M.R., Lee, J.W. and Norden, A.D. (2015) Epilepsy in Glioma Patients: Mechanisms, Management, and Impact of Anticonvulsant Therapy: Table 1. Neuro-Oncology, 18, 779-789.
https://doi.org/10.1093/neuonc/nov269
[20] Marcus, H.J., Carpenter, K.L.H., Price, S.J. and Hutchinson, P.J. (2009) In Vivo Assessment of High-Grade Glioma Biochemistry Using Microdialysis: A Study of Energy-Related Molecules, Growth Factors and Cytokines. Journal of Neuro-Oncology, 97, 11-23.
https://doi.org/10.1007/s11060-009-9990-5
[21] Yuen, T.I., Morokoff, A.P., Bjorksten, A., D’Abaco, G., Paradiso, L., Finch, S., et al. (2012) Glutamate Is Associated with a Higher Risk of Seizures in Patients with Gliomas. Neurology, 79, 883-889.
https://doi.org/10.1212/wnl.0b013e318266fa89
[22] MacKenzie, G., O’Toole, K.K., Moss, S.J. and Maguire, J. (2016) Compromised Gabaergic Inhibition Contributes to Tumor-Associated Epilepsy. Epilepsy Research, 126, 185-196.
https://doi.org/10.1016/j.eplepsyres.2016.07.010
[23] Pallud, J., Le Van Quyen, M., Bielle, F., Pellegrino, C., Varlet, P., Labussiere, M., et al. (2014) Cortical Gabaergic Excitation Contributes to Epileptic Activities around Human Glioma. Science Translational Medicine, 6, 244ra89.
https://doi.org/10.1126/scitranslmed.3008065
[24] Aronica, E., Boer, K., Becker, A., et al. (2008) Gene Expression Profile Analysis of Epilepsy-Associated Gangliogliomas. Neuroscience, 151, 272-292.
https://pubmed.ncbi.nlm.nih.gov/18093740/
[25] Aronica, E., Boer, K., Redeker, S., et al. (2007) Differential Expression Patterns of Chloride Transporters, Na+-K+-2Cl-Cotransporter and K+-Cl-Cotransporter, in Epilepsy-Associated Malformations of Cortical Development. Neuroscience, 145, 185-196.
https://pubmed.ncbi.nlm.nih.gov/17207578/
[26] Eftekhari, S., Mehvari Habibabadi, J., Najafi Ziarani, M., Hashemi Fesharaki, S.S., Gharakhani, M., Mostafavi, H., et al. (2012) Bumetanide Reduces Seizure Frequency in Patients with Temporal Lobe Epilepsy. Epilepsia, 54, e9-e12.
https://doi.org/10.1111/j.1528-1167.2012.03654.x
[27] Hormigo, A., Liberato, B., et al. (2004) Nonconvulsive Status Epilepticus in Patients with Cancer: Imaging Abnormalities. Archives of Neurology, 61, 362-365.
https://pubmed.ncbi.nlm.nih.gov/15023812/
[28] Riela, A.R., Sires, B.P. and Kiffin Penry, J. (1991) Transient Magnetic Resonance Imaging Abnormalities during Partial Status Epilepticus. Journal of Child Neurology, 6, 143-145.
https://doi.org/10.1177/088307389100600209
[29] Kramer, R.E., Dinner, D.S., et al. (1987) Transient Focal Abnormalities of Neuroimaging Studies during Focal Status Epilepticus. Epilepsia, 28, 528-532.
https://pubmed.ncbi.nlm.nih.gov/3653056/
[30] Schaul, N., Green, L., Peyster, R. and Gotman, J. (1986) Structural Determinants of Electroencephalographic Findings in Acute Hemispheric Lesions. Annals of Neurology, 20, 703-711.
https://doi.org/10.1002/ana.410200609
[31] Preu, M., Preiss, S., Syrbe, S., et al. (2015) Signs and Symptoms of Pediatric Brain Tumors and Diagnostic Value of Preoperative EEG. Child’s Nervous System, 31, 2051-2054.
https://pubmed.ncbi.nlm.nih.gov/26248670/
[32] van der Meer, P.B., Driven, L., et al. (2021) Prescription Preferences of Antiepileptic Drugs in Brain Tumor Patients: An International Survey among EANO Members. Neuro-Oncology Practice, 9, 105-113.
https://pubmed.ncbi.nlm.nih.gov/35371521/
[33] van der Meer, P.B., Driven, L., et al. (2022) Effectiveness of Antiseizure Medication Duotherapies in Patients with Glioma: A Multicenter Observational Cohort Study. Neurology, 99, e999-e1008.
https://pubmed.ncbi.nlm.nih.gov/36219797/
[34] van Opijnen, M.P., van der Meer, P.B., Dirven, L., Fiocco, M., Kouwenhoven, M.C.M., van den Bent, M.J., et al. (2021) The Effectiveness of Antiepileptic Drug Treatment in Glioma Patients: Lamotrigine versus Lacosamide. Journal of Neuro-Oncology, 154, 73-81.
https://doi.org/10.1007/s11060-021-03800-z
[35] Rudà, R., Houillier, C., Maschio, M., Reijneveld, J.C., Hellot, S., De Backer, M., et al. (2020) Effectiveness and Tolerability of Lacosamide as Add-On Therapy in Patients with Brain Tumor-Related Epilepsy: Results from a Prospective, Noninterventional Study in European Clinical Practice (Vibes). Epilepsia, 61, 647-656.
https://doi.org/10.1111/epi.16486
[36] Coppola, A., Zarabla, A., et al. (2020) Perampanel Confirms to Be Effective and Well-Tolerated as an Add-On Treatment in Patients with Brain Tumor-Related Epilepsy (PERADET Study). Frontiers in Neurology, 11, Article 592.
https://pmc.ncbi.nlm.nih.gov/articles/PMC7336340/
[37] Maschio, M., Maialetti, A., Mocellini, C., Domina, E., Pauletto, G., Costa, C., et al. (2020) Effect of Brivaracetam on Efficacy and Tolerability in Patients with Brain Tumor-Related Epilepsy: A Retrospective Multicenter Study. Frontiers in Neurology, 11, Article 813.
https://doi.org/10.3389/fneur.2020.00813
[38] Kwan, P., Arzimanoglou, A., Berg, A.T., Brodie, M.J., Allen Hauser, W., Mathern, G., et al. (2010) Definition of Drug Resistant Epilepsy: Consensus Proposal by the Ad Hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia, 51, 1069-1077.
https://doi.org/10.1111/j.1528-1167.2009.02397.x
[39] Jo, J., Nevel, K., Sutyla, R., et al. (2020) Predictors of Early, Recurrent, and Intractable Seizures in Low-Grade Glioma. Neuro-Oncology Practice, 8, 40-47.
https://pmc.ncbi.nlm.nih.gov/articles/PMC7906271/
[40] van Breemen, M.S., Wilms, E.B. and Vecht, C.J. (2007) Epilepsy in Patients with Brain Tumours: Epidemiology, Mechanisms, and Management. The Lancet Neurology, 6, 421-430.
https://doi.org/10.1016/s1474-4422(07)70103-5
[41] Robertson, F.C., Ullrich, N.J., Manley, P.E., Al-Sayegh, H., Ma, C. and Goumnerova, L.C. (2018) The Impact of Intraoperative Electrocorticography on Seizure Outcome after Resection of Pediatric Brain Tumors: A Cohort Study. Neurosurgery, 85, 375-383.
https://doi.org/10.1093/neuros/nyy342
[42] Lamberink, H.J., Otte, W.M., Blümcke, I., Braun, K.P.J., Aichholzer, M., Amorim, I., et al. (2020) Seizure Outcome and Use of Antiepileptic Drugs after Epilepsy Surgery According to Histopathological Diagnosis: A Retrospective Multicentre Cohort Study. The Lancet Neurology, 19, 748-757.
https://doi.org/10.1016/s1474-4422(20)30220-9
[43] Zhu, Q., Liang, Y., Fan, Z., Liu, Y., Zhou, C., Zhang, H., et al. (2022) The Utility of Intraoperative ECoG in Tumor-Related Epilepsy: Systematic Review. Clinical Neurology and Neurosurgery, 212, Article 107054.
https://doi.org/10.1016/j.clineuro.2021.107054
[44] Warsi, N.M., Mohammad, A.H., et al. (2023) Electrocorticography-Guided Resection Enhances Postoperative Seizure Freedom in Low-Grade Tumor-Associated Epilepsy: A Systematic Review and Meta-Analysis. Neurosurgery, 92, 18-26.
https://pubmed.ncbi.nlm.nih.gov/36519857/
[45] Goel, K., Pek, V., Shlobin, N.A., Chen, J., Wang, A., Ibrahim, G.M., et al. (2022) Clinical Utility of Intraoperative Electrocorticography for Epilepsy Surgery: A Systematic Review and Meta-Analysis. Epilepsia, 64, 253-265.
https://doi.org/10.1111/epi.17472
[46] Koekkoek, J.A.F., Kerkhof, M., Dirven, L., Heimans, J.J., Reijneveld, J.C. and Taphoorn, M.J.B. (2015) Seizure Outcome after Radiotherapy and Chemotherapy in Low-Grade Glioma Patients: A Systematic Review. Neuro-Oncology, 17, 924-934.
https://doi.org/10.1093/neuonc/nov032
[47] Ruda, R., Magliola, U., Bertero, L., Trevisan, E., Bosa, C., Mantovani, C., et al. (2013) Seizure Control Following Radiotherapy in Patients with Diffuse Gliomas: A Retrospective Study. Neuro-Oncology, 15, 1739-1749.
https://doi.org/10.1093/neuonc/not109
[48] Rogers, L.R., Morris, H.H. and Lupica, K. (1993) Effect of Cranial Irradiation on Seizure Frequency in Adults with Low-Grade Astrocytoma and Medically Intractable Epilepsy. Neurology, 43, 1599-1599.
https://doi.org/10.1212/wnl.43.8.1599
[49] Castellano, A., Donativi, M., Rudà, R., De Nunzio, G., Riva, M., Iadanza, A., et al. (2015) Evaluation of Low-Grade Glioma Structural Changes after Chemotherapy Using DTI-Based Histogram Analysis and Functional Diffusion Maps. European Radiology, 26, 1263-1273.
https://doi.org/10.1007/s00330-015-3934-6
[50] van der Meer, P.B., Taphoorn, M.J.B. and Koekkoek, J.A.F. (2022) Management of Epilepsy in Brain Tumor Patients. Current Opinion in Oncology, 34, 685-690.
https://doi.org/10.1097/cco.0000000000000876