生酮饮食治疗胰腺癌的研究进展
Research Progress of Ketogenic Diet for Pancreatic Cancer Treatment
DOI: 10.12677/acm.2025.153803, PDF, HTML, XML,   
作者: 曲志鹏:内蒙古医科大学第一临床医学院,内蒙古 呼和浩特;申文凤*:内蒙古医科大学附属医院超声医学科,内蒙古 呼和浩特
关键词: 胰腺癌生酮饮食综述Pancreatic Cancer Ketogenic Diet Overview
摘要: 胰腺癌是一种高死亡率的恶性肿瘤疾病,其发生与基因、生活环境、生活方式等多种因素相关。目前胰腺癌的治疗手段不断发展,但总体生存率仍不尽如人意。生酮饮食是一种高比例脂肪、低碳水化合物的饮食方式,产生酮体来供能,打破了肿瘤细胞正常供能方式,被认为有潜在的抗肿瘤作用。因此,本综述介绍生酮饮食在胰腺癌治疗过程中的作用机制及可能存在的问题,以期为临床治疗提供一定的参考价值。
Abstract: Pancreatic cancer is a malignant tumor disease with high mortality rate, and its occurrence is related to various factors such as genes, living environment, and lifestyle. Current treatments for pancreatic cancer continue to evolve, but overall survival is still unsatisfactory. The ketogenic diet, a high-ratio fat, low-carbohydrate diet that produces ketone bodies for energy supply, disrupts the normal way of energy supply for tumor cells, and is considered to have potential anti-tumor effects. Therefore, this review introduces the mechanism of action and possible problems of ketogenic diet in the treatment of pancreatic cancer, with a view to providing some reference value for clinical treatment.
文章引用:曲志鹏, 申文凤. 生酮饮食治疗胰腺癌的研究进展[J]. 临床医学进展, 2025, 15(3): 1768-1773. https://doi.org/10.12677/acm.2025.153803

1. 引言

胰腺癌(pancreatic cancer, PC)是一种常见的致死性恶性肿瘤,主要与胰腺癌家族史,肥胖、吸烟、饮酒、慢性胰腺炎以及II型糖尿病等因素有关[1]五年生存率大概12%,已成为美国第三大癌症死亡病因。由于PC早期无症状,发现常已是晚期,加之胰腺解剖位置较深等原因,给其诊疗带来了巨大困难,严重威胁人类生命健康[2]。目前,手术仍是治疗PC的主要手段,术前加用新辅助化疗如吉西他滨(Gemcitabine,GEM)联合紫杉醇、顺铂、表柔比星、氟尿嘧啶等能显著提高患者的术后总生存率[3]-[5]。但肿瘤耐药及复发仍会导致患者预后不良,免疫疗法也尚不尽如人意[6]。因此需要找到更好的方案,为PC治疗注入新思路。

2. 生酮饮食

生酮饮食(ketogenic diet, KD)是一种高脂肪低碳水化合物的饮食方式,早在20世纪20年代,人们观察到人在饥饿或碳水化合物比例低、脂肪比例高的饮食条件下会产生酮体,这种改变人体代谢的饮食方式可以用于治疗癫痫疾病。在1921年怀尔德博士建议在癫痫患者中应用KD以模仿禁食状态,并在小儿癫痫的治疗中取得显著疗效[7]。在现代,KD作为一种治疗方式,已被证实在一些恶性肿瘤的治疗中同样发挥着重要作用[8]。本综述总结了KD在PC治疗中的作用机制,以期为PC治疗提供一些新的临床证据。

3. KD对PC的疗效

已有更多的研究从动物实验到临床试验来探讨KD对PC的作用。有研究建立PC裸鼠异种移植瘤模型,结果显示经KD联合放射治疗的裸鼠生存时间长于单一放疗组,且联合治疗组裸鼠肿瘤生长速度更慢,证明了KD联合放疗对PC的疗效[9]。此外,KD与化疗的联合亦有利于延长小鼠生存期,Yang的研究发现KD联合化疗可将PC小鼠的平均生存期从延长5.8天提升至16天[10]。也有研究证实KD即使作为单一疗法亦可延长小鼠的生存时间。KD与靶向治疗联合,同样有利于生存期的延长[11]。临床工作中发现,PC术后患者可能由于消化不良、早饱、腹胀、畏食等原因导致整体进食量减少,患者恶病质的发生率及死亡率增加。Ju研究了PC切除术后加用KD对患者的影响,研究显示患者对KD的依从性、能量摄取率以及膳食满意度很高,且研究期间无消化系统并发症发生,这可能与KD较普通饮食热量高,相同热量食物摄取重量更少有关。KD在动物实验中也被证实无明显肝脏毒性[12]。总之,KD单一或与其他治疗手段联合治疗PC以及在改善PC术后患者预后方面都有一定的帮助,KD可作为一种安全有效的营养干预措施为临床治疗PC提供新方法[13]

4. KD治疗PC的机制分析

4.1. KD通过糖代谢治疗PC

葡萄糖是机体重要的供能物质,正常情况下细胞主要通过氧化磷酸化的方式产生能量,Wurburg效应是肿瘤细胞代谢的一种重要特征,即肿瘤细胞通过改变代谢方式获得生存优势,在氧气充足的情况下肿瘤细胞也会优先选择通过糖酵解而不是线粒体氧化磷酸化的方式来获取能量。这种代谢方式可能由缺氧诱导因子(HIF)的表达、生长因子信号转导的改变、癌基因激活或抑制基因功能丧失等所引导[14]。PC细胞的糖代谢有以下特点,一方面细胞PI3K-AKT-MTOR通路被激活促进HIF的表达,增强肿瘤糖酵解并刺激新生血管生成;另一方面细胞Raf-MEK-ERK通路的过度激活降低PC细胞中肿瘤抑制因子FBW7的表达[15];此外有氧糖酵解也会增强PC的转移能力[16]。有多项研究表明PC小鼠接受KD后由于糖酵解相关酶表达的下降,糖酵解被抑制[17]。KD联合GEM (KG)同样降低了己糖激酶2 (Hexokinase 2, HK2)和3磷酸甘油醛(Glyceraldehyde-3-phosphate dehydrogenase, G3PDH)的表达水平。Cortez NE的研究显示雌性小鼠在经KG治疗后细胞中PI3K-AKT-MTOR、Raf-MEK-ERK通路下调,进而抑制了肿瘤糖酵解。这些研究证实KD可通过调控PC细胞相关信号转导通路及减少糖酵解相关酶的表达来抑制Wurburg效应进而抑制PC细胞生长及侵袭转移的能力[18]。糖尿病作为罹患胰腺癌的一种危险因素,近一半PC患者在检查出的前两年出现血糖升高。血糖升高作为PC的一种危险因素其机制可能包括血糖升高时体内胰岛素分泌过多,激活了胰岛素样生长因子受体(Insulin like growth factor receptor, IGFR)表达导致细胞增殖以及炎症反应等[19]。PC细胞过度摄取葡萄糖进而导致葡萄糖转运蛋白1 (Glucose transporter 1, GLUT1)在PC中高表达,这被认为与肿瘤侵袭性相关[20] [21]。一项大型队列研究发现低碳水化合物饮食可以有效降低罹患PC的风险[22]。KD限制了葡萄糖的摄入创造了不利于PC细胞生长的环境,有效抑制肿瘤细胞生长。

4.2. KD通过调节脂质代谢治疗PC

硬脂酰辅酶A去饱和酶(Stearoyl-CoA Desaturase, SCD)在体内维持饱和脂肪酸与不饱和脂肪酸的比例平衡,在PC细胞中过表达的SCD通过诱导单不饱和脂肪酸的产生以及降低脂肪过氧化物的生成来防止细胞铁死亡的发生。一方面KD的低碳水化合物饮食会导致SCD活性降低,低碳水化合物导致的体内胰岛素水平下降也可降低SCD的表达,另一方面增加KD高脂饮食中的饱和脂肪酸的含量也可有效降低SCD的表达,从而增强细胞铁死亡,从而延缓肿瘤的生长[23] [24]。PC中肿瘤细胞抑制因子FBW7也可以通过调节核受体亚家族4A组成员1 (NR4A1)进而抑制SCD的表达,激活癌细胞的铁死亡并增强化疗的毒性作用,KD通过减少Raf-MEK-ERK通路的激活增加了FBW7的表达,这也为胰腺癌的综合治疗提供了新策略[25]

4.3. KD通过调节氧化应激治疗PC

氧化应激的定义为细胞氧化剂与抗氧化剂之间平衡的破坏,由于肿瘤细胞线粒体结构与正常细胞线粒体结构存在差异,肿瘤细胞线粒体呼吸链中会产生持续过量的活性氧(ROS)促进癌症的发展,这也意味着肿瘤细胞更容易受到氧化应激的影响,肿瘤细胞通过合成谷胱甘肽和抗氧化酶抵消氧化物质的影响,有研究指出一定程度的氧化应激可以促进肿瘤生长,而过度氧化应激可造成细胞毒性作用[26]。Yang发现KD联合化疗抑制了肿瘤的糖酵解,导致乳酸水平降低,乳酸–丙酮酸富集减少,而增加了β-羟丁酸的分解代谢,线粒体内NADH/NAD比例升高,促进了ROS的产生增强癌细胞氧化应激,加剧肿瘤细胞的死亡,抑制了肿瘤生长,KD联合化疗可以破坏肿瘤细胞氧化还原的稳态,增加了化疗的疗效,化疗过程中产生了较多的糖酵解中间体、还原性谷胱甘肽以及核苷酸被认为有助于肿瘤抵抗化疗反应[27] [28]。有实验给予KD后脂质过氧化标志物4-羟基壬烯醛(4-Hydroxynonenal, 4HNE)含量明显增加[11],这与Zahra A观察到的结果一致[9]。KD通过增强PC细胞氧化应激的产生抑制PC细胞的生长。此外也有实验证实在高血糖环境下可以通过减少谷氨酸–半胱氨酸连接酶催化亚基(Recombinant Glutamate Cysteine Ligase, Catalytic GCLC)导致体内还原性型谷胱甘肽产生减少、增强细胞氧损伤的产生进而增加PC对化疗药的敏感性。GCLC的抑制剂L-丁硫氨酸亚峰亚胺(BSO)在血糖正常的小鼠体内也可增强化疗效果,这为改善PC化疗耐药性提供了一种治疗方法[29]

4.4. KD通过影响炎症因子治疗PC

有研究表示与KPC小鼠相比重度免疫缺陷型小鼠KD联合化疗治疗后总体生存率的改善更低,KD诱导有关干扰素-γ (Interferon-γ, IFN-γ)炎症基因的表达[11]。IFN-γ可以通过上调多药耐药相关蛋白(MRP)和下调乳腺癌耐药蛋白(BCRP)逆转耐药基因表达,降低肿瘤细胞活力和迁移[30]。也可以通过减低LncRNA MACC1-AS1的表达负调控MACC1的生成使AKT-mTOR通路蛋白失活抑制PC细胞的增殖[31]

5. 生酮饮食治疗恶病质

恶病质影响大概50%~80%的癌症患者,是一种多因素、通常不可逆的综合征,特征表现为骨骼肌及体内脂肪的减少[32]。在动物及临床试验中发现PC中脂质β氧化及生酮作用受损是早期恶病质中的关键特征,KD可以可逆性地提高酮体生成相关酶如Acadl、Acaa2等的表达,提升酮体水平并增强肌肉含量。对于恶病质前期的PC患者来说生酮饮食可能是一种避免肌肉萎缩的可行方法[33]。血清白介素6 (Interleukin-6, IL-6)、肿瘤坏死因子α (Tumor Necrosis Factor-α, TNF-α)在PC中高表达,被认为与肿瘤侵袭生长及恶病质相关[34]。IL-6减弱生酮作用,产生全身代谢应激状态以及促进糖皮质激素的分泌,增强肌肉的分解代谢,TNF-α则通过ROS氧化应激诱导肌肉蛋白降解并促进泛素蛋白酶体途径的激活[35] [36]。Cortez NE等人观察KD后的小鼠TNF-α、IL-6水平下降可有望改善晚期癌症患者恶病质的发生[18]。也有研究表明虽然KD会抑制结直肠癌小鼠的肿瘤生长,但KD导致的氧化应激状态损害了肾上腺皮质酮的合成,机体对恶病质的应激适应性下降[37]

6. 总结

综上所述,KD可以通过影响肿瘤细胞糖酵解、细胞信号转导通路、减少葡萄糖摄入、减少IGFR、增强氧化应激、影响炎症因子等多种途径发挥出抗PC的作用。但现有研究多为基础研究,KD食物成分比例以及在临床中治疗PC的介入时机、持续天数等问题仍有待探究,还需要大量临床实验证实。KD要求患者依从性较强,应在有专业资质的医师指导下制定个体化食谱,同时密切观察脏器功能以及血糖、血酮变化。KD对PC转移的影响以及疗效中显示出的性别差异,其机制仍然有待探究。

NOTES

*通讯作者。

参考文献

[1] Singh, S. and Sawal, A. (2024) Comprehensive Review on Pancreatic Head Cancer: Pathogenesis, Diagnosis, and Treatment Challenges in the Quest for Improved Survival. Cureus, 16, e54290.
https://doi.org/10.7759/cureus.54290
[2] Halbrook, C.J., Lyssiotis, C.A., Pasca di Magliano, M. and Maitra, A. (2023) Pancreatic Cancer: Advances and Challenges. Cell, 186, 1729-1754.
https://doi.org/10.1016/j.cell.2023.02.014
[3] Shih, T. and Lindley, C. (2006) Bevacizumab: An Angiogenesis Inhibitor for the Treatment of Solid Malignancies. Clinical Therapeutics, 28, 1779-1802.
https://doi.org/10.1016/j.clinthera.2006.11.015
[4] Arrington, A.K., Hsu, C., Schaefer, K.L., O’Grady, C.L., Khreiss, M. and Riall, T.S. (2021) Survival after Margin-Positive Resection in the Era of Modern Chemotherapy for Pancreatic Cancer: Do Patients Still Benefit? Journal of the American College of Surgeons, 233, 100-109.
https://doi.org/10.1016/j.jamcollsurg.2021.02.020
[5] Barenboim, A., Mercer, D., Sahnan, K., Gaffan, A., Goren, O., Halperin, S., et al. (2024) The Relationship between Treatment Response and Overall Survival in Borderline, Non-Resectable and Resectable Pancreatic Cancer Patients Treated with Neoadjuvant Folfirinox. Journal of Clinical Medicine, 13, Article 5206.
https://doi.org/10.3390/jcm13175206
[6] Mukherji, R., Debnath, D., Hartley, M.L. and Noel, M.S. (2022) The Role of Immunotherapy in Pancreatic Cancer. Current Oncology, 29, 6864-6892.
https://doi.org/10.3390/curroncol29100541
[7] Wheless, J.W. (2008) History of the Ketogenic Diet. Epilepsia, 49, 3-5.
https://doi.org/10.1111/j.1528-1167.2008.01821.x
[8] 苏敏凤, 曾诗惠, 高永峰, 等. 生酮饮食与肿瘤治疗研究进展[J]. 医学研究与战创伤救治, 2024, 37(3): 304-309.
[9] Zahra, A., Fath, M.A., Opat, E., Mapuskar, K.A., Bhatia, S.K., Ma, D.C., et al. (2017) Consuming a Ketogenic Diet While Receiving Radiation and Chemotherapy for Locally Advanced Lung Cancer and Pancreatic Cancer: The University of Iowa Experience of Two Phase 1 Clinical Trials. Radiation Research, 187, 743-754.
https://doi.org/10.1667/rr14668.1
[10] Yang, L., TeSlaa, T., Ng, S., Nofal, M., Wang, L., Lan, T., et al. (2022) Ketogenic Diet and Chemotherapy Combine to Disrupt Pancreatic Cancer Metabolism and Growth. Med, 3, 119-136.e8.
https://doi.org/10.1016/j.medj.2021.12.008
[11] Klement, R.J. (2024) Anti-tumor Effects of Ketogenic Diets and Their Synergism with Other Treatments in Mice: Bayesian Evidence Synthesis of 1755 Individual Mouse Survival Data. Biomedical Journal, 47, Article ID: 100609.
https://doi.org/10.1016/j.bj.2023.100609
[12] Cortez, N., Lanzi, C., Vahmani, P., Matsukuma, K. and Mackenzie, G. (2023) Hepatic Safety Profile of Pancreatic Cancerbearing Mice Fed a Ketogenic Diet in Combination with Gemcitabine. Oncology Letters, 26, Article No. 479.
https://doi.org/10.3892/ol.2023.14067
[13] Ok, J.H., Lee, H., Chung, H., Lee, S.H., Choi, E.J., Kang, C.M., et al. (2018) The Potential Use of a Ketogenic Diet in Pancreatobiliary Cancer Patients after Pancreatectomy. Anticancer Research, 38, 6519-6527.
https://doi.org/10.21873/anticanres.13017
[14] Hsu, P.P. and Sabatini, D.M. (2008) Cancer Cell Metabolism: Warburg and Beyond. Cell, 134, 703-707.
https://doi.org/10.1016/j.cell.2008.08.021
[15] Ji, S., Qin, Y., Shi, S., Liu, X., Hu, H., Zhou, H., et al. (2015) ERK Kinase Phosphorylates and Destabilizes the Tumor Suppressor FBW7 in Pancreatic Cancer. Cell Research, 25, 561-573.
https://doi.org/10.1038/cr.2015.30
[16] Yang, J., Ren, B., Yang, G., Wang, H., Chen, G., You, L., et al. (2019) The Enhancement of Glycolysis Regulates Pancreatic Cancer Metastasis. Cellular and Molecular Life Sciences, 77, 305-321.
https://doi.org/10.1007/s00018-019-03278-z
[17] Zarei, M., Tahhan, S., Gallagher, P., Beegan, W., Loftus, A., Lebo, K., et al. (2024) Abstract B050: Determining the Anti-Cancer Properties of a Ketogenic Diet against Pancreatic Cancer. Cancer Research, 84, B050.
https://doi.org/10.1158/1538-7445.panca2023-b050
[18] Cortez, N.E., Lanzi, C.R., et al. (2022) A Ketogenic Diet in Combination with Gemcitabine Increases Survival in Pancreatic Cancer KPC Mice. Cancer Research Communications, 2, 951-965.
[19] Mikolaskova, I., Crnogorac-Jurcevic, T., Smolkova, B. and Hunakova, L. (2023) Nutraceuticals as Supportive Therapeutic Agents in Diabetes and Pancreatic Ductal Adenocarcinoma: A Systematic Review. Biology, 12, Article 158.
https://doi.org/10.3390/biology12020158
[20] Reske, S.N., Grillenberger, K.G., Glatting, G., et al. (1997) Overexpression of Glucose Transporter 1 and Increased FDG Uptake in Pancreatic Carcinoma. Journal of Nuclear Medicine, 38, 1344-1348.
[21] Basturk, O., Singh, R., Kaygusuz, E., Balci, S., Dursun, N., Culhaci, N., et al. (2011) GLUT-1 Expression in Pancreatic Neoplasia: Implications in Pathogenesis, Diagnosis, and Prognosis. Pancreas, 40, 187-192.
https://doi.org/10.1097/mpa.0b013e318201c935
[22] Zhong, G., Li, Q., Yang, P., Wang, Y., Hao, F., Wang, K., et al. (2021) Low-Carbohydrate Diets and the Risk of Pancreatic Cancer: A Large Prospective Cohort Study. Carcinogenesis, 42, 724-732.
https://doi.org/10.1093/carcin/bgab006
[23] Lien, E.C., Westermark, A.M., Zhang, Y., Yuan, C., Li, Z., Lau, A.N., et al. (2021) Low Glycaemic Diets Alter Lipid Metabolism to Influence Tumour Growth. Nature, 599, 302-307.
https://doi.org/10.1038/s41586-021-04049-2
[24] Sen, U., Coleman, C. and Sen, T. (2023) Stearoyl Coenzyme a Desaturase-1: Multitasker in Cancer, Metabolism, and Ferroptosis. Trends in Cancer, 9, 480-489.
https://doi.org/10.1016/j.trecan.2023.03.003
[25] Ye, Z., Zhuo, Q., Hu, Q., Xu, X., Mengqi liu,, Zhang, Z., et al. (2021) FBW7-NRA41-SCD1 Axis Synchronously Regulates Apoptosis and Ferroptosis in Pancreatic Cancer Cells. Redox Biology, 38, Article ID: 101807.
https://doi.org/10.1016/j.redox.2020.101807
[26] Klaunig, J.E. (2019) Oxidative Stress and Cancer. Current Pharmaceutical Design, 24, 4771-4778.
https://doi.org/10.2174/1381612825666190215121712
[27] Yang, Y., Karakhanova, S., Hartwig, W., D’Haese, J.G., Philippov, P.P., Werner, J., et al. (2016) Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. Journal of Cellular Physiology, 231, 2570-2581.
https://doi.org/10.1002/jcp.25349
[28] Abdel Hadi, N., Reyes-Castellanos, G. and Carrier, A. (2021) Targeting Redox Metabolism in Pancreatic Cancer. International Journal of Molecular Sciences, 22, Article 1534.
https://doi.org/10.3390/ijms22041534
[29] Vaziri-Gohar, A., Hue, J.J., Abbas, A., Graor, H.J., Hajihassani, O., Zarei, M., et al. (2023) Increased Glucose Availability Sensitizes Pancreatic Cancer to Chemotherapy. Nature Communications, 14, Article No. 3823.
https://doi.org/10.1038/s41467-023-38921-8
[30] Kong, X., Cheng, D., Xu, X., Zhang, Y., Li, X. and Pan, W. (2024) IFN-γ Induces Apoptosis in Gemcitabin-Resistant Pancreatic Cancer Cells. Molecular Medicine Reports, 29, Article No. 76.
https://doi.org/10.3892/mmr.2024.13200
[31] Shi, X.Y., Zhang, X.L., Shi, Q.Y., Qiu, X., Wu, X.B., Zheng, B.L., et al. (2022) IFN-γ Affects Pancreatic Cancer Properties by MACC1-AS1/MACC1 Axis via Akt/mTOR Signaling Pathway. Clinical and Translational Oncology, 24, 1073-1085.
https://doi.org/10.1007/s12094-021-02748-w
[32] Argilés, J.M., Busquets, S., Stemmler, B. and López-Soriano, F.J. (2014) Cancer Cachexia: Understanding the Molecular Basis. Nature Reviews Cancer, 14, 754-762.
https://doi.org/10.1038/nrc3829
[33] Arneson‐Wissink, P.C., Mendez, H., Pelz, K., Dickie, J., Bartlett, A.Q., Worley, B.L., et al. (2024) Hepatic Signal Transducer and Activator of Transcription‐3 Signalling Drives Early‐stage Pancreatic Cancer Cachexia via Suppressed Ketogenesis. Journal of Cachexia, Sarcopenia and Muscle, 15, 975-988.
https://doi.org/10.1002/jcsm.13466
[34] Padoan, A., Plebani, M. and Basso, D. (2019) Inflammation and Pancreatic Cancer: Focus on Metabolism, Cytokines, and Immunity. International Journal of Molecular Sciences, 20, Article 676.
https://doi.org/10.3390/ijms20030676
[35] Yakovenko, A., Cameron, M. and Trevino, J.G. (2018) Molecular Therapeutic Strategies Targeting Pancreatic Cancer Induced Cachexia. World Journal of Gastrointestinal Surgery, 10, 95-106.
https://doi.org/10.4240/wjgs.v10.i9.95
[36] Tan, C.R., Yaffee, P.M., Jamil, L.H., Lo, S.K., Nissen, N., Pandol, S.J., et al. (2014) Pancreatic Cancer Cachexia: A Review of Mechanisms and Therapeutics. Frontiers in Physiology, 5, Article 88.
https://doi.org/10.3389/fphys.2014.00088
[37] Miriam, F., Miriam, F., Nicholas, M., et al. (2023) Ketogenic Diet Promotes Tumor Ferroptosis but Induces Relative Corticosterone Deficiency That Accelerates Cachexia. Cell Metabolism, 35, 1147-1162.e7.