牙髓炎中表观遗传调控细胞凋亡的研究进展
Research Progress in Epigenetic Regulation of Apoptosis in Pulpitis
DOI: 10.12677/hjbm.2025.152036, PDF, HTML, XML,    科研立项经费支持
作者: 魏小芮, 张红梅:口腔疾病研究重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室,重庆;重庆医科大学附属口腔医院儿童口腔科,重庆;吴 偲*:口腔疾病研究重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室,重庆
关键词: 牙髓炎表观遗传调控细胞凋亡Pulpitis Epigenetic Regulation Apoptosis
摘要: 牙髓炎是发生于牙髓组织的炎性病变,持续发展会导致根尖周炎及骨组织缺损,严重破坏牙齿功能,影响患者的口腔健康及日常生活,造成时间、经济损失。细胞凋亡是基因控制的一种程序性细胞死亡,其表观遗传调节主要包括非编码RNA (non-coding RNA, ncRNA)转录调控、DNA甲基化和组蛋白修饰等。本文通过对表观遗传在牙髓炎进展中对细胞凋亡的调控机制和潜在作用作一综述,旨在丰富牙髓炎症的机制背景,为研究牙髓炎症的防治提供参考。
Abstract: Pulpitis is an inflammatory disease that occurs in the pulp tissue. Continued development can lead to periapical periodontitis and bone tissue defect, seriously damage dental function, affect patients’ oral health and daily life, and cause time and economic losses. Apoptosis is a programmed cell death controlled by genes. Its epigenetic regulation mainly includes non-coding RNA (ncRNA) transcriptional regulation, DNA methylation and histone modification. This article reviews the regulatory mechanism and potential role of epigenetic on apoptosis in the progression of pulpitis, aiming to enrich the mechanism background of pulpitis and provide reference for the study of pulp inflammation prevention and treatment.
文章引用:魏小芮, 张红梅, 吴偲. 牙髓炎中表观遗传调控细胞凋亡的研究进展[J]. 生物医学, 2025, 15(2): 304-310. https://doi.org/10.12677/hjbm.2025.152036

1. 引言

牙髓是位于牙齿中央部分的特殊结缔组织,其外表面被牙本质包裹,由细胞、纤维、淋巴管、血管和神经等组成。牙髓和牙本质均由牙乳头发育而来,在解剖及组织生理学上关系密切,因而被合称为牙髓–牙本质复合体。人牙髓干细胞(human dental pulp stem cells, hDPSCs),具有典型的间充质干细胞特征,在体外表现出多向分化能力的可塑性和克隆性[1]。hDPSCs在牙髓炎症进展及损伤修复过程中发挥重要作用。当牙髓–牙本质复合体受到损伤或刺激时,hDPSCs可分化形为成牙本质/类成牙本质细胞,促进修复性牙本质的形成,保护牙髓组织。

1972年,由Alastair R. Currie、Andrew H. Wyllie和John F. Kerr三位科学家发表的一篇经典论文中首次提出“细胞凋亡”的概念。细胞凋亡是基因控制的一种程序性细胞死亡方式[2],细胞会经历一系列生化变化及形态学变化,表现为细胞质膜出泡、细胞质收缩、染色质凝聚固缩、细胞核及DNA碎裂,最终形成小囊泡即“凋亡小体”,这些小囊泡可被邻近的吞噬细胞吞噬并在溶酶体内降解[3] [4]。从机制上来说,细胞凋亡主要通过内源性和外源性两种途径启动激活。其中,内源性途径又称为线粒体途径,由细胞内微环境紊乱激活,包括内质网应激、DNA损伤、活性氧超载、有丝分裂缺陷等。外源性途径是由细胞外信号即细胞外死亡配体与细胞表面的死亡受体或者依赖性受体结合,从而激活细胞凋亡[5]。细胞凋亡在生物体发育、组织更新和免疫系统功能调节等方面均起着关键作用,同时在炎症进展中的作用也被广泛研究。细胞凋亡由含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase, caspase)执行。细胞凋亡与病原体感染细胞所引发的炎症密切相关,而caspase介导的炎性细胞死亡可能是抵御感染的有效防御机制[5]

近年来,表观遗传学作为一种不改变DNA序列但能够调控基因表达的机制,逐渐成为研究细胞凋亡调控的重要方向。表观遗传修饰指DNA序列未发生变化,但基因表达却发生了改变,这种改变的特点包括可遗传性,可逆性,无DNA序列的变化。表观遗传修饰是遗传因素和环境因素之间的重要纽带,通过对DNA或蛋白质进行修饰来促进适当的生物学行为[6],是炎症的重要调节方式。本综述简要概述了非编码RNA转录调控、组蛋白修饰和DNA甲基化等表观遗传修饰在牙髓炎进展中对细胞凋亡的调控机制和潜在作用,以丰富牙髓炎症发展的机制背景,探究牙髓炎症的防治新思路及潜在治疗靶点。

2. ncRNA转录调控细胞凋亡在牙髓炎中的作用

ncRNA主要包括微小RNA (microRNA, miRNA)、长非编码RNA (long ncRNA, lncRNA)、环状RNA (circular RNA, circRNA)、N6-腺苷酸甲基化(N6-methyladenosine, m6A)和PIWI蛋白相互作用RNA (PIWI interacting RNA, piRNA)等,这些小分子物质在调控炎症的发生和发展中起着重要的作用。

CircRNA是一种不含5’和3’末端的环状RNA [7],表达较稳定,在细胞中起到miRNA海绵的作用,在与细胞凋亡和炎症相关的疾病过程中发挥重要作用。有研究表明circFKBP5可通过miR-708-5p/GIT2轴抑制脂多糖(Lipopolysaccharides, LPS)诱导的炎症hDPSCs细胞凋亡并促进其成骨向分化[8]。CIRC0138960沉默可通过靶向miR-5455p/MYD88/NF-κB轴保护人牙髓细胞(human dental pulp cells, hDPCs)免受LPS诱导的炎症反应,并减轻包括细胞凋亡、氧化应激和增殖抑制在内的hDPCs损伤[9]

LncRNA是由至少200个核苷酸组成的ncRNA,它们通过直接与miRNA相互作用,从而降解或抑制mRNA的翻译[10]。在GSE92681数据集中,与正常组织相比,牙髓炎组织中的lncRNA NUTM2A反义RNA1 (lncRNA NUTM2A antisense RNA1, NUTM2A-AS1)表达显著增加。进一步研究显示,在LPS诱导的炎症hDPSCs中,NUTM2A-AS1和HMGB1的表达上调,而受NUTM2A-AS1调节的let-7c-5p则表达下调,同时胞质中的HMGB1作为let-7c-5p的下游靶基因会进一步促进hDPSCs的损伤和炎症相关细胞因子的产生,即LPS通过调节NUTM2A-AS1/let-7c-5p/HMGB1轴抑制hDPCs的细胞活力并诱导细胞凋亡和炎症反应[11]。从基因表达综合(Gene Expression Omnibus, GEO)数据库中筛选牙髓炎与正常牙髓组织之间的差异表达基因,发现牙髓炎中lncRNA双同源盒A假基因8 (Double homeobox A pseudogene 8, DUXAP8)的表达上调,同时有研究表明,牙髓炎中miR-18b-5p表达下调,DUXAP8与miR-18b-5p两者表达呈负相关。敲低DUXAP8后可缓解LPS诱导的hDPCs活力降低并抑制细胞增殖、加速细胞凋亡。Starbase预测和挽救分析表明缺氧诱导因子3A (hypoxia-inducible factor 3A, HIF3A)是miR-18b-5p的下游基因,miR-18b-5p过表达会通过下调HIF3A改善LPS诱导的细胞生长抑制、细胞凋亡和氧化应激等炎性细胞损伤反应[12]。根据此结果可推测,DUXAP8/miR-18b-5p/HIF3A轴促进LPS诱导的牙髓细胞损伤,该机制可能与牙髓炎进展密切相关。近期研究显示,lncRNA人类浆细胞瘤变体(Plasmacytoma variant 1, PVT1),位于人类染色体8q24上,且与口腔炎症性疾病有关[13]。牙髓炎患者唾液中PVT1表达增加,而受PVT1负调控的miR-128-3p表达水平降低。反之,低表达的PVT1可通过靶向miR-128-3p促进炎症hDPCs的增殖,并抑制hDPCs的凋亡和炎症反应,从而缓解牙髓炎的进展[14]。但该研究仅对PVT1在唾液中的表达进行了检测,并未确定其在牙髓组织中的表达情况。同时PVT1在许多癌症中发挥致癌作用。有研究发现,在口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)组织和细胞系中表达上调,并通过PVT1/miR-150-5p/GLUT-1信号轴在 OSCC 细胞系和体内促进细胞增殖并抑制细胞凋亡[15]

m6A指腺嘌呤6号位碳原子上氨基的氮原子的甲基化修饰,是真核细胞mRNA分子上最普遍的化学修饰。m6A是可逆的,并且可以发生于各种类型RNA的转录后修饰,广泛参与调节细胞的自我更新、分化、侵袭和凋亡等过程[16]。甲基转移酶样蛋白3 (methyltransferase like protein 3, METTL3)是m6A甲基化酶,其催化甲基化发生,在急性髓性白血病和许多癌症中均表达上调。已有研究表明,METTL3敲低会诱导hDPSCs凋亡和衰老,此结果可能与细胞自我更新和再生潜力降低有关[17]。在LPS诱导的炎症hDPCs中,m6A和METTL3的水平上调。METTL3被敲除后,hDPCs中炎症因子IL-6,IL-8,GRO,Gro-α和RANTES的表达水平下降,NF-κB和MAPK信号通路的激活受到抑制,该过程可能是通过调节MyD88的选择性剪接来实现的[18]。也有研究表明,在hDPCs中METTL3的缺失会损害牙髓细胞的增殖、迁移和成牙本质向分化能力。同时METTL3的缺失会抑制牙根生成重要的调节因子NFIC的翻译,进而抑制ALP、BGLAP和DSPP的表达,从而导致牙根发育不良[19]

3. 组蛋白修饰调控细胞凋亡在牙髓炎中的作用

曲古抑菌素A (Trichostatin A, TSA)和丙戊酸(Valproic acid, VPA)是常见的组蛋白去乙酰化酶(histone deacetylases, HDACs)泛抑制剂,对所有锌依赖性HDACs类别(I,II,IV类)均有活性[20],Z. Luo等发现较高的TSA或VPA浓度会诱导hDPSCs凋亡[21]。Sirtuin6 (SIRT6)是哺乳动物NAD+依赖性蛋白脱乙酰酶家族的七个成员之一,可调节与新陈代谢和细胞死亡相关的多种功能蛋白质表达[22]。研究发现,在LPS诱导的炎症hDPCs中SIRT6表达下调,并通过与调控细胞凋亡的重要调节因子Ku70物理结合发挥作用。过表达SIRT6会减少Ku70的乙酰化,并促进Ku70与促凋亡蛋白Bax相互作用,最终保护hDPCs免受LPS诱导的细胞凋亡[23]。Zeste同源物增强子2 (enhancer of zeste homolog 2, EZH2)是多梳抑制复合物2的催化酶,可以发挥组蛋白甲基转移酶活性以沉默众多靶基因。EZH2抑制后可降低炎症刺激下hDPCs中IL-1β、IL-6和IL-8的mRNA表达水平,并通过减少细胞数量、阻止细胞周期和增加细胞凋亡来阻碍hDPCs增殖[24]

当牙髓炎发展到晚期时,根尖周组织很可能会受到波及并发展为根尖周炎。成骨细胞中的Jmjd3可通过靶向抗凋亡蛋白Bcl-2的表达和促凋亡蛋白Bim的磷酸化参与细胞凋亡的调控[25]。同时有研究表明Jmjd3在慢性根尖周炎等骨破坏性疾病的骨重塑过程中起着关键作用。在成骨细胞中沉默Jmjd3可通过影响EphB4启动子区域的H3K27me3修饰水平,减少EphB4的表达,间接促进 RANKL表达和破骨细胞生成[26]

4. DNA甲基化调控细胞凋亡在牙髓炎中的作用

目前,DNA甲基化在牙髓炎发生发展中对细胞凋亡的作用鲜有报道。成牙本质细胞作为牙髓组织的“第一道防线”在牙髓炎症进展及损伤修复过程中也发挥着重要作用,包括信号传导及形成修复性牙本质保护牙髓免受进一步的感染和损伤等。对成牙本质细胞分化过程中的DNA甲基转移酶抑制实验发现,DNA甲基化的抑制可以提高成牙本质细胞的成牙本质分化效率[27]

5. 表观遗传调控细胞凋亡在其他口腔疾病中的作用

表观遗传不仅在牙髓炎中发挥重要作用,同时参与调控包括牙周炎、放射性口腔粘膜炎、水疱口炎等在内的其他口腔炎性疾病的发生发展。

肿瘤坏死因子α (Tumor necrosis factor-alpha, TNF-α)启动子上的两个单独的CpG位点在牙周炎样本中的甲基化水平高于健康者,而TNF-α的持续高组织水平将在生物学上导致牙周组织坏死和细胞凋亡[28]。miR-181b-5p通过靶向成牙骨质细胞中的IL-6和调节NF-κB信号通路来负向调节TNF-α诱导的炎症反应,同时促进成骨细胞凋亡[29]。CIRC_0062491、CIRC_0138959和CIRC_0138960等CircRNA,在牙周炎中发挥着重要作用。其中,CIRC_0062491通过与miR-498结合,上调SOCS6的表达,减轻LPS诱导的人牙周膜细胞凋亡和牙周炎症反应,抑制牙周炎的进展[30]。CIRC_0138959在牙周炎组织和LPS处理的牙周膜细胞中高表达,通过与miR-495-3p结合上调TRAF6的表达,从而加剧LPS诱导的人牙周膜细胞损伤[31]。CIRC_0138960则会通过靶向miR-518a-5p/HDAC6轴发挥多重表观遗传调控机制促进LPS诱导的人牙周膜细胞凋亡和功能障碍[32]。lncZFY-AS可通过竞争性吸附miR-129-5p加重人牙周膜细胞凋亡并促进牙周炎进展[33]。炎症牙周组织中lncRNA01126的表达增加并通过miR-518a-5p/HIF-1α/MAPK通路抑制缺氧条件下人牙周膜细胞的增殖、促进细胞凋亡和炎症反应,加重牙周炎[34]

放射性口腔粘膜炎(radiation-induced oral mucositis, RIOM)是头颈部恶性肿瘤放、化疗后最常见的并发症,严重影响患者的生活质量。研究表明,沙利度胺(thalidomide, THD)可通过miR-9-3p/NFATC2/NF-κB轴抑制放疗诱导的口腔上皮细胞凋亡和促炎细胞因子分泌,从而有效改善RIOM [35]。水疱口炎是一种传染病,其致病原为水疱性口炎病毒(Vesicular Stomatitis Virus, VSV)。有研究表明,miRNAs可能在VSV感染中发挥重要作用:过表达miR-70可通过减少凋亡通路相关蛋白caspase-3和caspase-9的激活,有效抑制VSV诱导的细胞凋亡[36]

6. 结语

目前,关于牙髓炎症治疗的研究主要集中于恢复牙髓的结构及功能,即借助生物支架材料[37]、细胞因子[38]及干细胞[39],尝试用生物替代的方式实现牙髓组织再生和功能重建。因此研究hDPSCs的细胞凋亡对于牙髓炎症的治疗具有重要意义。吸烟、饮酒、病毒和细菌感染等环境因素均会诱导DNA甲基化、组蛋白修饰和非编码RNA转录调控等表观遗传修饰改变。不难看出,表观遗传修饰与牙髓炎症的发病机制和炎症进展密切相关。近年来,大量研究表明细胞凋亡在炎症的发生发展中起着至关重要的作用,然而在牙髓炎中表观遗传调控牙髓组织细胞凋亡的研究仍还有待丰富。DNA甲基化、组蛋白修饰、非编码RNA是牙髓炎治疗的核心表观靶点。通过抑制剂、基因表达调控等多机制联用,可精准调控炎症与修复过程。未来可将组织工程与表观调控结合,实现炎症牙髓的功能恢复。本文简要综述了在牙髓炎症中表观遗传调控机制对牙髓细胞凋亡的影响及潜在作用机制,为牙髓炎的发病机制和治疗提供新的见解。

基金项目

本文得到重庆市博士后科学基金(CSTB2023NSCQ-BHX0083)的研究资助。

NOTES

*通讯作者。

参考文献

[1] Gronthos, S., Brahim, J., Li, W., Fisher, L.W., Cherman, N., Boyde, A., et al. (2002) Stem Cell Properties of Human Dental Pulp Stem Cells. Journal of Dental Research, 81, 531-535.
https://doi.org/10.1177/154405910208100806
[2] Kerr, J.F.R., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. British Journal of Cancer, 26, 239-257.
https://doi.org/10.1038/bjc.1972.33
[3] Galluzzi, L., Maiuri, M.C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L., et al. (2007) Cell Death Modalities: Classification and Pathophysiological Implications. Cell Death & Differentiation, 14, 1237-1243.
https://doi.org/10.1038/sj.cdd.4402148
[4] Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541.
https://doi.org/10.1038/s41418-017-0012-4
[5] Chai, J. and Shi, Y. (2014) Apoptosome and Inflammasome: Conserved Machineries for Caspase Activation. National Science Review, 1, 101-118.
https://doi.org/10.1093/nsr/nwt025
[6] Atlasi, Y. and Stunnenberg, H.G. (2017) The Interplay of Epigenetic Marks during Stem Cell Differentiation and Development. Nature Reviews Genetics, 18, 643-658.
https://doi.org/10.1038/nrg.2017.57
[7] Barrett, S.P., Wang, P.L. and Salzman, J. (2015) Circular RNA Biogenesis Can Proceed through an Exon-Containing Lariat Precursor. eLife, 4, e07540.
https://doi.org/10.7554/elife.07540
[8] Liang, C., Li, W., Huang, Q. and Wen, Q. (2023) Circfkbp5 Suppresses Apoptosis and Inflammation and Promotes Osteogenic Differentiation. International Dental Journal, 73, 377-386.
https://doi.org/10.1016/j.identj.2022.08.001
[9] Liang, C., Wu, W., He, X., Xue, F. and Feng, D. (2023) Circ_0138960 Knockdown Alleviates Lipopolysaccharide-Induced Inflammatory Response and Injury in Human Dental Pulp Cells by Targeting Mir-545-5p/myd88 Axis in Pulpitis. Journal of Dental Sciences, 18, 191-202.
https://doi.org/10.1016/j.jds.2022.06.012
[10] Tay, Y., Rinn, J. and Pandolfi, P.P. (2014) The Multilayered Complexity of Cerna Crosstalk and Competition. Nature, 505, 344-352.
https://doi.org/10.1038/nature12986
[11] Wang, X., Sun, H., Hu, Z., Mei, P., Wu, Y. and Zhu, M. (2021) RETRACTED: NUTM2A-AS1 Silencing Alleviates Lps-Induced Apoptosis and Inflammation in Dental Pulp Cells through Targeting let-7c-5p/HMGB1 Axis. International Immunopharmacology, 96, Article ID: 107497.
https://doi.org/10.1016/j.intimp.2021.107497
[12] Dai, Y., Xuan, G. and Yin, M. (2023) DUXAP8 Promotes Lps-Induced Cell Injury in Pulpitis by Regulating miR-18b-5p/HIF3A. International Dental Journal, 73, 636-644.
https://doi.org/10.1016/j.identj.2022.11.011
[13] Lu, J., Xu, F. and Lu, H. (2020) LncRNA PVT1 Regulates Ferroptosis through miR-214-Mediated TFR1 and P53. Life Sciences, 260, Article ID: 118305.
https://doi.org/10.1016/j.lfs.2020.118305
[14] Xia, L., Wang, J., Qi, Y., et al. (2022) Long Non-Coding RNA PVT1 Is Involved in the Pathological Mechanism of Pulpitis by Regulating miR-128-3p. Oral Health and Preventive Dentistry, 20, 263-270.
[15] Li, X. and Ren, H. (2020) Long Noncoding RNA PVT1 Promotes Tumor Cell Proliferation, Invasion, Migration and Inhibits Apoptosis in Oral Squamous Cell Carcinoma by Regulating miR‑150‑5p/GLUT-1. Oncology Reports, 44, 1524-38.
https://doi.org/10.3892/or.2020.7706
[16] Niu, Y., Zhao, X., Wu, Y., Li, M., Wang, X. and Yang, Y. (2012) N6-Methyl-Adenosine (m6A) in RNA: An Old Modification with a Novel Epigenetic Function. Genomics, Proteomics & Bioinformatics, 11, 8-17.
https://doi.org/10.1016/j.gpb.2012.12.002
[17] Luo, H., Liu, W., Zhang, Y., Yang, Y., Jiang, X., Wu, S., et al. (2021) METTL3-Mediated m6A Modification Regulates Cell Cycle Progression of Dental Pulp Stem Cells. Stem Cell Research & Therapy, 12, 159.
https://doi.org/10.1186/s13287-021-02223-x
[18] Feng, Z., Li, Q., Meng, R., Yi, B. and Xu, Q. (2018) METTL3 Regulates Alternative Splicing of MyD88 upon the Lipopolysaccharide‐Induced Inflammatory Response in Human Dental Pulp Cells. Journal of Cellular and Molecular Medicine, 22, 2558-2568.
https://doi.org/10.1111/jcmm.13491
[19] Sheng, R., Wang, Y., Wu, Y., Wang, J., Zhang, S., Li, Q., et al. (2020) METTL3-Mediated m6A mRNA Methylation Modulates Tooth Root Formation by Affecting NFIC Translation. Journal of Bone and Mineral Research, 36, 412-423.
https://doi.org/10.1002/jbmr.4180
[20] Khan, N., Jeffers, M., Kumar, S., Hackett, C., Boldog, F., Khramtsov, N., et al. (2007) Determination of the Class and Isoform Selectivity of Small-Molecule Histone Deacetylase Inhibitors. Biochemical Journal, 409, 581-589.
https://doi.org/10.1042/bj20070779
[21] Luo, Z., Wang, Z., He, X., Liu, N., Liu, B., Sun, L., et al. (2017) Effects of Histone Deacetylase Inhibitors on Regenerative Cell Responses in Human Dental Pulp Cells. International Endodontic Journal, 51, 767-778.
https://doi.org/10.1111/iej.12779
[22] Michan, S. and Sinclair, D. (2007) Sirtuins in Mammals: Insights into Their Biological Function. Biochemical Journal, 404, 1-13.
https://doi.org/10.1042/bj20070140
[23] Zhang, L., Bai, L., Ren, Q., Sun, G. and Si, Y. (2018) Protective Effects of SIRT6 against Lipopolysaccharide (LPS) Are Mediated by Deacetylation of Ku70. Molecular Immunology, 101, 312-318.
https://doi.org/10.1016/j.molimm.2018.07.009
[24] Hui, T., A, P., Zhao, Y., Wang, C., Gao, B., Zhang, P., et al. (2014) EZH2, a Potential Regulator of Dental Pulp Inflammation and Regeneration. Journal of Endodontics, 40, 1132-1138.
https://doi.org/10.1016/j.joen.2014.01.031
[25] Yang, D., Okamura, H., Teramachi, J. and Haneji, T. (2016) Histone Demethylase Jmjd3 Regulates Osteoblast Apoptosis through Targeting Anti-Apoptotic Protein Bcl-2 and Pro-Apoptotic Protein Bim. Biochimica et Biophysica Acta (BBA) Molecular Cell Research, 1863, 650-659.
https://doi.org/10.1016/j.bbamcr.2016.01.006
[26] Wang, R., Luo, H., Yang, D., Yu, B., Guo, J., Shao, L., et al. (2022) Osteoblast Jmjd3 Regulates Osteoclastogenesis via EphB4 and RANKL Signalling. Oral Diseases, 29, 1613-1621.
https://doi.org/10.1111/odi.14160
[27] Sun, Z., Yu, S., Chen, S., Liu, H. and Chen, Z. (2019) SP1 Regulates KLF4 via SP1 Binding Motif Governed by DNA Methylation during Odontoblastic Differentiation of Human Dental Pulp Cells. Journal of Cellular Biochemistry, 120, 14688-14699.
https://doi.org/10.1002/jcb.28730
[28] Zhang, S., Barros, S.P., Moretti, A.J., Yu, N., Zhou, J., Preisser, J.S., et al. (2013) Epigenetic Regulation of tnfa Expression in Periodontal Disease. Journal of Periodontology, 84, 1606-1616.
https://doi.org/10.1902/jop.2013.120294
[29] Wang, X., Sun, H., Liu, H., Ma, L., Jiang, C., Liao, H., et al. (2019) MicroRNA‐181b‐5p Modulates Tumor Necrosis Factor‐α‐Induced Inflammatory Responses by Targeting Interleukin‐6 in Cementoblasts. Journal of Cellular Physiology, 234, 22719-22730.
https://doi.org/10.1002/jcp.28837
[30] Wang, L., Li, Y., Hong, F. and Ning, H. (2022) Circ_0062491 Alleviates Lps-Induced Apoptosis and Inflammation in Periodontitis by Regulating Mir-498/socs6 Axis. Innate Immunity, 28, 174-184.
https://doi.org/10.1177/17534259211072302
[31] Deng, W., Wang, X., Zhang, J. and Zhao, S. (2022) Circ_0138959/mir-495-3p/traf6 Axis Regulates Proliferation, Wound Healing and Osteoblastic Differentiation of Periodontal Ligament Cells in Periodontitis. Journal of Dental Sciences, 17, 1125-1134.
https://doi.org/10.1016/j.jds.2022.01.010
[32] Li, S., Xu, H., Li, Y. and Li, R. (2022) Circ_0138960 Contributes to Lipopolysaccharide‐Induced Periodontal Ligament Cell Dysfunction. Immunity, Inflammation and Disease, 10, e732.
https://doi.org/10.1002/iid3.732
[33] Cheng, L., Fan, Y., Cheng, J., Wang, J., Liu, Q. and Feng, Z. (2022) Long Non-Coding RNA ZFY-AS1 Represses Periodontitis Tissue Inflammation and Oxidative Damage via Modulating microRNA-129-5p/DEAD-Box Helicase 3 X-Linked Axis. Bioengineered, 13, 12691-12705.
https://doi.org/10.1080/21655979.2021.2019876
[34] Zhou, M., Hu, H., Han, Y., Li, J., Zhang, Y., Tang, S., et al. (2020) Long Non‐Coding RNA 01126 Promotes Periodontitis Pathogenesis of Human Periodontal Ligament Cells via miR-518a-5p/HIF-1α/MAPK Pathway. Cell Proliferation, 54, e12957.
https://doi.org/10.1111/cpr.12957
[35] Liang, L., Chen, L., Liu, G., Jiang, L., Que, L., Chen, J., et al. (2022) Thalidomide Attenuates Oral Epithelial Cell Apoptosis and Pro-Inflammatory Cytokines Secretion Induced by Radiotherapy via the miR-9-3p/NFATC2/NF-κB Axis. Biochemical and Biophysical Research Communications, 603, 102-108.
https://doi.org/10.1016/j.bbrc.2022.03.030
[36] Lian, H., Liu, W., Liu, Q., Jin, H., Sun, Y., Li, J., et al. (2010) A Laboratory-Attenuated Vesicular Stomatitis Virus Induces Apoptosis and Alters the Cellular MicroRNA Expression Profile in BHK Cells. Archives of Virology, 155, 1643-1653.
https://doi.org/10.1007/s00705-010-0749-2
[37] Fukushima, K.A., Marques, M.M., Tedesco, T.K., Carvalho, G.L., Gonçalves, F., Caballero-Flores, H., et al. (2019) Screening of Hydrogel-Based Scaffolds for Dental Pulp Regeneration—A Systematic Review. Archives of Oral Biology, 98, 182-194.
https://doi.org/10.1016/j.archoralbio.2018.11.023
[38] Ganesh, V., Seol, D., Gomez-Contreras, P.C., Keen, H.L., Shin, K. and Martin, J.A. (2022) Exosome-Based Cell Homing and Angiogenic Differentiation for Dental Pulp Regeneration. International Journal of Molecular Sciences, 24, Article No. 466.
https://doi.org/10.3390/ijms24010466
[39] Sui, B., Chen, C., Kou, X., Li, B., Xuan, K., Shi, S., et al. (2018) Pulp Stem Cell-Mediated Functional Pulp Regeneration. Journal of Dental Research, 98, 27-35.
https://doi.org/10.1177/0022034518808754