[1]
|
Blomsma, F. and Brennan, G. (2017) The Emergence of Circular Economy: A New Framing around Prolonging Resource Productivity. Journal of Industrial Ecology, 21, 603-614. https://doi.org/10.1111/jiec.12603
|
[2]
|
Ekeocha, J., Ellingford, C., Pan, M., Wemyss, A.M., Bowen, C. and Wan, C. (2021) Challenges and Opportunities of Self‐healing Polymers and Devices for Extreme and Hostile Environments. Advanced Materials, 33, Article ID: 2008052. https://doi.org/10.1002/adma.202008052
|
[3]
|
Diesendruck, C.E., Sottos, N.R., Moore, J.S. and White, S.R. (2015) Biomimetic Self‐Healing. Angewandte Chemie International Edition, 54, 10428-10447. https://doi.org/10.1002/anie.201500484
|
[4]
|
Huang, Y., Huang, Y., Zhu, M., Meng, W., Pei, Z., Liu, C., et al. (2015) Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor. ACS Nano, 9, 6242-6251. https://doi.org/10.1021/acsnano.5b01602
|
[5]
|
Hager, M.D., Greil, P., Leyens, C., van der Zwaag, S. and Schubert, U.S. (2010) Self‐Healing Materials. Advanced Materials, 22, 5424-5430. https://doi.org/10.1002/adma.201003036
|
[6]
|
Ahner, J., Bode, S., Micheel, M., Dietzek, B. and Hager, M.D. (2015) Self-Healing Functional Polymeric Materials. In: Hager, M., van der Zwaag, S. and Schubert, U., Eds., Self-Healing Materials, Springer, 247-283. https://doi.org/10.1007/12_2015_333
|
[7]
|
Kang, J., Tok, J.B. and Bao, Z. (2019) Self-healing Soft Electronics. Nature Electronics, 2, 144-150. https://doi.org/10.1038/s41928-019-0235-0
|
[8]
|
Utrera-Barrios, S., Verdejo, R., López-Manchado, M.A. and Hernández Santana, M. (2020) Evolution of Self-Healing Elastomers, from Extrinsic to Combined Intrinsic Mechanisms: A Review. Materials Horizons, 7, 2882-2902. https://doi.org/10.1039/d0mh00535e
|
[9]
|
White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., et al. (2001) Autonomic Healing of Polymer Composites. Nature, 409, 794-797. https://doi.org/10.1038/35057232
|
[10]
|
Cao, S., Zhu, W. and Liu, T. (2020) Bio-Inspired Self-Healing Polymer Foams with Bilayered Capsule Systems. Composites Science and Technology, 195, Article ID: 108189. https://doi.org/10.1016/j.compscitech.2020.108189
|
[11]
|
Zhu, B., Tao, X., Sun, H., Zhu, Y., He, S. and Han, X. (2024) Self-healing Properties of Water Tree with Microcapsule/Cross-Linked Polyethylene Composite Material Based on Three-Layer Core-Shell Structure. Polymers, 16, Article 1445. https://doi.org/10.3390/polym16111445
|
[12]
|
Santos, A.N.B., Santos, D.J.D. and Carastan, D.J. (2021) Microencapsulation of Reactive Isocyanates for Application in Self-Healing Materials: A Review. Journal of Microencapsulation, 38, 338-356. https://doi.org/10.1080/02652048.2021.1921068
|
[13]
|
Madelatparvar, M., Hosseini, M.S. and Zhang, C. (2023) Polyurea Micro-/nano-Capsule Applications in Construction Industry: A Review. Nanotechnology Reviews, 12, Article ID: 20220516. https://doi.org/10.1515/ntrev-2022-0516
|
[14]
|
Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J.S. and White, S.R. (2007) Self-healing Materials with Microvascular Networks. Nature Materials, 6, 581-585. https://doi.org/10.1038/nmat1934
|
[15]
|
Calvino, C. and Weder, C. (2018) Microcapsule‐Containing Self‐Reporting Polymers. Small, 14, e1802489. https://doi.org/10.1002/smll.201802489
|
[16]
|
Cuvellier, A., Torre-Muruzabal, A., Kizildag, N., Daelemans, L., Ba, Y., De Clerck, K., et al. (2018) Coaxial Electrospinning of Epoxy and Amine Monomers in a Pullulan Shell for Self-Healing Nanovascular Systems. Polymer Testing, 69, 146-156. https://doi.org/10.1016/j.polymertesting.2018.05.023
|
[17]
|
Zhu, J., Wu, Y., Huang, X., Huang, L., Cao, M., Song, G., et al. (2019) Self-healing Liquid Metal Nanoparticles Encapsulated in Hollow Carbon Fibers as a Free-Standing Anode for Lithium-Ion Batteries. Nano Energy, 62, 883-889. https://doi.org/10.1016/j.nanoen.2019.06.023
|
[18]
|
An, S., Liou, M., Song, K.Y., Jo, H.S., Lee, M.W., Al-Deyab, S.S., et al. (2015) Highly Flexible Transparent Self-Healing Composite Based on Electrospun Core-Shell Nanofibers Produced by Coaxial Electrospinning for Anti-Corrosion and Electrical Insulation. Nanoscale, 7, 17778-17785. https://doi.org/10.1039/c5nr04551g
|
[19]
|
Cremaldi, J.C. and Bhushan, B. (2018) Bioinspired Self-Healing Materials: Lessons from Nature. Beilstein Journal of Nanotechnology, 9, 907-935. https://doi.org/10.3762/bjnano.9.85
|
[20]
|
Willocq, B., Odent, J., Dubois, P. and Raquez, J. (2020) Advances in Intrinsic Self-Healing Polyurethanes and Related Composites. RSC Advances, 10, 13766-13782. https://doi.org/10.1039/d0ra01394c
|
[21]
|
王小萍, 程炳坤, 梁栋, 等. 本征型自愈合聚合物材料的研究进展[J]. 高分子材料科学与工程, 2019, 35(6): 183-190.
|
[22]
|
Jing, T., Heng, X., Guifeng, X., Li, L., Li, P. and Guo, X. (2022) Rapid Self-Healing and Tough Polyurethane Based on the Synergy of Multi-Level Hydrogen and Disulfide Bonds for Healing Propellant Microcracks. Materials Chemistry Frontiers, 6, 1161-1171. https://doi.org/10.1039/d2qm00047d
|
[23]
|
Nellepalli, P., Patel, T. and Oh, J.K. (2021) Dynamic Covalent Polyurethane Network Materials: Synthesis and Self‐healability. Macromolecular Rapid Communications, 42, Article ID: 2100391. https://doi.org/10.1002/marc.202100391
|
[24]
|
Cao, P., Li, B., Hong, T., Townsend, J., Qiang, Z., Xing, K., et al. (2018) Superstretchable, Self‐Healing Polymeric Elastomers with Tunable Properties. Advanced Functional Materials, 28, Article ID: 1800741. https://doi.org/10.1002/adfm.201800741
|
[25]
|
Huo, Y., He, Z., Wang, C., Zhang, L., Xuan, Q., Wei, S., et al. (2021) The Recent Progress of Synergistic Supramolecular Polymers: Preparation, Properties and Applications. Chemical Communications, 57, 1413-1429. https://doi.org/10.1039/d0cc07247h
|
[26]
|
Li, C., Wang, C., Keplinger, C., Zuo, J., Jin, L., Sun, Y., et al. (2016) A Highly Stretchable Autonomous Self-Healing Elastomer. Nature Chemistry, 8, 618-624. https://doi.org/10.1038/nchem.2492
|
[27]
|
Rao, Y., Chortos, A., Pfattner, R., Lissel, F., Chiu, Y., Feig, V., et al. (2016) Stretchable Self-Healing Polymeric Dielectrics Cross-Linked through Metal–ligand Coordination. Journal of the American Chemical Society, 138, 6020-6027. https://doi.org/10.1021/jacs.6b02428
|
[28]
|
Chen, J., Zhu, Y., Chang, X., Pan, D., Song, G., Guo, Z., et al. (2021) Recent Progress in Essential Functions of Soft Electronic Skin. Advanced Functional Materials, 31, Article ID: 2104686. https://doi.org/10.1002/adfm.202104686
|
[29]
|
Guo, H., Fang, X., Zhang, L. and Sun, J. (2019) Facile Fabrication of Room-Temperature Self-Healing, Mechanically Robust, Highly Stretchable, and Tough Polymers Using Dual Dynamic Cross-Linked Polymer Complexes. ACS Applied Materials & Interfaces, 11, 33356-33363. https://doi.org/10.1021/acsami.9b11166
|
[30]
|
Davis, D.A., Hamilton, A., Yang, J., Cremar, L.D., Van Gough, D., Potisek, S.L., et al. (2009) Force-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materials. Nature, 459, 68-72. https://doi.org/10.1038/nature07970
|
[31]
|
Ouyang, C., Zhao, C., Li, W., Wu, X., Le, X., Chen, T., et al. (2020) Super‐Tough, Self‐Healing Polyurethane Based on Diels‐Alder Bonds and Dynamic Zinc-Ligand Interactions. Macromolecular Materials and Engineering, 305, Article ID: 2000089. https://doi.org/10.1002/mame.202000089
|
[32]
|
Lian, T., Zhang, S., Xu, Q., Wang, K., Li, B., Qin, X., et al. (2023) Self-Healing and Flame-Retardant Modifications of Epoxy Resins by the Diels-Alder Release-Delivery Strategy for a High-Efficiency and Green Application. Industrial & Engineering Chemistry Research, 62, 6019-6031. https://doi.org/10.1021/acs.iecr.2c04255
|
[33]
|
Liu, Y. and Chuo, T. (2013) Self-Healing Polymers Based on Thermally Reversible Diels-Alder Chemistry. Polymer Chemistry, 4, 2194-2205. https://doi.org/10.1039/c2py20957h
|
[34]
|
Wen, M., Ou, B., Zhu, P., Niu, B., Guo, Y. and Chen, L. (2023) Preparation of Self-Healing Epoxy Resin Coatings Based on Dynamic Disulfide Bonds. Surface Innovations, 11, 429-441. https://doi.org/10.1680/jsuin.22.01065
|
[35]
|
Chen, Y., Tang, Z., Liu, Y., Wu, S. and Guo, B. (2019) Mechanically Robust, Self-Healable, and Reprocessable Elastomers Enabled by Dynamic Dual Cross-links. Macromolecules, 52, 3805-3812. https://doi.org/10.1021/acs.macromol.9b00419
|
[36]
|
Zhang, H., Wang, D., Liu, W., Li, P., Liu, J., Liu, C., et al. (2017) Recyclable Polybutadiene Elastomer Based on Dynamic Imine Bond. Journal of Polymer Science Part A: Polymer Chemistry, 55, 2011-2018. https://doi.org/10.1002/pola.28577
|
[37]
|
Huang, S., Kong, X., Xiong, Y., Zhang, X., Chen, H., Jiang, W., et al. (2020) An Overview of Dynamic Covalent Bonds in Polymer Material and Their Applications. European Polymer Journal, 141, Article ID: 110094. https://doi.org/10.1016/j.eurpolymj.2020.110094
|
[38]
|
Zhang, L., Wang, D., Xu, L., Zhang, X., Zhang, A. and Xu, Y. (2020) A Highly Stretchable, Transparent, Notch-Insensitive Self-Healing Elastomer for Coating. Journal of Materials Chemistry C, 8, 2043-2053. https://doi.org/10.1039/c9tc05612b
|
[39]
|
Zhu, Y., Cao, K., Chen, M. and Wu, L. (2019) Synthesis of UV-Responsive Self-Healing Microcapsules and Their Potential Application in Aerospace Coatings. ACS Applied Materials & Interfaces, 11, 33314-33322. https://doi.org/10.1021/acsami.9b10737
|
[40]
|
Chen, Y., Xia, C., Shepard, Z., Smith, N., Rice, N., Peterson, A.M., et al. (2017) Self-Healing Coatings for Steel-Reinforced Concrete. ACS Sustainable Chemistry & Engineering, 5, 3955-3962. https://doi.org/10.1021/acssuschemeng.6b03142
|
[41]
|
Qu, J., Zhao, X., Liang, Y., Zhang, T., Ma, P.X. and Guo, B. (2018) Antibacterial Adhesive Injectable Hydrogels with Rapid Self-Healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing. Biomaterials, 183, 185-199. https://doi.org/10.1016/j.biomaterials.2018.08.044
|
[42]
|
Munaoka, T., Yan, X., Lopez, J., To, J.W.F., Park, J., Tok, J.B., et al. (2018) Ionically Conductive Self‐Healing Binder for Low Cost Si Microparticles Anodes in Li‐ion Batteries. Advanced Energy Materials, 8, Article ID: 1703138. https://doi.org/10.1002/aenm.201703138
|