|
[1]
|
鄢洪海, 李洪连, 薛春生. 植物病理学[M]. 北京: 中国农业大学出版社, 2017.
|
|
[2]
|
Singh, B.K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J.E., Liu, H., et al. (2023) Climate Change Impacts on Plant Pathogens, Food Security and Paths Forward. Nature Reviews Microbiology, 21, 640-656. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bozsoki, Z., Cheng, J., Feng, F., Gysel, K., Vinther, M., Andersen, K.R., et al. (2017) Receptor-Mediated Chitin Perception in Legume Roots Is Functionally Separable from Nod Factor Perception. Proceedings of the National Academy of Sciences, 114, E8118-E8127. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Gómez-Gómez, L. and Boller, T. (2000) FLS2: An LRR Receptor-Like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis. Molecular Cell, 5, 1003-1011. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hou, S., Wang, X., Chen, D., Yang, X., Wang, M., Turrà, D., et al. (2014) The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7. PLOS Pathogens, 10, e1004331. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lu, Y. and Tsuda, K. (2021) Intimate Association of PRR-and NLR-Mediated Signaling in Plant Immunity. Molecular Plant-Microbe Interactions®, 34, 3-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ngou, B.P.M., Ding, P. and Jones, J.D.G. (2022) Thirty Years of Resistance: Zig-Zag through the Plant Immune System. The Plant Cell, 34, 1447-1478. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Jubic, L.M., Saile, S., Furzer, O.J., El Kasmi, F. and Dangl, J.L. (2019) Help Wanted: Helper NLRs and Plant Immune Responses. Current Opinion in Plant Biology, 50, 82-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Feehan, J.M., Castel, B., Bentham, A.R. and Jones, J.D. (2020) Plant NLRs Get by with a Little Help from Their Friends. Current Opinion in Plant Biology, 56, 99-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tsuda, K., Mine, A., Bethke, G., Igarashi, D., Botanga, C.J., Tsuda, Y., et al. (2013) Dual Regulation of Gene Expression Mediated by Extended MAPK Activation and Salicylic Acid Contributes to Robust Innate Immunity in Arabidopsis thaliana. PLOS Genetics, 9, e1004015. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zipfel, C. (2009) Early Molecular Events in Pamp-Triggered Immunity. Current Opinion in Plant Biology, 12, 414-420. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cui, H., Tsuda, K. and Parker, J.E. (2015) Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annual Review of Plant Biology, 66, 487-511. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tsuda, K. and Katagiri, F. (2010) Comparing Signaling Mechanisms Engaged in Pattern-Triggered and Effector-Triggered Immunity. Current Opinion in Plant Biology, 13, 459-465. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Peng, Y., van Wersch, R. and Zhang, Y. (2018) Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Molecular Plant-Microbe Interactions®, 31, 403-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ngou, B.P.M., Heal, R., Wyler, M., Schmid, M.W. and Jones, J.D.G. (2022) Concerted Expansion and Contraction of Immune Receptor Gene Repertoires in Plant Genomes. Nature Plants, 8, 1146-1152. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sun, L. and Zhang, J. (2020) Regulatory Role of Receptor-Like Cytoplasmic Kinases in Early Immune Signaling Events in Plants. FEMS Microbiology Reviews, 44, 845-856. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yamada, K., Yamaguchi, K., Shirakawa, T., Nakagami, H., Mine, A., Ishikawa, K., et al. (2016) The Arabidopsis CERK 1‐Associated Kinase PBL 27 Connects Chitin Perception to MAPK Activation. The EMBO Journal, 35, 2468-2483. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tang, W., Kim, T., Oses-Prieto, J.A., Sun, Y., Deng, Z., Zhu, S., et al. (2008) BSKs Mediate Signal Transduction from the Receptor Kinase BRI1 in Arabidopsis. Science, 321, 557-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bi, G., Zhou, Z., Wang, W., Li, L., Rao, S., Wu, Y., et al. (2018) Receptor-like Cytoplasmic Kinases Directly Link Diverse Pattern Recognition Receptors to the Activation of Mitogen-Activated Protein Kinase Cascades in Arabidopsis. The Plant Cell, 30, 1543-1561. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., et al. (2010) Receptor-Like Cytoplasmic Kinases Integrate Signaling from Multiple Plant Immune Receptors and Are Targeted by a Pseudomonas Syringae Effector. Cell Host & Microbe, 7, 290-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J.E. and Innes, R.W. (2003) Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector. Science, 301, 1230-1233. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ade, J., DeYoung, B.J., Golstein, C. and Innes, R.W. (2007) Indirect Activation of a Plant Nucleotide Binding Site-Leucine-Rich Repeat Protein by a Bacterial Protease. Proceedings of the National Academy of Sciences, 104, 2531-2536. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lu, Y. and Tsuda, K. (2021) Intimate Association of PRR-and NLR-Mediated Signaling in Plant Immunity. Molecular Plant-Microbe Interactions®, 34, 3-14. [Google Scholar] [CrossRef] [PubMed]
|