[1]
|
Rice, L.C., Langan, M.T., Cheng, D.T., Sheu, Y., Peterburs, J., Hua, J., et al. (2023) Disrupted Executive Cerebro‐cerebellar Functional Connectivity in Alcohol Use Disorder. Alcohol: Clinical and Experimental Research, 48, 33-47. https://doi.org/10.1111/acer.15219
|
[2]
|
Visontay, R., Rao, R.T. and Mewton, L. (2020) Alcohol Use and Dementia: New Research Directions. Current Opinion in Psychiatry, 34, 165-170. https://doi.org/10.1097/yco.0000000000000679
|
[3]
|
Bonnet, U., Specka, M., Soyka, M., Alberti, T., Bender, S., Grigoleit, T., et al. (2020) Ranking the Harm of Psychoactive Drugs Including Prescription Analgesics to Users and Others—A Perspective of German Addiction Medicine Experts. Frontiers in Psychiatry, 11, Article 592199. https://doi.org/10.3389/fpsyt.2020.592199
|
[4]
|
Burton, R. and Sheron, N. (2018) No Level of Alcohol Consumption Improves Health. The Lancet, 392, 987-988. https://doi.org/10.1016/s0140-6736(18)31571-x
|
[5]
|
Mehta, G. and Sheron, N. (2019) No Safe Level of Alcohol Consumption—Implications for Global Health. Journal of Hepatology, 70, 587-589. https://doi.org/10.1016/j.jhep.2018.12.021
|
[6]
|
Spindler, C., Trautmann, S., Alexander, N., Bröning, S., Bartscher, S., Stuppe, M., et al. (2021) Meta-Analysis of Grey Matter Changes and Their Behavioral Characterization in Patients with Alcohol Use Disorder. Scientific Reports, 11, Article No. 5238. https://doi.org/10.1038/s41598-021-84804-7
|
[7]
|
MacKillop, J., Agabio, R., Feldstein Ewing, S.W., Heilig, M., Kelly, J.F., Leggio, L., et al. (2024) Publisher Correction: Hazardous Drinking and Alcohol Use Disorders. Nature Reviews Disease Primers, 10, Article No. 69. https://doi.org/10.1038/s41572-024-00561-7
|
[8]
|
Anand, S.K., Ahmad, M.H., Sahu, M.R., Subba, R. and Mondal, A.C. (2022) Detrimental Effects of Alcohol-Induced Inflammation on Brain Health: From Neurogenesis to Neurodegeneration. Cellular and Molecular Neurobiology, 43, 1885-1904. https://doi.org/10.1007/s10571-022-01308-2
|
[9]
|
Zhang, K., Li, R., Li, H., Lin, H., Sun, Z. and Zhan, S. (2022) Acute Alcohol Exposure Suppressed Locomotor Activity in Mice. Stress and Brain, 2, 46-52. https://doi.org/10.26599/sab.2022.9060016
|
[10]
|
Zhang, B., Zhou, T., Jiang, Y., Lin, H., Sun, Z. and Ding, J. (2022) Repeated Alcohol Exposure Induced Dentate Gyrus Related Spatial Memory Damage. Stress and Brain, 2, 39-45. https://doi.org/10.26599/sab.2022.9060011
|
[11]
|
Peng, B., Yang, Q., B Joshi, R., Liu, Y., Akbar, M., Song, B., et al. (2020) Role of Alcohol Drinking in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 21, Article 2316. https://doi.org/10.3390/ijms21072316
|
[12]
|
Sullivan, E.V. and Pfefferbaum, A. (2023) Alcohol Use Disorder: Neuroimaging Evidence for Accelerated Aging of Brain Morphology and Hypothesized Contribution to Age-Related Dementia. Alcohol, 107, 44-55. https://doi.org/10.1016/j.alcohol.2022.06.002
|
[13]
|
Khan, D.M., Kamel, N., Muzaimi, M. and Hill, T. (2021) Effective Connectivity for Default Mode Network Analysis of Alcoholism. Brain Connectivity, 11, 12-29. https://doi.org/10.1089/brain.2019.0721
|
[14]
|
Wei, W., Zhang, K., Chang, J., Zhang, S., Ma, L., Wang, H., et al. (2024) Analyzing 20 Years of Resting-State fMRI Research: Trends and Collaborative Networks Revealed. Brain Research, 1822, Article ID: 148634. https://doi.org/10.1016/j.brainres.2023.148634
|
[15]
|
Canario, E., Chen, D. and Biswal, B. (2021) A Review of Resting-State fMRI and Its Use to Examine Psychiatric Disorders. Psychoradiology, 1, 42-53. https://doi.org/10.1093/psyrad/kkab003
|
[16]
|
Liu, R., Liu, B., Ma, M., Kong, D., Li, G., Yang, J., et al. (2018) Aberrant Prefrontal-Parietal-Cerebellar Circuits in Alcohol Dependence. Neuropsychiatric Disease and Treatment, 14, 3143-3150. https://doi.org/10.2147/ndt.s178257
|
[17]
|
Guo, X., Yan, T., Chen, M., Ma, X., Li, R., Li, B., et al. (2021) Differential Effects of Alcohol‐Drinking Patterns on the Structure and Function of the Brain and Cognitive Performance in Young Adult Drinkers: A Pilot Study. Brain and Behavior, 12, e2427. https://doi.org/10.1002/brb3.2427
|
[18]
|
Luo, X., Guo, L., Dai, X., Wang, Q., Zhu, W., Miao, X., et al. (2017) Abnormal Intrinsic Functional Hubs in Alcohol Dependence: Evidence from a Voxelwise Degree Centrality Analysis. Neuropsychiatric Disease and Treatment, 13, 2011-2020. https://doi.org/10.2147/ndt.s142742
|
[19]
|
Le, T.M., Zhornitsky, S., Zhang, S. and Li, C.R. (2020) Pain and Reward Circuits Antagonistically Modulate Alcohol Expectancy to Regulate Drinking. Translational Psychiatry, 10, Article No. 220. https://doi.org/10.1038/s41398-020-00909-z
|
[20]
|
Hu, S., Ide, J.S., Chao, H.H., Zhornitsky, S., Fischer, K.A., Wang, W., et al. (2018) Resting State Functional Connectivity of the Amygdala and Problem Drinking in Non-Dependent Alcohol Drinkers. Drug and Alcohol Dependence, 185, 173-180. https://doi.org/10.1016/j.drugalcdep.2017.11.026
|
[21]
|
Ruan, X., Song, Z., Zhang, J., Yu, T., Chen, J. and Zhou, T. (2023) Alterations of Brain Activity in Patients with Alcohol Use Disorder: A Resting-State fMRI Study. BMC Psychiatry, 23, Article No. 894. https://doi.org/10.1186/s12888-023-05361-z
|
[22]
|
Abdallah, M., Zahr, N.M., Saranathan, M., Honnorat, N., Farrugia, N., Pfefferbaum, A., et al. (2021) Altered Cerebro-Cerebellar Dynamic Functional Connectivity in Alcohol Use Disorder: A Resting-State fMRI Study. The Cerebellum, 20, 823-835. https://doi.org/10.1007/s12311-021-01241-y
|
[23]
|
曹景超, 隋文禹, 喻大华, 等. 基于三重网络模型的酒精依赖患者静息态动态功能连接分析[J]. 放射学实践, 2024, 39(2): 181-188.
|
[24]
|
Candelaria‐Cook, F.T., Schendel, M.E., Flynn, L., Cerros, C., Hill, D.E. and Stephen, J.M. (2023) Disrupted Dynamic Functional Network Connectivity in Fetal Alcohol Spectrum Disorders. Alcohol: Clinical and Experimental Research, 47, 687-703. https://doi.org/10.1111/acer.15046
|
[25]
|
Catalino, M.P., Yao, S., Green, D.L., Laws, E.R., Golby, A.J. and Tie, Y. (2020) Mapping Cognitive and Emotional Networks in Neurosurgical Patients Using Resting-State Functional Magnetic Resonance Imaging. Neurosurgical Focus, 48, E9. https://doi.org/10.3171/2019.11.focus19773
|
[26]
|
Fang, X., Deza‐Araujo, Y.I., Petzold, J., Spreer, M., Riedel, P., Marxen, M., et al. (2021) Effects of Moderate Alcohol Levels on Default Mode Network Connectivity in Heavy Drinkers. Alcoholism: Clinical and Experimental Research, 45, 1039-1050. https://doi.org/10.1111/acer.14602
|
[27]
|
Qiu, L., Liang, C., Kochunov, P., Hutchison, K.E., Sui, J., Jiang, R., et al. (2024) Associations of Alcohol and Tobacco Use with Psychotic, Depressive and Developmental Disorders Revealed via Multimodal Neuroimaging. Translational Psychiatry, 14, Article No. 326. https://doi.org/10.1038/s41398-024-03035-2
|
[28]
|
Martyn, F.M., McPhilemy, G., Nabulsi, L., Quirke, J., Hallahan, B., McDonald, C., et al. (2022) Alcohol Use Is Associated with Affective and Interoceptive Network Alterations in Bipolar Disorder. Brain and Behavior, 13, e2832. https://doi.org/10.1002/brb3.2832
|
[29]
|
Sousa, S.S., Sampaio, A., Marques, P., López-Caneda, E., Gonçalves, Ó.F. and Crego, A. (2019) Functional and Structural Connectivity of the Executive Control Network in College Binge Drinkers. Addictive Behaviors, 99, Article Id: 106009. https://doi.org/10.1016/j.addbeh.2019.05.033
|
[30]
|
戴云蕊, 张洁, 喻婷婷, 等. 基于三重网络模型的酒精使用障碍患者静息态fMRI研究[J]. 放射学实践, 2022, 37(2): 164-169.
|
[31]
|
Zhang, G., Liu, H., Zheng, H., Li, N., Kong, L. and Zheng, W. (2022) Analysis on Topological Alterations of Functional Brain Networks after Acute Alcohol Intake Using Resting-State Functional Magnetic Resonance Imaging and Graph Theory. Frontiers in Human Neuroscience, 16, Article 985986. https://doi.org/10.3389/fnhum.2022.985986
|
[32]
|
Lee, H., Jung, J.H., Chung, S., Ju, G., Kim, S., Son, J., et al. (2023) Graph Theoretical Analysis of Brain Structural Connectivity in Patients with Alcohol Dependence. Experimental Neurobiology, 32, 362-369. https://doi.org/10.5607/en23026
|
[33]
|
Cao, H., Meng, Y., Wei, W., Li, T., Li, M. and Guo, W. (2024) Altered Individual Gray Matter Structural Covariance Networks in Early Abstinence Patients with Alcohol Dependence. Brain Imaging and Behavior, 18, 951-960. https://doi.org/10.1007/s11682-024-00888-5
|
[34]
|
Bordier, C., Weil, G., Bach, P., Scuppa, G., Nicolini, C., Forcellini, G., et al. (2021) Increased Network Centrality of the Anterior Insula in Early Abstinence from Alcohol. Addiction Biology, 27, e13096. https://doi.org/10.1111/adb.13096
|
[35]
|
Böhmer, J., Reinhardt, P., Garbusow, M., Marxen, M., Smolka, M.N., Zimmermann, U.S., et al. (2023) Aberrant Functional Brain Network Organization Is Associated with Relapse during 1‐Year Follow‐Up in Alcohol‐Dependent Patients. Addiction Biology, 28, e13339. https://doi.org/10.1111/adb.13339
|
[36]
|
Kong, L.M., Zeng, J.Y., Zheng, W.B., Shen, Z.W. and Wu, R.H. (2019) Effects of Acute Alcohol Consumption on the Human Brain: Diffusional Kurtosis Imaging and Arterial Spin-Labeling Study. American Journal of Neuroradiology, 40, 641-647. https://doi.org/10.3174/ajnr.a5992
|
[37]
|
Tanabe, J., Yamamoto, D.J., Sutton, B., Brown, M.S., Hoffman, P.L., Burnham, E.L., et al. (2019) Effects of Alcohol and Acetate on Cerebral Blood Flow: A Pilot Study. Alcoholism: Clinical and Experimental Research, 43, 2070-2078. https://doi.org/10.1111/acer.14173
|
[38]
|
Sullivan, E.V., Zhao, Q., Pohl, K.M., Zahr, N.M. and Pfefferbaum, A. (2021) Attenuated Cerebral Blood Flow in Frontolimbic and Insular Cortices in Alcohol Use Disorder: Relation to Working Memory. Journal of Psychiatric Research, 136, 140-148. https://doi.org/10.1016/j.jpsychires.2021.01.053
|
[39]
|
Butcher, T.J., Chumin, E.J., West, J.D., Dzemidzic, M. and Yoder, K.K. (2021) Cerebral Blood Flow in the Salience Network of Individuals with Alcohol Use Disorder. Alcohol and Alcoholism, 57, 445-451. https://doi.org/10.1093/alcalc/agab062
|
[40]
|
Fairbairn, C.E., Kang, D. and Federmeier, K.D. (2021) Alcohol and Neural Dynamics: A Meta-Analysis of Acute Alcohol Effects on Event-Related Brain Potentials. Biological Psychiatry, 89, 990-1000. https://doi.org/10.1016/j.biopsych.2020.11.024
|
[41]
|
Porjesz, B. and Begleiter, H. (2003) Alcoholism and Human Electrophysiology. Alcohol Research & Health, 27, 153-160.
|
[42]
|
Kang, D., Fairbairn, C.E., Lee, Z. and Federmeier, K.D. (2022) The Effect of Acute Alcohol Intoxication on Alcohol Cue Salience: An Event-Related Brain Potential Study. Psychology of Addictive Behaviors, 36, 861-870. https://doi.org/10.1037/adb0000779
|
[43]
|
Cofresí, R.U., Piasecki, T.M., Hajcak, G. and Bartholow, B.D. (2021) Internal Consistency and Test-Retest Reliability of the P3 Event‐Related Potential (ERP) Elicited by Alcoholic and Non‐alcoholic Beverage Pictures. Psychophysiology, 59, e13967. https://doi.org/10.1111/psyp.13967
|
[44]
|
Kohen, C.B., Cofresí, R.U., Piasecki, T.M. and Bartholow, B.D. (2024) Predictive Utility of the P3 Event‐Related Potential (ERP) Response to Alcohol Cues for Ecologically Assessed Alcohol Craving and Use. Addiction Biology, 29, e13368. https://doi.org/10.1111/adb.13368
|
[45]
|
Neeraj, Singhal, V., Mathew, J. and Behera, R.K. (2021) Detection of Alcoholism Using EEG Signals and a CNN-LSTM-ATTN Network. Computers in Biology and Medicine, 138, Article ID: 104940. https://doi.org/10.1016/j.compbiomed.2021.104940
|
[46]
|
Hauk, O., Stenroos, M. and Treder, M.S. (2022) Towards an Objective Evaluation of EEG/MEG Source Estimation Methods – The Linear Approach. NeuroImage, 255, Article ID: 119177. https://doi.org/10.1016/j.neuroimage.2022.119177
|
[47]
|
Jonas, D.E., Amick, H.R., Feltner, C., Bobashev, G., Thomas, K., Wines, R., et al. (2014) Pharmacotherapy for Adults with Alcohol Use Disorders in Outpatient Settings. JAMA, 311, 1889-1900. https://doi.org/10.1001/jama.2014.3628
|
[48]
|
Gastfriend, D.R., Garbutt, J.C., Pettinati, H.M. and Forman, R.F. (2007) Reduction in Heavy Drinking as a Treatment Outcome in Alcohol Dependence. Journal of Substance Abuse Treatment, 33, 71-80. https://doi.org/10.1016/j.jsat.2006.09.008
|
[49]
|
Philip, N.S., Sorensen, D.O., McCalley, D.M. and Hanlon, C.A. (2020) Non-Invasive Brain Stimulation for Alcohol Use Disorders: State of the Art and Future Directions. Neurotherapeutics, 17, 116-126. https://doi.org/10.1007/s13311-019-00780-x
|
[50]
|
Camacho‐Conde, J.A., del Rosario Gonzalez‐Bermudez, M., Carretero‐Rey, M. and Khan, Z.U. (2022) Therapeutic Potential of Brain Stimulation Techniques in the Treatment of Mental, Psychiatric, and Cognitive Disorders. CNS Neuroscience & Therapeutics, 29, 8-23. https://doi.org/10.1111/cns.13971
|
[51]
|
Antonelli, M., Fattore, L., Sestito, L., Di Giuda, D., Diana, M. and Addolorato, G. (2021) Transcranial Magnetic Stimulation: A Review about Its Efficacy in the Treatment of Alcohol, Tobacco and Cocaine Addiction. Addictive Behaviors, 114, Article ID: 106760. https://doi.org/10.1016/j.addbeh.2020.106760
|
[52]
|
Kim, H.J. and Kang, N. (2021) Bilateral Transcranial Direct Current Stimulation Attenuated Symptoms of Alcohol Use Disorder: A Systematic Review and Meta-Analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 108, Article ID: 110160. https://doi.org/10.1016/j.pnpbp.2020.110160
|
[53]
|
Ghin, F., Beste, C. and Stock, A. (2022) Neurobiological Mechanisms of Control in Alcohol Use Disorder—Moving Towards Mechanism-Based Non-Invasive Brain Stimulation Treatments. Neuroscience & Biobehavioral Reviews, 133, Article ID: 104508. https://doi.org/10.1016/j.neubiorev.2021.12.031
|
[54]
|
Sorkhou, M., Stogios, N., Sayrafizadeh, N., Hahn, M.K., Agarwal, S.M. and George, T.P. (2022) Non-Invasive Neuromodulation of Dorsolateral Prefrontal Cortex to Reduce Craving in Alcohol Use Disorder: A Meta-Analysis. Drug and Alcohol Dependence Reports, 4, Article ID: 100076. https://doi.org/10.1016/j.dadr.2022.100076
|
[55]
|
McCalley, D.M., Kaur, N., Wolf, J.P., Contreras, I.E., Book, S.W., Smith, J.P., et al. (2023) Medial Prefrontal Cortex Theta Burst Stimulation Improves Treatment Outcomes in Alcohol Use Disorder: A Double-Blind, Sham-Controlled Neuroimaging Study. Biological Psychiatry Global Open Science, 3, 301-310. https://doi.org/10.1016/j.bpsgos.2022.03.002
|
[56]
|
Maatoug, R., Bihan, K., Duriez, P., Podevin, P., Silveira-Reis-Brito, L., Benyamina, A., et al. (2021) Non-Invasive and Invasive Brain Stimulation in Alcohol Use Disorders: A Critical Review of Selected Human Evidence and Methodological Considerations to Guide Future Research. Comprehensive Psychiatry, 109, Article ID: 152257. https://doi.org/10.1016/j.comppsych.2021.152257
|
[57]
|
Belgers, M., Van Eijndhoven, P., Markus, W., Schene, A. and Schellekens, A. (2022) RTMs Reduces Craving and Alcohol Use in Patients with Alcohol Use Disorder: Results of a Randomized, Sham-Controlled Clinical Trial. Journal of Clinical Medicine, 11, Article 951. https://doi.org/10.3390/jcm11040951
|
[58]
|
Del Felice, A., Bellamoli, E., Formaggio, E., Manganotti, P., Masiero, S., Cuoghi, G., et al. (2016) Neurophysiological, Psychological and Behavioural Correlates of RTMs Treatment in Alcohol Dependence. Drug and Alcohol Dependence, 158, 147-153. https://doi.org/10.1016/j.drugalcdep.2015.11.018
|
[59]
|
Hoven, M., Schluter, R.S., Schellekens, A.F., van Holst, R.J. and Goudriaan, A.E. (2022) Effects of 10 Add‐On HF-rTMS Treatment Sessions on Alcohol Use and Craving among Detoxified Inpatients with Alcohol Use Disorder: A Randomized Sham‐Controlled Clinical Trial. Addiction, 118, 71-85. https://doi.org/10.1111/add.16025
|
[60]
|
Holla, B., Biswal, J., Ramesh, V., Shivakumar, V., Bharath, R.D., Benegal, V., et al. (2020) Effect of Prefrontal tDCS on Resting Brain fMRI Graph Measures in Alcohol Use Disorders: A Randomized, Double-Blind, Sham-Controlled Study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 102, Article ID: 109950. https://doi.org/10.1016/j.pnpbp.2020.109950
|
[61]
|
Claus, E.D., Klimaj, S.D., Chavez, R., Martinez, A.D. and Clark, V.P. (2019) A Randomized Trial of Combined tDCS over Right Inferior Frontal Cortex and Cognitive Bias Modification: Null Effects on Drinking and Alcohol Approach Bias. Alcoholism: Clinical and Experimental Research, 43, 1591-1599. https://doi.org/10.1111/acer.14111
|
[62]
|
Brown, D.R., Jackson, T.C.J., Claus, E.D., Votaw, V.R., Stein, E.R., Robinson, C.S.H., et al. (2019) Decreases in the Late Positive Potential to Alcohol Images among Alcohol Treatment Seekers Following Mindfulness-Based Relapse Prevention. Alcohol and Alcoholism, 55, 78-85. https://doi.org/10.1093/alcalc/agz096
|
[63]
|
Chan, Y., Chang, H., Lu, M. and Goh, K.K. (2024) Targeting Cravings in Substance Addiction with Transcranial Direct Current Stimulation: Insights from a Meta-Analysis of Sham-Controlled Trials. Psychiatry Research, 331, Article ID: 115621. https://doi.org/10.1016/j.psychres.2023.115621
|
[64]
|
Mostafavi, S., Khaleghi, A. and Mohammadi, M.R. (2020) Noninvasive Brain Stimulation in Alcohol Craving: A Systematic Review and Meta-Analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 101, Article ID: 109938. https://doi.org/10.1016/j.pnpbp.2020.109938
|
[65]
|
Dayal, P., Kaloiya, G.S., Verma, R. and Kumar, N. (2023) Need to Rethink tDCS Protocols for the Treatment of Alcohol Use Disorder: Insights from a Randomized Sham-Controlled Clinical Trial among Detoxified Inpatients. Journal of Addictive Diseases, 42, 544-550. https://doi.org/10.1080/10550887.2023.2257106
|
[66]
|
Çabuk, B.M. and Guleken, Z. (2024) Transcranial Direct Current Stimulation in the Treatment of Alcohol, Tobacco and Opioid Use Disorder in Clinical Studies. Acta Neurobiologiae Experimentalis, 84, 111-127. https://doi.org/10.55782/ane-2024-2479
|
[67]
|
Dubuson, M., Kornreich, C., Vanderhasselt, M., Baeken, C., Wyckmans, F., Dousset, C., et al. (2021) Transcranial Direct Current Stimulation Combined with Alcohol Cue Inhibitory Control Training Reduces the Risk of Early Alcohol Relapse: A Randomized Placebo-Controlled Clinical Trial. Brain Stimulation, 14, 1531-1543. https://doi.org/10.1016/j.brs.2021.10.386
|
[68]
|
Biswal Jitendriya, H.B., Shivkumar, V., Chand, P.K., Murthy, P., Venkatsubramanian, G. and Ben-Egal, V. (2022) Effect of Transcranial Direct Current Stimulation on Relapse of Alcohol. Indian Journal of Psychiatry, 64, S629-S630.
|
[69]
|
Witkiewitz, K., Stein, E.R., Votaw, V.R., Wilson, A.D., Roos, C.R., Gallegos, S.J., et al. (2019) Mindfulness‐Based Relapse Prevention and Transcranial Direct Current Stimulation to Reduce Heavy Drinking: A Double‐Blind Sham‐controlled Randomized Trial. Alcoholism: Clinical and Experimental Research, 43, 1296-1307. https://doi.org/10.1111/acer.14053
|
[70]
|
Astha, Patil, S., Patil, N.M., Tekkalaki, B. and Chate, S.S. (2024) Efficacy of tDCS on Craving in Patients of Alcohol Dependence Syndrome: A Single-Blind, Sham-Controlled Trial. Indian Journal of Psychiatry, 66, 98-105. https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_492_23
|
[71]
|
Roland, A.V., Coelho, C.A.O., Haun, H.L., Gianessi, C.A., Lopez, M.F., D’Ambrosio, S., et al. (2023) Alcohol Dependence Modifies Brain Networks Activated during Withdrawal and Reaccess: A C-Fo-Based Analysis in Mice. Biological Psychiatry, 94, 393-404. https://doi.org/10.1016/j.biopsych.2023.01.018
|