非小细胞肺癌中EGFR-TKI联合疗法的间质性肺疾病风险研究进展
Advances in the Study of Interstitial Lung Disease Risk in Non-Small Cell Lung Cancer with EGFR-TKI Combination Therapy
摘要: 非小细胞肺癌(NSCLC)患者中,表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)已成为一线治疗方案。但联合治疗时,间质性肺疾病(ILD)风险备受关注。单药治疗时,不同代际EGFR-TKI的ILD风险特征各异,第一代在亚洲人群风险较高,第三代与剂量、治疗阶段及患者基线肺功能状态关联。联合治疗中,免疫检查点抑制剂增加重度ILD发生率,抗血管生成药物或序贯放疗可降低风险。临床管理策略如风险分层、剂量调整及跨代换药等逐步完善,提升了ILD防控效率。未来需大规模前瞻性研究明确不同药物组合及治疗顺序对ILD风险的长期影响。本文旨在综述EGFR-TKI不同代际及联合治疗的ILD风险研究现状。
Abstract: In patients with non-small cell lung cancer (NSCLC), epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have become first-line therapeutic agents. However, the risk of interstitial lung disease (ILD) during combination therapies has attracted significant attention. For monotherapy, different generations of EGFR-TKIs exhibit distinct ILD risk profiles: first-generation drugs show higher risks in Asian populations, while third-generation agents demonstrate correlations with dosage, treatment phases, and patients’ baseline pulmonary function status. In combination therapies, immune checkpoint inhibitors increase the incidence of severe ILD, whereas anti-angiogenic agents or sequential radiotherapy may mitigate risks. The optimization of clinical management strategies—including risk stratification, dosage adjustments, and cross-generation drug substitution—has progressively enhanced ILD prevention and control. Future large-scale prospective studies are required to clarify the long-term impacts of various drug combinations and treatment sequences on ILD risk. This review aims to summarize current research on ILD risks associated with different EGFR-TKI generations and their combination therapies.
文章引用:郭子钰, 朱冰. 非小细胞肺癌中EGFR-TKI联合疗法的间质性肺疾病风险研究进展[J]. 临床医学进展, 2025, 15(3): 1817-1823. https://doi.org/10.12677/acm.2025.153809

1. 引言

非小细胞肺癌(non-small cell lung cancer, NSCLC)约占肺癌病例的85%,是导致全球癌症相关死亡的主要原因之一[1]。随着分子靶向治疗的发展,表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)已成为EGFR突变阳性NSCLC患者的标准治疗选择,显著改善了患者的生存预后。然而,EGFR-TKI相关间质性肺疾病(interstitial lung disease, ILD)作为其严重且可能致命的不良反应,日益受到临床关注。ILD以肺部炎症和纤维化为核心特征,临床表现为呼吸困难、低氧血症及影像学上的弥漫性浸润性病变,其发生机制涉及EGFR信号通路抑制导致的上皮修复障碍、促纤维化因子释放异常等多重病理生理过程。尽管不同代际EGFR-TKI的ILD风险存在异质性,但随着联合治疗策略(如免疫检查点抑制剂、抗血管生成药物或放疗的联用)的广泛探索,ILD风险的管理愈发复杂,亟需系统性总结与风险分层策略的优化。

目前,三代EGFR-TKI (如吉非替尼、奥希替尼)因作用机制差异,其ILD风险特征显著不同。第一代药物通过可逆性抑制EGFR通路,在亚洲人群中ILD发生率较高,可能与遗传易感性相关[2];而第三代药物因选择性靶向T790M耐药突变,其ILD风险呈现剂量依赖性和人群异质性[3]。然而,联合治疗的推广使ILD风险分析面临新挑战:例如,EGFR-TKI与免疫检查点抑制剂(ICI)联用可能通过协同激活免疫反应,显著增加重度ILD的发生风险[4];而与抗血管生成药物的联合则可能通过抑制纤维化通路减轻肺损伤[5]。此外,放疗与EGFR-TKI的时序安排和剂量参数亦被证实影响ILD的病理进程[6]。这些复杂交互作用提示,ILD的风险不仅取决于药物本身的特性,更受联合治疗方案、患者基线特征(如吸烟史、肺功能状态)及治疗阶段的多重影响。尽管已有研究提出基于风险分层的监测策略和干预措施(如跨代换药、剂量调整),但多数证据源于单药治疗或小型临床研究,联合治疗的ILD风险机制和长期管理仍存在重大知识缺口。因此,系统梳理不同代际EGFR-TKI及联合疗法的ILD风险特征,阐明其分子机制与临床管理策略,对优化治疗决策、改善患者生存质量具有重要意义。

本综述围绕EGFR-TKI单药及联合治疗的ILD风险,从不同代际药物的毒性差异、联合治疗的机制交互、风险调控策略等维度整合最新研究进展,以期为临床实践提供循证依据,并为未来研究方向提出展望。

2. 不同代际EGFR-TKI的间质性肺病(ILD)风险特征

2.1. 第一代EGFR-TKI的ILD风险特征

第一代EGFR-TKI (如吉非替尼、厄洛替尼)在EGFR突变阳性非小细胞肺癌的治疗中具有里程碑意义,但其引发的间质性肺病风险始终是临床关注的重点。研究表明,第一代药物通过抑制EGFR信号通路,可能干扰肺部上皮细胞的修复能力,导致炎症微环境中促纤维化因子的异常释放,从而诱发ILD [7]。这一机制在高风险人群中尤为显著,例如长期吸烟者、男性患者及既往存在肺部纤维化病史的个体。值得注意的是,亚洲人群的ILD发生率普遍高于非亚洲人群,可能与遗传背景或环境暴露差异相关[8]

在临床实践中,剂量调整被证实是降低ILD风险的有效策略。低剂量治疗方案在特定人群(如老年患者或合并基础肺病的患者)中显示出良好的安全性,且未显著影响药物疗效[9]。此外,对于因ILD中断治疗的患者,跨代换用其他EGFR-TKI可显著降低ILD复发风险,这一策略为临床提供了重要的管理思路[10]

2.2. 第二代EGFR-TKI的ILD风险特征

第二代EGFR-TKI (如阿法替尼、达克替尼)通过不可逆结合EGFR及抑制ErbB家族成员,显著延长了患者的无进展生存期,但其广谱激酶抑制特性可能增加ILD的潜在风险。临床试验数据显示,第二代药物的ILD发生率与第一代药物相近,但在真实世界应用中,通过剂量优化和严格的基线筛查,其风险可控性得到提升[11] [12]

研究设计对风险评估的影响不容忽视。例如,在严格排除高风险人群(如基线存在脑转移或ILD病史)的临床试验中,第二代药物的ILD发生率显著降低,提示患者筛选在安全性管理中的重要性[12]。此外,跨代换药策略被证实可降低ILD复发风险[10]

2.3. 第三代EGFR-TKI的ILD风险差异与管理

第三代EGFR-TKI因其对耐药突变的覆盖能力成为治疗晚期NSCLC的重要选择,但其ILD风险在不同药物间存在显著差异。部分新型第三代药物在早期临床试验中显示出更优的肺安全性,这可能与其选择性抑制特定EGFR突变亚型或减少对正常肺组织的毒性作用相关[3] [13]

治疗阶段和患者基线特征对ILD风险的影响尤为突出。在术后辅助治疗中,患者的ILD发生率显著低于转移性治疗环境,这可能与辅助治疗人群的基线肺功能更优及合并症较少有关[14] [15]。此外,吸烟史和基线肺部异常(如无症状肺阴影)被明确为ILD的独立危险因素,提示在治疗前需完善影像学及肺功能评估[15]

在联合治疗策略中,抗血管生成药物的引入可能通过抑制纤维化相关通路降低ILD风险。例如,EGFR-TKI与贝伐珠单抗的联合方案显示出潜在的肺保护效应,其机制可能与调节血管通透性及减少炎症细胞浸润相关[16] [17]。对于ILD后的管理,临床需根据病理亚型制定个体化策略:低级别ILD (如机化性肺炎)患者可在密切监测下谨慎续药,而严重类型(如弥漫性肺泡损伤)需永久停药以避免致命性结局[15] [18]

3. EGFR-TKI联合疗法的ILD风险机制与优化策略

3.1. EGFR-TKI联合免疫检查点抑制剂的ILD风险

EGFR-TKI与免疫检查点抑制剂的联合治疗在理论上可通过协同作用增强抗肿瘤疗效,但临床实践表明此类组合可能显著增加ILD风险,尤其是第三代药物与PD-L1抑制剂的联用。机制研究指出,EGFR-TKI可能通过激活巨噬细胞相关通路(如IL-6/JAK/STAT3),加剧ICI诱导的免疫过度激活,从而引发细胞因子风暴和肺部炎症反应[19]。近年研究表明,表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)与免疫检查点抑制剂(ICI)联合治疗EGFR突变非小细胞肺癌(NSCLC)时,显著增加间质性肺病(ILD)风险(发生率高达24%~29%),涉及免疫通路协同激活与肺部微环境重塑的共同作用[20] [21]。核心机制聚焦于免疫调节失衡:奥希替尼通过抑制巨噬细胞EGFR磷酸化,上调IL-6/JAK/STAT3通路活性,与ICI诱导的T细胞过度活化协同,触发促炎因子(如IL-6、TGF-β)大量释放,形成“细胞因子风暴”并加剧肺泡上皮损伤。这一机制在动物模型中进一步验证,联合治疗显著增强了肺部炎症浸润[19]。相比之下,第一/二代EGFR-TKI联合免疫检查点抑制剂的ILD风险较低,提示药物分子结构或靶点选择性的差异可能影响毒性特征[22] [23]

真实世界数据进一步揭示了ILD风险的多因素叠加效应。例如,PD-1/PD-L1抑制剂序贯EGFR-TKI治疗可能显著升高ILD风险,尤其是在免疫治疗停药后短期内转换至靶向治疗时[23]。此外,基线肺部异常(如间质性肺改变)和遗传易感性(如亚洲人群的高风险倾向)被证实为风险放大因素,凸显了治疗前全面评估的必要性[24] [25]。在临床决策中,需权衡联合治疗的潜在生存获益与ILD风险,例如在特定人群(如无基线肺部病变或快速进展高风险患者)中选择靶向治疗单药或低毒性联合方案[4]

3.2. EGFR-TKI联合抗血管生成药物的ILD风险调控

EGFR-TKI与抗血管生成药物(如贝伐珠单抗)的联合方案在降低ILD风险方面展现出独特潜力。研究表明,抗血管生成药物可能通过抑制VEGF介导的血管渗漏和成纤维细胞活化,减轻肺纤维化进程[5]。部分临床试验证实,此类联合方案的ILD发生率显著低于单药治疗,提示其肺保护效应的临床价值[16]

多中心III期ARTEMIS-CTONG1509试验显示,厄洛替尼联合贝伐珠单抗的一线治疗中,ILD发生率极低(联合组与单药组各1例)且未显示额外毒性[26],这一结果与JO25567研究的结论一致(联合组ILD发生率2.7% vs 单药组3.9%,无严重事件) [27]。值得注意的是,这些研究均在基线排除ILD患者,提示对于无肺纤维化病史的人群,联合方案的ILD风险可能与单药治疗相当。类似地,WJOG 8715L与ETOP BOOSTER试验中奥希替尼联合贝伐珠单抗的ILD发生率仅11% (均为1~2级)或未报告病例[28] [29]。然而,长期多线靶向治疗的累积毒性仍需警惕。例如,部分病例报告指出,多代EGFR-TKI序贯治疗可能导致不可逆的ILD恶化,提示临床需关注药物选择顺序及治疗间隔[30]。在优化联合治疗安全性方面,严格筛选低风险患者(如无吸烟史或ILD病史)并规范监测流程(如定期影像学随访)被证实为有效策略[27] [31]。未来研究需进一步探索生物标志物(如肺泡灌洗液中的特定炎症因子)在风险分层中的应用,以实现更精准的患者管理[27] [29]

3.3. EGFR-TKI联合放疗的ILD风险与干预策略

EGFR-TKI与放疗(RT)的联合应用在局部晚期NSCLC治疗中具有重要地位,但其ILD风险因治疗时序和剂量参数的不同而显著差异。同步放疗通过协同效应显著提高局部控制率及总生存期,但治疗相关毒性反应发生率较高;序贯放疗采用分阶段治疗模式,虽可降低不良反应风险并提高治疗完成率,但其生存获益较同步方案降低。同步放靶治疗可能通过协同损伤肺泡上皮细胞和加剧炎症反应,显著增加ILD发生率[32] [33]。危险因素包括高剂量肺部照射、治疗重叠时间过长及特定TKI类型的使用[32] [34]

相比之下,序贯策略显示出更优的安全性。吉非替尼诱导后放疗的临床试验中,ILD事件多为低级别且可控,提示治疗时序的优化对风险管理的意义[35] [36]。机制层面,放疗诱导的DNA损伤与EGFR-TKI对信号通路的抑制可能协同促进促纤维化因子(如TGF-β)的释放,进而驱动ILD进展[6] [32]

在临床实践中,通过限制肺部照射剂量、缩短治疗重叠期及选择序贯治疗方案,可有效降低ILD风险[33] [34]。此外,新型治疗模式(如联合免疫调节剂或靶向纤维化通路药物)的探索为未来优化疗效与安全性提供了方向[6]

4. 结论

EGFR-TKI的治疗革新显著改善了EGFR突变型非小细胞肺癌患者的生存结局,但其伴发的间质性肺疾病(ILD)风险在联合治疗时代亟需系统性管理。现有研究已明确不同代际EGFR-TKI的ILD风险特征:第一代药物因遗传易感性及信号通路抑制效应在亚洲人群中风险较高,第三代药物则与剂量、治疗阶段及患者基线肺功能状态密切关联。联合治疗中,免疫检查抑制剂的协同免疫激活显著增加了重度ILD的发生率,而抗血管生成药物或序贯放疗可能通过调节纤维化或优化治疗时序降低风险。机制层面,研究揭示了ILD与EGFR通路抑制、免疫微环境紊乱及促纤维化因子释放的多通路交互作用。临床管理策略逐步完善,如通过风险分层(吸烟史、影像基线评估)、剂量调整及跨代换药实现个体化干预,早期识别与动态监测(如生物标志物KL-6联合影像随访)显著提升了ILD防控效率。

尽管成果显著,现有证据仍存在局限性:长期随访数据的缺乏限制了多线治疗累积毒性的评估。未来需开展大规模前瞻性研究,明确不同药物组合及治疗顺序对ILD风险的长期影响。在临床实践层面,跨学科协作(如肿瘤科与呼吸科联合管理)和患者教育(如早期症状识别)将进一步提升ILD的防控水平。

NOTES

*通讯作者。

参考文献

[1] Wang, D., Zhou, J., Fang, W., Huang, C., Chen, Z., Fan, M., et al. (2022) A Multifunctional Nanotheranostic Agent Potentiates Erlotinib to EGFR Wild-Type Non-Small Cell Lung Cancer. Bioactive Materials, 13, 312-323.
https://doi.org/10.1016/j.bioactmat.2021.10.046
[2] Modi, S., Park, H., Murthy, R.K., Iwata, H., Tamura, K., Tsurutani, J., et al. (2020) Antitumor Activity and Safety of Trastuzumab Deruxtecan in Patients with HER2-Low-Expressing Advanced Breast Cancer: Results from a Phase IB Study. Journal of Clinical Oncology, 38, 1887-1896.
https://doi.org/10.1200/jco.19.02318
[3] Cho, B.C., Han, J.Y., Kim, S.W., et al. (2024) A Phase 1/2 Study of Lazertinib 240 mg in Patients with Advanced EGFR T790M-Positive NSCLC After Previous EGFR Tyrosine Kinase Inhibitors. Journal of Thoracic Oncology, 17, 558-567.
[4] Nassar, A.H., Kim, S.Y., Aredo, J.V., Feng, J., Shepherd, F., Xu, C., et al. (2024) Consolidation Osimertinib versus Durvalumab versus Observation after Concurrent Chemoradiation in Unresectable EGFR-Mutant NSCLC: A Multicenter Retrospective Cohort Study. Journal of Thoracic Oncology, 19, 928-940.
https://doi.org/10.1016/j.jtho.2024.01.012
[5] Fujiwara, Y., Shimomura, K., Yamaguchi, T., Shimizu, J., Watanabe, N., Matsuzawa, R., et al. (2024) The Incidence of Drug-Induced Interstitial Lung Disease Caused by Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors or Immune Checkpoint Inhibitors in Patients with Non-Small Cell Lung Cancer in Presence and Absence of Vascular Endothelial Growth Factor Inhibitors: A Systematic Review. Frontiers in Oncology, 14, Article 1419256.
https://doi.org/10.3389/fonc.2024.1419256
[6] Li, Y., Long, Y., Ge, X., Zhang, P., Li, T., Wu, L., et al. (2024) Radiation-Induced Tumor-Derived Extracellular Vesicles Combined with Tyrosine Kinase Inhibitors: An Effective and Safe Therapeutic Approach for Lung Adenocarcinoma with EGFR19DEL. Vaccines, 12, Article 1412.
https://doi.org/10.3390/vaccines12121412
[7] Ohmori, T., Yamaoka, T., Ando, K., Kusumoto, S., Kishino, Y., Manabe, R., et al. (2021) Molecular and Clinical Features of EGFR-TKI-Associated Lung Injury. International Journal of Molecular Sciences, 22, Article 792.
https://doi.org/10.3390/ijms22020792
[8] Zhou, S., Kishi, N., Alerasool, P. and Rohs, N.C. (2024) Adverse Event Profile of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Non-Small Cell Lung Cancer: An Updated Meta-Analysis. Targeted Oncology, 19, 547-564.
https://doi.org/10.1007/s11523-024-01073-w
[9] Miyamoto, S., Azuma, K., Ishii, H., Bessho, A., Hosokawa, S., Fukamatsu, N., et al. (2020) Low-Dose Erlotinib Treatment in Elderly or Frail Patients with EGFR Mutation-Positive Non-Small Cell Lung Cancer. JAMA Oncology, 6, e201250.
https://doi.org/10.1001/jamaoncol.2020.1250
[10] Kanaji, N., Ichihara, E., Tanaka, T., Ninomiya, T., Kozuki, T., Ishikawa, N., et al. (2024) Efficacy and Safety of Re-Administration of Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor (EGFR-TKI) after EGFR-TKI-Induced Interstitial Lung Disease (CS-Lung-005). Lung, 202, 63-72.
https://doi.org/10.1007/s00408-023-00669-9
[11] Tanaka, H., Taima, K., Itoga, M., Ishioka, Y., Baba, K., Shiratori, T., et al. (2019) Real-World Study of Afatinib in First-Line or Re-Challenge Settings for Patients with EGFR Mutant Non-Small Cell Lung Cancer. Medical Oncology, 36, Article No. 57.
https://doi.org/10.1007/s12032-019-1278-9
[12] Wu, Y., Cheng, Y., Zhou, X., Lee, K.H., Nakagawa, K., Niho, S., et al. (2017) Dacomitinib versus Gefitinib as First-Line Treatment for Patients with EGFR-Mutation-Positive Non-Small-Cell Lung Cancer (ARCHER 1050): A Randomized, Open-Label, Phase 3 Trial. The Lancet Oncology, 18, 1454-1466.
https://doi.org/10.1016/s1470-2045(17)30608-3
[13] Shi, Y., Wu, S., Wang, K., Cang, S., Yao, W., Fan, Y., et al. (2022) Efficacy and Safety of Rezivertinib (BPI-7711) in Patients with Locally Advanced or Metastatic/Recurrent EGFR T790M-Mutated NSCLC: A Phase 2b Study. Journal of Thoracic Oncology, 17, 1306-1317.
https://doi.org/10.1016/j.jtho.2022.08.015
[14] John, T., Grohé, C., Goldman, J.W., Shepherd, F.A., de Marinis, F., Kato, T., et al. (2023) Three-Year Safety, Tolerability, and Health-Related Quality of Life Outcomes of Adjuvant Osimertinib in Patients with Resected Stage IB to IIIA EGFR-Mutated NSCLC: Updated Analysis from the Phase 3 ADAURA Trial. Journal of Thoracic Oncology, 18, 1209-1221.
https://doi.org/10.1016/j.jtho.2023.05.015
[15] Sato, Y., Sumikawa, H., Shibaki, R., Morimoto, T., Sakata, Y., Oya, Y., et al. (2022) Drug-Related Pneumonitis Induced by Osimertinib as First-Line Treatment for Epidermal Growth Factor Receptor Mutation-Positive Non-Small Cell Lung Cancer. Chest, 162, 1188-1198.
https://doi.org/10.1016/j.chest.2022.05.035
[16] Kenmotsu, H., Wakuda, K., Mori, K., Kato, T., Sugawara, S., Kirita, K., et al. (2022) Randomized Phase 2 Study of Osimertinib plus Bevacizumab versus Osimertinib for Untreated Patients with Non-Squamous NSCLC Harboring EGFR Mutations: WJOG9717L Study. Journal of Thoracic Oncology, 17, 1098-1108.
https://doi.org/10.1016/j.jtho.2022.05.006
[17] Okuma, Y., Kubota, K., Shimokawa, M., Hashimoto, K., Kawashima, Y., Sakamoto, T., et al. (2024) First-Line Osimertinib for Previously Untreated Patients with NSCLC and Uncommon EGFR Mutations. JAMA Oncology, 10, 43-51.
https://doi.org/10.1001/jamaoncol.2023.5013
[18] Imaji, M., Fujimoto, D., Sato, Y., Sakata, Y., Oya, Y., Tamiya, M., et al. (2023) Safety and Efficacy of Osimertinib Rechallenge or Continuation after Pneumonitis: A Multi-Centre Retrospective Cohort Study. European Journal of Cancer, 179, 15-24.
https://doi.org/10.1016/j.ejca.2022.10.029
[19] Li, Y., Chen, Y., Meng, Y., Shen, M., Yang, F. and Ren, X. (2024) Osimertinib Exacerbates Immune Checkpoint Inhibitor-Related Severe Adverse Events by Activating the IL-6/JAK/STAT3 Pathway in Macrophages. Cancer Biology & Medicine, 21, 1-15.
https://doi.org/10.20892/j.issn.2095-3941.2024.0269
[20] Oxnard, G.R., Yang, J.C.-H.., Yu, H., Kim, S.-W.., Saka, H., Horn, L., et al. (2020) TATTON: A Multi-Arm, Phase IB Trial of Osimertinib Combined with Selumetinib, Savolitinib, or Durvalumab in EGFR-Mutant Lung Cancer. Annals of Oncology, 31, 507-516.
https://doi.org/10.1016/j.annonc.2020.01.013
[21] Ahn, M., Cho, B.C., Ou, X., Walding, A., Dymond, A.W., Ren, S., et al. (2022) Osimertinib plus Durvalumab in Patients with EGFR-Mutated, Advanced NSCLC: A Phase 1b, Open-Label, Multicenter Trial. Journal of Thoracic Oncology, 17, 718-723.
https://doi.org/10.1016/j.jtho.2022.01.012
[22] Kim, E.S., Kish, J.K., Cseh, A., Moehring, B., Tang, W., Terlizzi, E., et al. (2021) Second-Line Afatinib or Chemotherapy Following Immunochemotherapy for the Treatment of Metastatic, Squamous Cell Carcinoma of the Lung: Real-World Effectiveness and Safety from a Multisite Retrospective Chart Review in the USA. Clinical Lung Cancer, 22, 292-300.e1.
https://doi.org/10.1016/j.cllc.2021.02.006
[23] Rudin, C.M., Cervantes, A., Dowlati, A., Besse, B., Ma, B., Costa, D.B., et al. (2023) Safety and Clinical Activity of Atezolizumab plus Erlotinib in Patients with Non-Small-Cell Lung Cancer. ESMO Open, 8, Article 101160.
https://doi.org/10.1016/j.esmoop.2023.101160
[24] Gemma, A., Kusumoto, M., Sakai, F., Endo, M., Kato, T., Saito, Y., et al. (2020) Real-World Evaluation of Factors for Interstitial Lung Disease Incidence and Radiologic Characteristics in Patients with EGFR T790M-Positive NSCLC Treated with Osimertinib in Japan. Journal of Thoracic Oncology, 15, 1893-1906.
https://doi.org/10.1016/j.jtho.2020.08.025
[25] Long, K. and Suresh, K. (2020) Pulmonary Toxicity of Systemic Lung Cancer Therapy. Respirology, 25, 72-79.
https://doi.org/10.1111/resp.13915
[26] Zhou, Q., Xu, C., Cheng, Y., Liu, Y., Chen, G., Cui, J., et al. (2021) Bevacizumab plus Erlotinib in Chinese Patients with Untreated, EGFR-Mutated, Advanced NSCLC (ARTEMIS-CTONG1509): A Multicenter Phase 3 Study. Cancer Cell, 39, 1279-1291.e3.
https://doi.org/10.1016/j.ccell.2021.07.005
[27] Kato, T., Seto, T., Nishio, M., Goto, K., Yamamoto, N., Okamoto, I., et al. (2017) Erlotinib plus Bevacizumab Phase Ll Study in Patients with Advanced Non-Small-Cell Lung Cancer (JO25567): Updated Safety Results. Drug Safety, 41, 229-237.
https://doi.org/10.1007/s40264-017-0596-0
[28] Akamatsu, H., Toi, Y., Hayashi, H., Fujimoto, D., Tachihara, M., Furuya, N., et al. (2021) Efficacy of Osimertinib plus Bevacizumab vs Osimertinib in Patients with EGFR T790M-Mutated Non-Small Cell Lung Cancer Previously Treated with Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor. JAMA Oncology, 7, 386-394.
https://doi.org/10.1001/jamaoncol.2020.6758
[29] Soo, R.A., Han, J.-Y., Dafni, U., Cho, B.C., Yeo, C.M., Nadal, E., et al. (2022) A Randomized Phase II Study of Osimertinib and Bevacizumab versus Osimertinib Alone as Second-Line Targeted Treatment in Advanced NSCLC with Confirmed EGFR and Acquired T790M Mutations: The European Thoracic Oncology Platform (ETOP 10-16) Booster Trial. Annals of Oncology, 33, 181-192.
https://doi.org/10.1016/j.annonc.2021.11.010
[30] Han, T., Hu, J., Shi, Y., Wang, L. and Jiao, F. (2020) Fatal Interstitial Lung Disease Associated with a Series of Tyrosine Kinase Inhibitors Treatment in a Non-Small Cell Lung Cancer Patient: A Case Report. Translational Cancer Research, 9, 3762-3765.
https://doi.org/10.21037/tcr.2020.03.76
[31] West, H.L., Moon, J., Wozniak, A.J., Mack, P., Hirsch, F.R., Bury, M.J., et al. (2018) Paired Phase II Studies of Erlotinib/Bevacizumab for Advanced Bronchioloalveolar Carcinoma or Never Smokers with Advanced Non-Small-Cell Lung Cancer: SWOG S0635 and S0636 Trials. Clinical Lung Cancer, 19, 84-92.
https://doi.org/10.1016/j.cllc.2017.06.016
[32] Jia, W., Gao, Q., Wang, M., Li, J., Jing, W., Yu, J., et al. (2021) Overlap Time Is an Independent Risk Factor of Radiation Pneumonitis for Patients Treated with Simultaneous EGFR-TKI and Thoracic Radiotherapy. Radiation Oncology, 16, Article No. 41.
https://doi.org/10.1186/s13014-021-01765-x
[33] Meng, Y., Sun, H., Wang, S., Yang, H. and Kong, F. (2024) Treatment-Related Pneumonitis of EGFR Tyrosine Kinase Inhibitors plus Thoracic Radiation Therapy in Patients with Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. International Journal of Radiation Oncology, Biology, Physics, 118, 415-426.
https://doi.org/10.1016/j.ijrobp.2023.09.009
[34] Tsur, E., Blumenfeld, P., Rottenberg, Y., Nechushtan, H., Arnon, J., Wald, O., et al. (2024) Outcomes of Extracranial Stereotactic Body Radiation Therapy for Induced Oligometastatic Non-Small Cell Lung Cancer on Novel Systemic Therapy. Translational Lung Cancer Research, 13, 465-474.
https://doi.org/10.21037/tlcr-23-802
[35] Hotta, K., Saeki, S., Yamaguchi, M., Harada, D., Bessho, A., Tanaka, K., et al. (2022) Corrigendum to ‘Gefitinib Induction Followed by Chemoradiotherapy in EGFR-Mutant, Locally Advanced Non-Small-Cell Lung Cancer: LOGIK0902/ OLCSG0905 Phase II Study’. ESMO Open, 7, Article 100532.
https://doi.org/10.1016/j.esmoop.2022.100532
[36] Lu, S., Kato, T., Dong, X., Ahn, M., Quang, L., Soparattanapaisarn, N., et al. (2024) Osimertinib after Chemoradiotherapy in Stage III EGFR-Mutated NSCLC. New England Journal of Medicine, 391, 585-597.
https://doi.org/10.1056/nejmoa2402614