炎症反应在心肌缺血再灌注损伤中的研究进展
Research Progress on Inflammatory Response in Myocardial Ischemia-Reperfusion Injury
DOI: 10.12677/acm.2025.153823, PDF, HTML, XML,   
作者: 杜智威, 刘振兵*:内蒙古医科大学鄂尔多斯临床医学院,内蒙古 呼和浩特
关键词: 缺血再灌注损伤炎症细胞焦亡通路Ischemia-Reperfusion Injury Inflammation Pyroptosis Pathway
摘要: 随着医疗技术的不断进步,溶栓和经皮冠状动脉介入等治疗手段显著降低了急性心肌梗死的死亡率。然而,当缺血心肌细胞的血流恢复之后,随之而来的心肌再灌注损伤却可能进一步加重心肌损伤。心肌再灌注损伤的机制复杂多样,主要包括钙超载、炎症反应、氧化应激、内皮功能障碍、免疫反应、线粒体功能障碍、心肌细胞凋亡、自噬和细胞焦亡等。其中,炎症反应在心肌再灌注损伤中扮演着关键角色,抑制炎症反应可以有效减轻心肌再灌注损伤。文章重点介绍炎症在心肌再灌注损伤中的作用机制,为提升心肌再灌注损伤的临床治疗效果和改善患者预后提供新的策略。
Abstract: With the continuous advancement of medical technology, treatment methods such as thrombolysis and percutaneous coronary intervention have significantly reduced the mortality rate of acute myocardial infarction. However, after the blood flow to ischemic myocardial cells is restored, the subsequent myocardial reperfusion injury may further exacerbate myocardial damage. The mechanisms of myocardial reperfusion injury are complex and diverse, mainly including calcium overload, inflammatory response, oxidative stress, endothelial dysfunction, immune response, mitochondrial dysfunction, myocardial cell apoptosis, autophagy, and pyroptosis. Among them, the inflammatory response plays a crucial role in myocardial reperfusion injury, and inhibiting the inflammatory response can effectively alleviate myocardial reperfusion injury. This article focuses on introducing the mechanism of action of inflammation in myocardial reperfusion injury, aiming to provide new strategies for improving the clinical treatment effect of myocardial reperfusion injury and the prognosis of patients.
文章引用:杜智威, 刘振兵. 炎症反应在心肌缺血再灌注损伤中的研究进展[J]. 临床医学进展, 2025, 15(3): 1944-1952. https://doi.org/10.12677/acm.2025.153823

1. 引言

心血管疾病(Cardiovascular Diseases, CVD)是一种死亡率很高的心脏疾病,与冠状动脉急性、持续的缺血和缺氧引起的心肌细胞凋亡和坏死有关。迅速恢复血流是治疗心肌梗死(Myocardial Infarction, MI)的有效策略。然而,矛盾的是,缺血心肌血流的恢复会加重血管损伤和炎症的爆发,进一步增加心肌梗死面积,这种现象被称为心肌缺血再灌注损伤(Myocardial Ischemia Reperfusion Injury, MIRI) [1] [2]。MIRI涉及多种病理生理过程,包括钙超负荷、炎症、氧化应激、内皮功能障碍、免疫反应、线粒体功能障碍、心肌细胞凋亡、自噬、细胞焦亡、血小板聚集等[3]-[7]。炎症是一种防御反应,但当这种反应被各种因素过度激活时,它会加剧组织损伤。宿主免疫防御机制可分为先天免疫和适应性免疫反应。炎症反应和先天免疫系统的激活是MIRI的重要特征[8]。当冠状动脉血流中断时,会导致细胞死亡和强烈的无菌性炎症,通过及时再灌注治疗也会导致心肌细胞进一步死亡并释放炎性细胞因子加剧炎症反应,从而导致心肌梗死面积扩大和随后的心脏重塑和伤口愈合。因此,有效清除受损细胞和抑制炎症反应被认为对于最大化再灌注治疗的益处至关重要[9]-[12]。现将炎症在MIRI中的研究进展综述如下。

2. 中性粒细胞与炎症

MIRI后最先募集到心脏的髓系细胞是中性粒细胞,在稳态条件下,中性粒细胞处于静止状态,面对缺血再灌注,中性粒细胞会在数分钟到数小时内,沿着细胞因子和细胞碎片的趋化梯度,迁移至受损的心脏。这种对环境信号的快速状态转变,称为“就绪”状态,也就是所谓的“预激活”,且已被证实能增强中性粒细胞合成炎症介质的效应功能。中性粒细胞的预激活由缺血再灌注诱导产生的损伤相关分子模式(Damage-Associated Molecular Pattern, DAMPs),如肿瘤坏死因子-α (Tumor Necrosis Factor-α, TNF-α)、粒细胞–巨噬细胞集落刺激因子(Granulocyte-Macrophage Colony-Stimulating Factor, GMCSF)引发。预激活的中性粒细胞会增加包括白细胞介素-1α (Interleukin-1α, IL-1α)、白细胞介素-1β (Interleukin-1β, IL-1β)、白细胞介素-6 (Interleukin-6, IL-6)、TNF-α等在内的炎症介质合成与后续释放。中性粒细胞分泌的炎性细胞因子/趋化因子会刺激单核细胞和巨噬细胞的募集以及促炎分化,从而加剧损伤[11]

3. 巨噬细胞与炎症

巨噬细胞在心肌缺血再灌注损伤中起着不可替代的作用。具体表现为单核细胞/巨噬细胞介导的心肌炎症促进细胞死亡[13]。GMCSF是一种主要来源于内皮细胞、成纤维细胞和造血细胞的单体糖蛋白。GMCSF主要在炎症刺激过程中释放,能有效促进骨髓来源的细胞,如单核细胞、巨噬细胞和树突状细胞的成熟和活化[14]。在急性MIRI过程中,GMCSF的释放会募集大量免疫细胞浸润损伤部位,促进炎症反应。在MIRI的早期阶段表现为,血液单核细胞浸润受损的心脏组织并转化为促炎的M1型巨噬细胞[15] [16]。然后释放各种炎症介质,如TNF-α、IL-1β、IL-6和白细胞介素-8 (Interleukin-8, IL-8)以促进炎症反应,加重MIRI [17]-[20]

随着急性损伤期炎症反应的消退,巨噬细胞主要转化为修复性M2表型,可通过分泌抗炎细胞因子白细胞介素-10 (Interleukin-10, IL-10)和促进调节性T细胞(Regulatory T cell, Treg)的分化来消退炎症,从而帮助抑制MIRI早期的M1巨噬细胞介导的炎症反应。M2型巨噬细胞还能通过释放转化生长因子-β (Transforming Growth Factor-β, Tgf-β)以促进成纤维细胞转化为肌成纤维细胞[20]-[23]。进而产生胶原蛋白和纤连蛋白,有利于梗死心脏组织的修复和重塑,同时也促进瘢痕形成和心肌纤维化进展[24]-[26]

4. 损伤相关分子模式与炎症

缺血造成的初始损伤以及再灌注带来的继发性损伤,都会导致心脏内大量心肌细胞死亡,进而使梗死心肌释放出DAMPs。这些物质包括心肌的细胞核成分,如高迁移率族蛋白B1 (High Mobility Group Box 1, HMGB1);胞质成分,如RNA;细胞外基质成分,如纤连蛋白;线粒体成分,如线粒体DNA,以及收缩蛋白成分,如心肌肌球蛋白。这些DAMPs中的许多成分可作为模式识别受体(Pattern Recognition Receptors, PRRs)的配体,其中包括Toll样受体(Toll-Like Receptors, TLR)、NOD样受体(NOD-Like Receptors, NLR)、晚期糖基化终末产物受体(Receptors for Advanced Glycation End Product, RAGE)以及补体受体。这些受体在心脏中广泛表达,可通过在多种细胞类型中的信号传导,促使缺血再灌注损伤的发生[11]。Toll样受体2 (TLR2)和4 (TLR4)以及RAGE的结合,会促进核因子κB (Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells, NF-κB)的激活,从而上调促炎基因的表达并启动NOD样受体蛋白3 (NOD-Like Receptor Protein-3, NLRP-3)炎症小体并释放炎症介质,如IL-1β、IL-6和TNF-α [11] [27]。除此之外,心脏的固有细胞在缺血再灌注诱导的炎症中发挥着独特作用。损伤发生后,心肌细胞、心脏成纤维细胞和固有巨噬细胞会释放炎症分子和趋化分子,如IL-1β、TNFα、IL-6和趋化因子(C-C基序)配体2 (C-C Motif Chemokine Ligand 2, CCL2),以形成趋化梯度,将炎症髓系细胞募集到梗死区域[11] [28]

5. 铁死亡与炎症

铁死亡(Ferroptosis)在MIRI引发的炎症过程中起着关键作用:MIRI后,细胞通过包括铁死亡在内的调节性细胞死亡(Regulated Cell Death, RCD)组合方式死亡;这会导致DAMPs的释放,一旦从细胞中释放出来,DAMPs就会通过与PRRs结合来促进非感染性炎症反应。例如,HMGB1是铁死亡细胞死亡过程中释放的DAMPs,它与PRRs结合并通过激活巨噬细胞产生促炎细胞因子来驱动炎症[29] [30]。在炎症过程中,DAMPs的产生伴随着磷脂酶A2 (Phospholipase A2, PLA2)促使花生四烯酸(Arachidonic Acid, AA)生成增加。当AA被PLA2和磷脂酶C (Phospholipase C, PLC)从磷脂中释放出来时,它会作为生物活性促炎介质的前体,这些促炎介质包括前列腺素、IL-1、IL-6以及TNF,它们会推动炎症级联反应。其中的AA在环氧化酶-2 (Cyclooxygenase-2, COX2)的作用下代谢为具有生物活性的前列腺素,这些前列腺素会进一步激活巨噬细胞以及其他炎症细胞,包括中性粒细胞、T淋巴细胞和B淋巴细胞。这些促炎介质连同干扰素-γ (Interferon-γ, IFN-γ),参与组织铁储存和铁蛋白合成的调节。异常的炎症反应可能导致铁代谢紊乱,并影响氧化还原系统的平衡。例如,核受体辅激活因子4 (Nuclear Receptor Coactivator 4, NCOA4)调节铁蛋白自噬,使得铁蛋白被自噬溶酶体降解。这一过程会导致细胞内铁过载,引发氧化应激并加剧炎症[29]。此外,心肌细胞铁死亡通过移植物内皮细胞中TLR4/Trif依赖性信号通路,促进中性粒细胞与冠状血管内皮细胞的黏附,从而启动炎症反应[30]。反过来,炎症的激活又会导致铁死亡更广泛地被激活[31]

6. 细胞焦亡与炎症

细胞焦亡(Pyroptosis)是一种细胞死亡,其特征是NLRP3炎性小体激活和炎症反应[32]。在MIRI中,NLRP3炎性小体激活引发炎症反应,导致细胞信号通路的级联反应和炎症介质的释放,这对免疫调节和炎症至关重要[33]。NLRP3炎性小体是一组由NLRP3、半胱天冬酶原-1 (pro-caspase-1)和含半胱天冬酶募集结构域(Caspase Recruitment Domain, CARD)的凋亡相关斑点样蛋白(Apoptosis-Associated Speck-Like Protein, ASC)组成的多聚体蛋白复合物[34]-[37]。在MIRI期间,NLRP3炎性小体的富含亮氨酸重复序列(Leucine-Rich Repeat, LRR)结构域可识别内源性信号,如钾离子外流、溶酶体不稳定和线粒体活性氧生成。当NLRP3的LRR结构域在识别上述内源性信号并被激活后,NLRP3的Pyrin结构域(Pyrin Domain, PYD)会与凋亡相关斑点样蛋白(Apoptosis-Associated Speck-Like Protein, ASC)的PYD发生同源相互作用,诱导ASC寡聚化。然后,ASC的card招募pro-caspase-1,形成激活半胱天冬酶-1 (caspase-1)的复合物。而激活的caspase-1会将IL-1β前体和IL-18前体加工成具有生物活性的成熟形式,并释放到细胞外,促进对组织细胞的炎症反应。此外,caspase-1的激活会触发Gasdermin-D (GSDMD)的裂解,导致其N端结构域释放。随后,该结构域与质膜结合并形成孔道,促进成熟的IL-1β和IL-18向细胞外释放。通过这种方式,该过程会通过促进炎症级联反应和细胞焦亡而加剧MIRI [2] [3] [38]-[40]

7. 线粒体与炎症

线粒体与各种细胞过程密切相关,并参与调节细胞氧化还原状态、钙水平、炎性小体活化和细胞死亡。当线粒体受损后,线粒体活性氧(mtROS)和线粒体DNA (mtDNA)可导致NLRP3炎性小体的激活。此外,线粒体脱氧核糖核酸以及其他与线粒体相关的蛋白质和脂质在引发NLRP3炎症小体激活过程中也起着关键作用。例如,在MIRI期间,基质金属蛋白酶(Matrix Metalloproteinase 2, MMP-2)会因氧化应激而迅速激活。线粒体功能的调节蛋白,包括线粒体融合蛋白-2 (Mitofusin-2, Mfn-2),在MIRI中会缺失,进而触发NLRP3炎症小体和先天免疫反应[3] [41] [42]

线粒体自噬(Mitophagy)在控制NLRP3炎症小体激活方面至关重要,主要通过线粒体自噬-NLRP3通路实现。线粒体自噬对NLRP3炎性小体激活起负调节作用,这对免疫平衡至关重要。当线粒体自噬功能出现障碍会导致活性氧(Reactive Oxygen Species, ROS)积累,从而触发NLRP3炎性小体的激活[2]

研究表明,自噬有助于清除细胞内NLRP3激活的触发因素,并降解炎症小体成分以及如NLRP3、ASC和IL-1β等细胞因子[43]。但与上述研究相反,有研究发现自噬也能正向调节NLRP3炎症小体的激活。在他们的研究中,饥饿条件下发生的自噬可增强半胱氨酸蛋白酶抑制剂1的激活,促进炎症小体的激活,增加IL-1β和IL-18等促炎细胞因子的合成。同时,由于一些细胞质蛋白缺乏信号肽,IL-1β和IL-18等促炎因子无法通过内质网进入自噬的经典途径进行降解,反而在细胞质中促进其外流,这进一步加剧了组织中的炎症损伤[3]。半胱天冬酶(Caspases)是一类半胱氨酸蛋白酶,包含炎性caspase-1 [44]。在细胞焦亡中激活的caspase-1可将IL-1β前体和IL-18前体加工成具有生物活性的成熟形式,促进炎症反应。自噬通过增强半胱氨酸蛋白酶抑制剂1的激活进而抑制半胱氨酸蛋白酶活性,即caspase-1的活性被抑制后,NLRP3炎性小体仍可激活。这与先前的研究结论相反,其原因需要进一步研究。

8. PI3K/AKT通路与炎症

PI3K/Akt是一种广泛存在于细胞中的信号转导通路,参与炎症和细胞激活、存活和细胞凋亡。通常认为PI3K/Akt信号转导通路的激活可以保护心肌免受致命的MIRI。PI3K/AKT信号通路的抑制伴随着TNF-、IL-6和IL-1β水平的降低,导致炎症细胞浸润减少[45]。内皮型一氧化氮合酶(Endothelial Nitric Oxide Synthase, eNOS)在哺乳动物心肌细胞中连续表达,是Akt的下游效应子,受PI3K/Akt信号通路调节[46]。现有证据表明,PI3K/Akt/eNOS信号转导通路通过各种干预措施(如延迟预处理、右美托咪定和黄芩苷)在心脏保护机制中发挥重要作用。研究显示,高胆固醇血症可通过增强炎症反应和抑制PI3K/Akt/eNOS信号通路的激活,显著加重MIRI [47]。还有研究表明小檗碱除了通过抑制PI3K/AKT信号传导以及随后的炎症反应来预防MIRI外,还通过核因子NF-κB信号通路减少炎症反应[45]

9. NF-κB与炎症

研究表明,在MIRI过程中,TLR4/NF-κB信号通路被激活,进而诱导TNF-α的产生,并触发炎症级联反应。当TLR4被激活时,TLR会募集含有Toll/白细胞介素-1受体(Toll/Interleukin-1 Receptor, TIR)结构域的衔接蛋白,如髓样分化因子88 (Myeloid Differentiation Primary Response 88, MyD88),刺激肿瘤坏死因子受体相关因子6 (Tumor Necrosis Factor Receptor-Associated Factor 6, TRAF6)的磷酸化,并通过信号级联反应使NF-κB抑制蛋白(Inhibitor of Nuclear Factor Kappa B, IκB)降解,从而促使NF-κB转移至细胞核内,进而促进下游NF-κB的激活。其激活会启动与心脏不可逆损伤相关蛋白质的转录,尤其是炎症蛋白和凋亡蛋白。因此,抑制NF-κB以及炎症信号通路,对MIRI的防治具有积极意义[48]

10. 钙/钙调蛋白依赖性激酶II与炎症

钙/钙调蛋白依赖性蛋白激酶II (Calcium/Calmodulin-Dependent Protein Kinase II, CaMKII)是一个多功能丝氨酸/苏氨酸蛋白激酶家族,在多种心脏疾病的发病机制中起着核心作用,这些疾病包括急性缺血再灌注损伤、慢性心脏重构以及心力衰竭。CaMKII有4个基因编码,即CaMKII-αβγδ,其中CaMKII-δ是心脏中的主要异构体。CaMKII-δ会发生可变剪接,产生11种不同的变体。先前的研究表明,不同的CaMKII-δ剪接变体对心肌细胞活力具有截然不同甚至相反的作用。从功能上看,位于细胞质中的CaMKII-δ2会加重MIRI,而位于细胞核中的CaMKII-δ3则对心肌有保护作用,其差异作用可通过其对NF-κB或TNF-α的作用来实现[49] [50]。CaMKII-δ9是心脏中最丰富的CaMKII-δ剪接变体。研究表明,CaMKII-δ9抑制可以改善心脏炎症并抑制MIRI诱导的NF-κB活化。CaMKII-δ9-IKK/IkB-NF-κB信号通路可调节心肌细胞炎症,从而改善心室重塑和心力衰竭[49]

11. 间充质干细胞来源的外泌体与炎症

近年来,间充质干细胞衍生的外泌体(Mesenchymal Stem Cell-Derived Exosomes, MSC-EXOs)在治疗疾病方面显示出巨大的潜力。尤其是MSC来源的外泌体非编码RNA (Noncoding RNAs, ncRNA)在MIRI中显示出治疗潜力[51]。人类基因组的转录除了产生核糖体RNA和转运RNA外,还会生成大量的非编码RNA,包括微小RNA (miRNA)、长链非编码RNA (lncRNA)和环状RNA (circRNA) [52] [53]。过表达miR-181a的骨髓间充质干细胞外泌体(Bone Marrow MSC-EXOs, BMSC-EXOs)不仅在MIRI模型中下调TNF-α和IL-6,而且在单核细胞中上调抗炎细胞因子IL-10 [54]。负载miR-182的骨髓间充质干细胞外泌体(BMSC-EXOs)可以促进M1巨噬细胞向M2表型的极化,不仅可以减轻MIRI诱导的炎症反应,还可以促进病变组织的修复。动物实验证实,其机制可能涉及TLR4/NF-κB通路抑制和PI3K/Akt通路激活[55]。有可能是MyD88从TIR结构域分离后与PI3K的p85调节亚基结合,促使从TLR4/NF-κB激活转变为TLR4/PI3K/AKT通路激活,从而减轻MIRI [56] [57]。人脐带MSC-EXO递送miR-182可以抑制炎症反应,从而缓解MIRI [58]。然而外泌体对心肌保护或损伤的分子机制并未完全阐明,需要更深入的探讨与研究。

12. 右美托咪定与炎症

有研究显示右美托咪定(Dexmedetomidine, DEX)降低了TNF-α和IL-1β等炎症因子的表达,并在体内抑制了炎症反应。TLR4/MyD88/NF-κB信号通路在炎症调节中起着关键作用。DEX预处理可下调HMGB1介导的TLR4/MyD88/NF-κB信号通路,减轻MIRI。人们认为,抑制HMGB1介导的TLR4/MyD88/NF-κB信号通路可能是DEX诱导心肌保护的抗炎机制之一。有趣的是,在糖尿病患者下肢手术中,DEX还可通过TLR4/MyD88/NF-κB通路减轻全身炎症反应。然而,DEX是否能通过抑制HMGB1介导的炎症来减轻糖尿病患者的MIRI仍不清楚[59]

13. 小结与展望

MIRI是一个复杂且机制尚未完全明晰的过程。在已认知的机制里,炎症反应作为关键因素之一,近年来备受关注。当下,大多数治疗方案通过单一机制来抑制炎症反应,而同时作用于多个机制的治疗方式能否更有效地改善MIRI,仍有待进一步探索。本综述所提及的炎症反应涵盖多种机制,这些机制彼此既相互独立,又存在关联,如中性粒细胞、巨噬细胞、线粒体、铁死亡、细胞焦亡和信号通路等均与DAMPs和PRRs相关。它们或许能为改善MIRI的预后、降低心血管疾病相关死亡率提供全新的治疗靶点。

NOTES

*通讯作者。

参考文献

[1] Lei, F., Zhang, J., Deng, Y., Wang, X., Tang, J., Tian, J., et al. (2024) Biomimetic Nanoplatform Treats Myocardial Ischemia/Reperfusion Injury by Synergistically Promoting Angiogenesis and Inhibiting Inflammation. Colloids and Surfaces B: Biointerfaces, 243, Article 114159.
https://doi.org/10.1016/j.colsurfb.2024.114159
[2] Pan, S., Wang, F., Hui, Y., Chen, K., Zhou, L., Gao, W., et al. (2022) Insulin Reduces Pyroptosis-Induced Inflammation by PDHA1 Dephosphorylation-Mediated NLRP3 Activation during Myocardial Ischemia-Reperfusion Injury. Perfusion, 38, 1277-1287.
https://doi.org/10.1177/02676591221099807
[3] Chen, L., Mao, L., Xue, J., Jian, Y., Deng, Z., Mazhar, M., et al. (2024) Myocardial Ischemia-Reperfusion Injury: The Balance Mechanism between Mitophagy and NLRP3 Inflammasome. Life Sciences, 355, Article 122998.
https://doi.org/10.1016/j.lfs.2024.122998
[4] Pan, L., Fu, M., Tang, X.L., Ling, Y., Su, Y. and Ge, J. (2024) Kirenol Ameliorates Myocardial Ischemia-Reperfusion Injury by Promoting Mitochondrial Function and Inhibiting Inflammasome Activation. Cardiovascular Drugs and Therapy.
[5] Welt, F.G.P., Batchelor, W., Spears, J.R., Penna, C., Pagliaro, P., Ibanez, B., et al. (2024) Reperfusion Injury in Patients with Acute Myocardial Infarction. Journal of the American College of Cardiology, 83, 2196-2213.
https://doi.org/10.1016/j.jacc.2024.02.056
[6] Xu, X., Li, M., Yu, F., Wei, Q., Liu, Y., Tong, J., et al. (2024) Platelet Membrane Nanocarriers Cascade Targeting Delivery System to Improve Myocardial Remodeling Post Myocardial Ischemia-Reperfusion Injury. Advanced Science, 11, Article 2308727.
https://doi.org/10.1002/advs.202308727
[7] Xiang, Q., Yi, X., Zhu, X., Wei, X. and Jiang, D. (2024) Regulated Cell Death in Myocardial Ischemia-Reperfusion Injury. Trends in Endocrinology & Metabolism, 35, 219-234.
https://doi.org/10.1016/j.tem.2023.10.010
[8] Bonaventura, A., Montecucco, F. and Dallegri, F. (2016) Cellular Recruitment in Myocardial Ischaemia/Reperfusion Injury. European Journal of Clinical Investigation, 46, 590-601.
https://doi.org/10.1111/eci.12633
[9] Tan, H., Li, W., Pang, Z., Weng, X., Gao, J., Chen, J., et al. (2024) Genetically Engineered Macrophages Co-Loaded with CD47 Inhibitors Synergistically Reconstruct Efferocytosis and Improve Cardiac Remodeling Post Myocardial Ischemia Reperfusion Injury. Advanced Healthcare Materials, 13, Article 2303267.
https://doi.org/10.1002/adhm.202303267
[10] Xu, H., Chen, Y., Xie, P., Lei, T., Liu, K., Liu, X., et al. (2024) Remimazolam Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting the NF-κB Pathway of Macrophage Inflammation. European Journal of Pharmacology, 965, Article 176276.
https://doi.org/10.1016/j.ejphar.2023.176276
[11] Francisco, J. and Del Re, D.P. (2023) Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants, 12, Article 1944.
https://doi.org/10.3390/antiox12111944
[12] Dong, H., Jia, W., Wang, C., Teng, D., Xu, B., Ding, X., et al. (2024) Key Subdomains of Mesencephalic Astrocyte-Derived Neurotrophic Factor Attenuate Myocardial Ischemia/Reperfusion Injury by JAK1/STAT1/NF-κB Signaling Pathway. Molecular Medicine, 30, Article No. 139.
https://doi.org/10.1186/s10020-024-00916-6
[13] Uchikawa, T., Matoba, T., Kawahara, T., Baba, I., Katsuki, S., Koga, J., et al. (2022) Dietary 7-Ketocholesterol Exacerbates Myocardial Ischemia-Reperfusion Injury in Mice through Monocyte/Macrophage-Mediated Inflammation. Scientific Reports, 12, Article No. 14902.
https://doi.org/10.1038/s41598-022-19065-z
[14] Anzai, A., Choi, J.L., He, S., Fenn, A.M., Nairz, M., Rattik, S., et al. (2017) The Infarcted Myocardium Solicits GM-CSF for the Detrimental Oversupply of Inflammatory Leukocytes. Journal of Experimental Medicine, 214, 3293-3310.
https://doi.org/10.1084/jem.20170689
[15] Nahrendorf, M., Swirski, F.K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J., et al. (2007) The Healing Myocardium Sequentially Mobilizes Two Monocyte Subsets with Divergent and Complementary Functions. The Journal of Experimental Medicine, 204, 3037-3047.
https://doi.org/10.1084/jem.20070885
[16] Panizzi, P., Swirski, F.K., Figueiredo, J., Waterman, P., Sosnovik, D.E., Aikawa, E., et al. (2010) Impaired Infarct Healing in Atherosclerotic Mice with Ly-6Chi Monocytosis. Journal of the American College of Cardiology, 55, 1629-1638.
https://doi.org/10.1016/j.jacc.2009.08.089
[17] Peet, C., Ivetic, A., Bromage, D.I. and Shah, A.M. (2019) Cardiac Monocytes and Macrophages after Myocardial Infarction. Cardiovascular Research, 116, 1101-1112.
https://doi.org/10.1093/cvr/cvz336
[18] Shen, S., Xu, J., Cheng, C., Xiang, X., Hong, B., Zhang, M., et al. (2024) Macrophages Promote the Transition from Myocardial Ischemia Reperfusion Injury to Cardiac Fibrosis in Mice through GMCSF/CCL2/CCR2 and Phenotype Switching. Acta Pharmacologica Sinica, 45, 959-974.
https://doi.org/10.1038/s41401-023-01222-3
[19] Li, Z., Ding, Y., Peng, Y., Yu, J., Pan, C., Cai, Y., et al. (2022) Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Frontiers in Immunology, 13, Article 894002.
https://doi.org/10.3389/fimmu.2022.894002
[20] Pérez, S. and Rius-Pérez, S. (2022) Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants, 11, Article 1394.
https://doi.org/10.3390/antiox11071394
[21] Chung, S., Overstreet, J.M., Li, Y., Wang, Y., Niu, A., Wang, S., et al. (2018) TGF-β Promotes Fibrosis after Severe Acute Kidney Injury by Enhancing Renal Macrophage Infiltration. JCI Insight, 3, e123563.
https://doi.org/10.1172/jci.insight.123563
[22] Zhang, A., Su, J., Sun, H., Liu, Q., Li, R., Zhang, Y., et al. (2024) Stachyose Ameliorates Myocardial Ischemia-Reperfusion Injury by Inhibiting Cardiomyocyte Ferroptosis and Macrophage Pyroptosis. International Immunopharmacology, 143, Article 113334.
https://doi.org/10.1016/j.intimp.2024.113334
[23] Humeres, C., Shinde, A.V., Hanna, A., Alex, L., Hernández, S.C., Li, R., et al. (2022) Smad7 Effects on TGF-β and ErbB2 Restrain Myofibroblast Activation and Protect from Postinfarction Heart Failure. Journal of Clinical Investigation, 132, e146926.
https://doi.org/10.1172/jci146926
[24] Venugopal, H., Hanna, A., Humeres, C. and Frangogiannis, N.G. (2022) Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells, 11, Article 1386.
https://doi.org/10.3390/cells11091386
[25] Zaidi, Y., Aguilar, E.G., Troncoso, M., Ilatovskaya, D.V. and DeLeon-Pennell, K.Y. (2021) Immune Regulation of Cardiac Fibrosis Post Myocardial Infarction. Cellular Signalling, 77, Article 109837.
https://doi.org/10.1016/j.cellsig.2020.109837
[26] Troidl, C., Möllmann, H., Nef, H., Masseli, F., Voss, S., Szardien, S., et al. (2009) Classically and Alternatively Activated Macrophages Contribute to Tissue Remodelling after Myocardial Infarction. Journal of Cellular and Molecular Medicine, 13, 3485-3496.
https://doi.org/10.1111/j.1582-4934.2009.00707.x
[27] Slotabec, L., Seale, B., Wang, H., Wen, C., Filho, F., Rouhi, N., et al. (2024) Platelets at the Intersection of Inflammation and Coagulation in the APC-Mediated Response to Myocardial Ischemia/reperfusion Injury. The FASEB Journal, 38, 1-12.
https://doi.org/10.1096/fj.202401128r
[28] Sánchez-Hernández, C.D., Torres-Alarcón, L.A., González-Cortés, A. and Peón, A.N. (2020) Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators of Inflammation, 2020, 1-13.
https://doi.org/10.1155/2020/8405370
[29] Cruz-Gregorio, A., Amezcua-Guerra, L.M., Fisher-Bautista, B., Romero-Beltrán, A. and Fonseca-Camarillo, G. (2024) The Protective Role of Interleukin-37 in Cardiovascular Diseases through Ferroptosis Modulation. International Journal of Molecular Sciences, 25, Article 9758.
https://doi.org/10.3390/ijms25189758
[30] Li, W., Feng, G., Gauthier, J.M., Lokshina, I., Higashikubo, R., Evans, S., et al. (2019) Ferroptotic Cell Death and TLR4/Trif Signaling Initiate Neutrophil Recruitment after Heart Transplantation. Journal of Clinical Investigation, 129, 2293-2304.
https://doi.org/10.1172/jci126428
[31] Chen, Y., Fang, Z., Yi, X., Wei, X. and Jiang, D. (2023) The Interaction between Ferroptosis and Inflammatory Signaling Pathways. Cell Death & Disease, 14, Article No. 205.
https://doi.org/10.1038/s41419-023-05716-0
[32] Deng, L., Jiang, L., Wei, N., Zhang, J. and Wu, X. (2022) Anesthetic Sevoflurane Simultaneously Regulates Autophagic Flux and Pyroptotic Cell Death-Associated Cellular Inflammation in the Hypoxic/Re-Oxygenated Cardiomyocytes: Identification of Sevoflurane as Putative Drug for the Treatment of Myocardial Ischemia-Reperfusion Injury. European Journal of Pharmacology, 936, Article 175363.
https://doi.org/10.1016/j.ejphar.2022.175363
[33] Lu, N., Cheng, W., Liu, D., Liu, G., Cui, C., Feng, C., et al. (2022) NLRP3-Mediated Inflammation in Atherosclerosis and Associated Therapeutics. Frontiers in Cell and Developmental Biology, 10, Article 823387.
https://doi.org/10.3389/fcell.2022.823387
[34] Luan, F., Rao, Z., Peng, L., Lei, Z., Zeng, J., Peng, X., et al. (2022) Cinnamic Acid Preserves against Myocardial Ischemia/Reperfusion Injury via Suppression of NLRP3/Caspase-1/GSDMD Signaling Pathway. Phytomedicine, 100, Article 154047.
https://doi.org/10.1016/j.phymed.2022.154047
[35] Yu, Y., Que, J., Liu, S., Huang, K., Qian, L., Weng, Y., et al. (2022) Sodium-Glucose Co-Transporter-2 Inhibitor of Dapagliflozin Attenuates Myocardial Ischemia/Reperfusion Injury by Limiting NLRP3 Inflammasome Activation and Modulating Autophagy. Frontiers in Cardiovascular Medicine, 8, Article 768214.
https://doi.org/10.3389/fcvm.2021.768214
[36] Bai, H., Xu, S., Shi, J., Ding, Y., Liu, Q., Jiang, C., et al. (2023) Electroacupuncture Preconditioning Protects against Myocardial Ischemia-Reperfusion Injury by Modulating Dynamic Inflammatory Response. Heliyon, 9, e19396.
https://doi.org/10.1016/j.heliyon.2023.e19396
[37] Mangan, M.S.J., Olhava, E.J., Roush, W.R., Seidel, H.M., Glick, G.D. and Latz, E. (2018) Erratum: Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nature Reviews Drug Discovery, 17, Article No. 688.
https://doi.org/10.1038/nrd.2018.149
[38] Zhou, W., Yang, Y., Feng, Z., Zhang, Y., Chen, Y., Yu, T., et al. (2024) Inhibition of Caspase-1-Dependent Pyroptosis Alleviates Myocardial Ischemia/Reperfusion Injury during Cardiopulmonary Bypass (CPB) in Type 2 Diabetic Rats. Scientific Reports, 14, Article No. 19420.
https://doi.org/10.1038/s41598-024-70477-5
[39] Chai, X., Liang, Z., Zhang, J., Ding, J., Zhang, Q., Lv, S., et al. (2023) Chlorogenic Acid Protects against Myocardial Ischemia-Reperfusion Injury in Mice by Inhibiting Lnc Neat1/NLRP3 Inflammasome-Mediated Pyroptosis. Scientific Reports, 13, Article No. 17803.
https://doi.org/10.1038/s41598-023-45017-2
[40] Sun, F., An, C., Liu, C., Hu, Y., Su, Y., Guo, Z., et al. (2023) FTO Represses NLRP3-Mediated Pyroptosis and Alleviates Myocardial Ischemia-Reperfusion Injury via Inhibiting CBL-Mediated Ubiquitination and Degradation of β-Catenin. The FASEB Journal, 37, e22964.
https://doi.org/10.1096/fj.202201793rr
[41] Zhuang, Y., Yasinta, M., Hu, C., Zhao, M., Ding, G., Bai, M., et al. (2015) Mitochondrial Dysfunction Confers Albumin-Induced NLRP3 Inflammasome Activation and Renal Tubular Injury. American Journal of Physiology-Renal Physiology, 308, F857-F866.
https://doi.org/10.1152/ajprenal.00203.2014
[42] Bassiouni, W., Valencia, R., Mahmud, Z., Seubert, J.M. and Schulz, R. (2023) Matrix Metalloproteinase-2 Proteolyzes Mitofusin-2 and Impairs Mitochondrial Function during Myocardial Ischemia-Reperfusion Injury. Basic Research in Cardiology, 118, Article No. 29.
https://doi.org/10.1007/s00395-023-00999-y
[43] Chen, X., Wang, J., Cheng, S., Wang, Y., Deng, M., Yu, T., et al. (2023) Corrigendum: Diazoxide Post-Conditioning Activates the HIF-1/HRE Pathway to Induce Myocardial Protection in Hypoxic/Reoxygenated Cardiomyocytes. Frontiers in Cardiovascular Medicine, 10, Article 1281995.
https://doi.org/10.3389/fcvm.2023.1281995
[44] Exconde, P.M., Bourne, C.M., Kulkarni, M., Discher, B.M. and Taabazuing, C.Y. (2024) Inflammatory Caspase Substrate Specificities. mBio, 15, e02975-23.
https://doi.org/10.1128/mbio.02975-23
[45] Syed Abd Halim, S.A., Abd Rashid, N., Woon, C.K. and Abdul Jalil, N.A. (2023) Natural Products Targeting PI3K/AKT in Myocardial Ischemic Reperfusion Injury: A Scoping Review. Pharmaceuticals, 16, Article 739.
https://doi.org/10.3390/ph16050739
[46] Wang, J. and Li, J. (2009) Activated Protein C: A Potential Cardioprotective Factor against Ischemic Injury during Ische-mia/Reperfusion. American Journal of Translational Research, 1, 381-392.
[47] Wen, C., Xue, F., Wang, Y., Jin, J. and Liao, X. (2022) Hypercholesterolemia Attenuates Cardioprotection of Ischemic Preconditioning and Postconditioning with Α7 Nicotinic Acetylcholine Receptor Agonist by Enhancing Inflammation and Inhibiting the PI3K/Akt/eNOS Pathway. Experimental and Therapeutic Medicine, 23, Article No. 342.
https://doi.org/10.3892/etm.2022.11272
[48] Han, H., Dong, P. and Liu, K. (2022) The Role of NF-κB in Myocardial Ischemia/Reperfusion Injury. Current Protein & Peptide Science, 23, 535-547.
https://doi.org/10.2174/1389203723666220817085941
[49] Yao, Y., Li, F., Zhang, M., Jin, L., Xie, P., Liu, D., et al. (2022) Targeting Camkii-Δ9 Ameliorates Cardiac Ischemia/Reperfusion Injury by Inhibiting Myocardial Inflammation. Circulation Research, 130, 887-903.
https://doi.org/10.1161/circresaha.121.319478
[50] Gray, C.B.B., Suetomi, T., Xiang, S., Mishra, S., Blackwood, E.A., Glembotski, C.C., et al. (2017) Camkiiδ Subtypes Differentially Regulate Infarct Formation Following Ex Vivo Myocardial Ischemia/reperfusion through NF-κB and TNF-α. Journal of Molecular and Cellular Cardiology, 103, 48-55.
https://doi.org/10.1016/j.yjmcc.2017.01.002
[51] Chang, C., Cai, R., Su, Y., Wu, Q. and Su, Q. (2023) Mesenchymal Stem Cell-Derived Exosomal Noncoding RNAs as Alternative Treatments for Myocardial Ischemia-Reperfusion Injury: Current Status and Future Perspectives. Journal of Cardiovascular Translational Research, 16, 1085-1098.
https://doi.org/10.1007/s12265-023-10401-w
[52] Zhang, S., Li, P., Zhao, L. and Xu, L. (2018) LINC00210 as a miR-328-5p Sponge Promotes Nasopharyngeal Carcinoma Tumorigenesis by Activating NOTCH3 Pathway. Bioscience Reports, 38, BSR20181168.
https://doi.org/10.1042/bsr20181168
[53] Kong, Y., Liang, X., Liu, L., Zhang, D., Wan, C., Gan, Z., et al. (2015) High Throughput Sequencing Identifies Micrornas Mediating Α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson’s Disease Model. PLOS ONE, 10, e0137432.
https://doi.org/10.1371/journal.pone.0137432
[54] Zilun, W., Shuaihua, Q., Jinxuan, Z., Yihai, L., Qiaoling, L., Zhonghai, W., et al. (2020) Corrigendum to miRNA-181a Over-Expression in Mesenchymal Stem Cell-Derived Exosomes Influenced Inflammatory Response after Myocardial Ischemia-Reperfusion Injury. Life Sciences, 256, Article 118045.
https://doi.org/10.1016/j.lfs.2020.118045
[55] Zhao, J., Li, X., Hu, J., Chen, F., Qiao, S., Sun, X., et al. (2019) Mesenchymal Stromal Cell-Derived Exosomes Attenuate Myocardial Ischaemia-Reperfusion Injury through miR-182-Regulated Macrophage Polarization. Cardiovascular Research, 115, 1205-1216.
https://doi.org/10.1093/cvr/cvz040
[56] O’Neill, L.A.J. and Bowie, A.G. (2007) The Family of Five: Tir-Domain-Containing Adaptors in Toll-Like Receptor Signalling. Nature Reviews Immunology, 7, 353-364.
https://doi.org/10.1038/nri2079
[57] Yuan, X., Juan, Z., Zhang, R., Sun, X., Yan, R., Yue, F., et al. (2020) Clemastine Fumarate Protects against Myocardial Ischemia Reperfusion Injury by Activating the TLR4/PI3K/Akt Signaling Pathway. Frontiers in Pharmacology, 11, Article 28.
https://doi.org/10.3389/fphar.2020.00028
[58] Yue, R., Lu, S., Luo, Y., Zeng, J., Liang, H., Qin, D., et al. (2022) Mesenchymal Stem Cell-Derived Exosomal Microrna-182-5p Alleviates Myocardial Ischemia/Reperfusion Injury by Targeting GSDMD in Mice. Cell Death Discovery, 8, Article No. 202.
https://doi.org/10.1038/s41420-022-00909-6
[59] Sun, M., Wang, R., Xia, R., Xia, Z., Wu, Z. and Wang, T. (2022) Amelioration of Myocardial Ischemia/Reperfusion Injury in Diabetes: A Narrative Review of the Mechanisms and Clinical Applications of Dexmedetomidine. Frontiers in Pharmacology, 13, Article 949754.
https://doi.org/10.3389/fphar.2022.949754