[1]
|
Lei, F., Zhang, J., Deng, Y., Wang, X., Tang, J., Tian, J., et al. (2024) Biomimetic Nanoplatform Treats Myocardial Ischemia/Reperfusion Injury by Synergistically Promoting Angiogenesis and Inhibiting Inflammation. Colloids and Surfaces B: Biointerfaces, 243, Article 114159. https://doi.org/10.1016/j.colsurfb.2024.114159
|
[2]
|
Pan, S., Wang, F., Hui, Y., Chen, K., Zhou, L., Gao, W., et al. (2022) Insulin Reduces Pyroptosis-Induced Inflammation by PDHA1 Dephosphorylation-Mediated NLRP3 Activation during Myocardial Ischemia-Reperfusion Injury. Perfusion, 38, 1277-1287. https://doi.org/10.1177/02676591221099807
|
[3]
|
Chen, L., Mao, L., Xue, J., Jian, Y., Deng, Z., Mazhar, M., et al. (2024) Myocardial Ischemia-Reperfusion Injury: The Balance Mechanism between Mitophagy and NLRP3 Inflammasome. Life Sciences, 355, Article 122998. https://doi.org/10.1016/j.lfs.2024.122998
|
[4]
|
Pan, L., Fu, M., Tang, X.L., Ling, Y., Su, Y. and Ge, J. (2024) Kirenol Ameliorates Myocardial Ischemia-Reperfusion Injury by Promoting Mitochondrial Function and Inhibiting Inflammasome Activation. Cardiovascular Drugs and Therapy.
|
[5]
|
Welt, F.G.P., Batchelor, W., Spears, J.R., Penna, C., Pagliaro, P., Ibanez, B., et al. (2024) Reperfusion Injury in Patients with Acute Myocardial Infarction. Journal of the American College of Cardiology, 83, 2196-2213. https://doi.org/10.1016/j.jacc.2024.02.056
|
[6]
|
Xu, X., Li, M., Yu, F., Wei, Q., Liu, Y., Tong, J., et al. (2024) Platelet Membrane Nanocarriers Cascade Targeting Delivery System to Improve Myocardial Remodeling Post Myocardial Ischemia-Reperfusion Injury. Advanced Science, 11, Article 2308727. https://doi.org/10.1002/advs.202308727
|
[7]
|
Xiang, Q., Yi, X., Zhu, X., Wei, X. and Jiang, D. (2024) Regulated Cell Death in Myocardial Ischemia-Reperfusion Injury. Trends in Endocrinology & Metabolism, 35, 219-234. https://doi.org/10.1016/j.tem.2023.10.010
|
[8]
|
Bonaventura, A., Montecucco, F. and Dallegri, F. (2016) Cellular Recruitment in Myocardial Ischaemia/Reperfusion Injury. European Journal of Clinical Investigation, 46, 590-601. https://doi.org/10.1111/eci.12633
|
[9]
|
Tan, H., Li, W., Pang, Z., Weng, X., Gao, J., Chen, J., et al. (2024) Genetically Engineered Macrophages Co-Loaded with CD47 Inhibitors Synergistically Reconstruct Efferocytosis and Improve Cardiac Remodeling Post Myocardial Ischemia Reperfusion Injury. Advanced Healthcare Materials, 13, Article 2303267. https://doi.org/10.1002/adhm.202303267
|
[10]
|
Xu, H., Chen, Y., Xie, P., Lei, T., Liu, K., Liu, X., et al. (2024) Remimazolam Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting the NF-κB Pathway of Macrophage Inflammation. European Journal of Pharmacology, 965, Article 176276. https://doi.org/10.1016/j.ejphar.2023.176276
|
[11]
|
Francisco, J. and Del Re, D.P. (2023) Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants, 12, Article 1944. https://doi.org/10.3390/antiox12111944
|
[12]
|
Dong, H., Jia, W., Wang, C., Teng, D., Xu, B., Ding, X., et al. (2024) Key Subdomains of Mesencephalic Astrocyte-Derived Neurotrophic Factor Attenuate Myocardial Ischemia/Reperfusion Injury by JAK1/STAT1/NF-κB Signaling Pathway. Molecular Medicine, 30, Article No. 139. https://doi.org/10.1186/s10020-024-00916-6
|
[13]
|
Uchikawa, T., Matoba, T., Kawahara, T., Baba, I., Katsuki, S., Koga, J., et al. (2022) Dietary 7-Ketocholesterol Exacerbates Myocardial Ischemia-Reperfusion Injury in Mice through Monocyte/Macrophage-Mediated Inflammation. Scientific Reports, 12, Article No. 14902. https://doi.org/10.1038/s41598-022-19065-z
|
[14]
|
Anzai, A., Choi, J.L., He, S., Fenn, A.M., Nairz, M., Rattik, S., et al. (2017) The Infarcted Myocardium Solicits GM-CSF for the Detrimental Oversupply of Inflammatory Leukocytes. Journal of Experimental Medicine, 214, 3293-3310. https://doi.org/10.1084/jem.20170689
|
[15]
|
Nahrendorf, M., Swirski, F.K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J., et al. (2007) The Healing Myocardium Sequentially Mobilizes Two Monocyte Subsets with Divergent and Complementary Functions. The Journal of Experimental Medicine, 204, 3037-3047. https://doi.org/10.1084/jem.20070885
|
[16]
|
Panizzi, P., Swirski, F.K., Figueiredo, J., Waterman, P., Sosnovik, D.E., Aikawa, E., et al. (2010) Impaired Infarct Healing in Atherosclerotic Mice with Ly-6Chi Monocytosis. Journal of the American College of Cardiology, 55, 1629-1638. https://doi.org/10.1016/j.jacc.2009.08.089
|
[17]
|
Peet, C., Ivetic, A., Bromage, D.I. and Shah, A.M. (2019) Cardiac Monocytes and Macrophages after Myocardial Infarction. Cardiovascular Research, 116, 1101-1112. https://doi.org/10.1093/cvr/cvz336
|
[18]
|
Shen, S., Xu, J., Cheng, C., Xiang, X., Hong, B., Zhang, M., et al. (2024) Macrophages Promote the Transition from Myocardial Ischemia Reperfusion Injury to Cardiac Fibrosis in Mice through GMCSF/CCL2/CCR2 and Phenotype Switching. Acta Pharmacologica Sinica, 45, 959-974. https://doi.org/10.1038/s41401-023-01222-3
|
[19]
|
Li, Z., Ding, Y., Peng, Y., Yu, J., Pan, C., Cai, Y., et al. (2022) Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Frontiers in Immunology, 13, Article 894002. https://doi.org/10.3389/fimmu.2022.894002
|
[20]
|
Pérez, S. and Rius-Pérez, S. (2022) Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants, 11, Article 1394. https://doi.org/10.3390/antiox11071394
|
[21]
|
Chung, S., Overstreet, J.M., Li, Y., Wang, Y., Niu, A., Wang, S., et al. (2018) TGF-β Promotes Fibrosis after Severe Acute Kidney Injury by Enhancing Renal Macrophage Infiltration. JCI Insight, 3, e123563. https://doi.org/10.1172/jci.insight.123563
|
[22]
|
Zhang, A., Su, J., Sun, H., Liu, Q., Li, R., Zhang, Y., et al. (2024) Stachyose Ameliorates Myocardial Ischemia-Reperfusion Injury by Inhibiting Cardiomyocyte Ferroptosis and Macrophage Pyroptosis. International Immunopharmacology, 143, Article 113334. https://doi.org/10.1016/j.intimp.2024.113334
|
[23]
|
Humeres, C., Shinde, A.V., Hanna, A., Alex, L., Hernández, S.C., Li, R., et al. (2022) Smad7 Effects on TGF-β and ErbB2 Restrain Myofibroblast Activation and Protect from Postinfarction Heart Failure. Journal of Clinical Investigation, 132, e146926. https://doi.org/10.1172/jci146926
|
[24]
|
Venugopal, H., Hanna, A., Humeres, C. and Frangogiannis, N.G. (2022) Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells, 11, Article 1386. https://doi.org/10.3390/cells11091386
|
[25]
|
Zaidi, Y., Aguilar, E.G., Troncoso, M., Ilatovskaya, D.V. and DeLeon-Pennell, K.Y. (2021) Immune Regulation of Cardiac Fibrosis Post Myocardial Infarction. Cellular Signalling, 77, Article 109837. https://doi.org/10.1016/j.cellsig.2020.109837
|
[26]
|
Troidl, C., Möllmann, H., Nef, H., Masseli, F., Voss, S., Szardien, S., et al. (2009) Classically and Alternatively Activated Macrophages Contribute to Tissue Remodelling after Myocardial Infarction. Journal of Cellular and Molecular Medicine, 13, 3485-3496. https://doi.org/10.1111/j.1582-4934.2009.00707.x
|
[27]
|
Slotabec, L., Seale, B., Wang, H., Wen, C., Filho, F., Rouhi, N., et al. (2024) Platelets at the Intersection of Inflammation and Coagulation in the APC-Mediated Response to Myocardial Ischemia/reperfusion Injury. The FASEB Journal, 38, 1-12. https://doi.org/10.1096/fj.202401128r
|
[28]
|
Sánchez-Hernández, C.D., Torres-Alarcón, L.A., González-Cortés, A. and Peón, A.N. (2020) Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators of Inflammation, 2020, 1-13. https://doi.org/10.1155/2020/8405370
|
[29]
|
Cruz-Gregorio, A., Amezcua-Guerra, L.M., Fisher-Bautista, B., Romero-Beltrán, A. and Fonseca-Camarillo, G. (2024) The Protective Role of Interleukin-37 in Cardiovascular Diseases through Ferroptosis Modulation. International Journal of Molecular Sciences, 25, Article 9758. https://doi.org/10.3390/ijms25189758
|
[30]
|
Li, W., Feng, G., Gauthier, J.M., Lokshina, I., Higashikubo, R., Evans, S., et al. (2019) Ferroptotic Cell Death and TLR4/Trif Signaling Initiate Neutrophil Recruitment after Heart Transplantation. Journal of Clinical Investigation, 129, 2293-2304. https://doi.org/10.1172/jci126428
|
[31]
|
Chen, Y., Fang, Z., Yi, X., Wei, X. and Jiang, D. (2023) The Interaction between Ferroptosis and Inflammatory Signaling Pathways. Cell Death & Disease, 14, Article No. 205. https://doi.org/10.1038/s41419-023-05716-0
|
[32]
|
Deng, L., Jiang, L., Wei, N., Zhang, J. and Wu, X. (2022) Anesthetic Sevoflurane Simultaneously Regulates Autophagic Flux and Pyroptotic Cell Death-Associated Cellular Inflammation in the Hypoxic/Re-Oxygenated Cardiomyocytes: Identification of Sevoflurane as Putative Drug for the Treatment of Myocardial Ischemia-Reperfusion Injury. European Journal of Pharmacology, 936, Article 175363. https://doi.org/10.1016/j.ejphar.2022.175363
|
[33]
|
Lu, N., Cheng, W., Liu, D., Liu, G., Cui, C., Feng, C., et al. (2022) NLRP3-Mediated Inflammation in Atherosclerosis and Associated Therapeutics. Frontiers in Cell and Developmental Biology, 10, Article 823387. https://doi.org/10.3389/fcell.2022.823387
|
[34]
|
Luan, F., Rao, Z., Peng, L., Lei, Z., Zeng, J., Peng, X., et al. (2022) Cinnamic Acid Preserves against Myocardial Ischemia/Reperfusion Injury via Suppression of NLRP3/Caspase-1/GSDMD Signaling Pathway. Phytomedicine, 100, Article 154047. https://doi.org/10.1016/j.phymed.2022.154047
|
[35]
|
Yu, Y., Que, J., Liu, S., Huang, K., Qian, L., Weng, Y., et al. (2022) Sodium-Glucose Co-Transporter-2 Inhibitor of Dapagliflozin Attenuates Myocardial Ischemia/Reperfusion Injury by Limiting NLRP3 Inflammasome Activation and Modulating Autophagy. Frontiers in Cardiovascular Medicine, 8, Article 768214. https://doi.org/10.3389/fcvm.2021.768214
|
[36]
|
Bai, H., Xu, S., Shi, J., Ding, Y., Liu, Q., Jiang, C., et al. (2023) Electroacupuncture Preconditioning Protects against Myocardial Ischemia-Reperfusion Injury by Modulating Dynamic Inflammatory Response. Heliyon, 9, e19396. https://doi.org/10.1016/j.heliyon.2023.e19396
|
[37]
|
Mangan, M.S.J., Olhava, E.J., Roush, W.R., Seidel, H.M., Glick, G.D. and Latz, E. (2018) Erratum: Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nature Reviews Drug Discovery, 17, Article No. 688. https://doi.org/10.1038/nrd.2018.149
|
[38]
|
Zhou, W., Yang, Y., Feng, Z., Zhang, Y., Chen, Y., Yu, T., et al. (2024) Inhibition of Caspase-1-Dependent Pyroptosis Alleviates Myocardial Ischemia/Reperfusion Injury during Cardiopulmonary Bypass (CPB) in Type 2 Diabetic Rats. Scientific Reports, 14, Article No. 19420. https://doi.org/10.1038/s41598-024-70477-5
|
[39]
|
Chai, X., Liang, Z., Zhang, J., Ding, J., Zhang, Q., Lv, S., et al. (2023) Chlorogenic Acid Protects against Myocardial Ischemia-Reperfusion Injury in Mice by Inhibiting Lnc Neat1/NLRP3 Inflammasome-Mediated Pyroptosis. Scientific Reports, 13, Article No. 17803. https://doi.org/10.1038/s41598-023-45017-2
|
[40]
|
Sun, F., An, C., Liu, C., Hu, Y., Su, Y., Guo, Z., et al. (2023) FTO Represses NLRP3-Mediated Pyroptosis and Alleviates Myocardial Ischemia-Reperfusion Injury via Inhibiting CBL-Mediated Ubiquitination and Degradation of β-Catenin. The FASEB Journal, 37, e22964. https://doi.org/10.1096/fj.202201793rr
|
[41]
|
Zhuang, Y., Yasinta, M., Hu, C., Zhao, M., Ding, G., Bai, M., et al. (2015) Mitochondrial Dysfunction Confers Albumin-Induced NLRP3 Inflammasome Activation and Renal Tubular Injury. American Journal of Physiology-Renal Physiology, 308, F857-F866. https://doi.org/10.1152/ajprenal.00203.2014
|
[42]
|
Bassiouni, W., Valencia, R., Mahmud, Z., Seubert, J.M. and Schulz, R. (2023) Matrix Metalloproteinase-2 Proteolyzes Mitofusin-2 and Impairs Mitochondrial Function during Myocardial Ischemia-Reperfusion Injury. Basic Research in Cardiology, 118, Article No. 29. https://doi.org/10.1007/s00395-023-00999-y
|
[43]
|
Chen, X., Wang, J., Cheng, S., Wang, Y., Deng, M., Yu, T., et al. (2023) Corrigendum: Diazoxide Post-Conditioning Activates the HIF-1/HRE Pathway to Induce Myocardial Protection in Hypoxic/Reoxygenated Cardiomyocytes. Frontiers in Cardiovascular Medicine, 10, Article 1281995. https://doi.org/10.3389/fcvm.2023.1281995
|
[44]
|
Exconde, P.M., Bourne, C.M., Kulkarni, M., Discher, B.M. and Taabazuing, C.Y. (2024) Inflammatory Caspase Substrate Specificities. mBio, 15, e02975-23. https://doi.org/10.1128/mbio.02975-23
|
[45]
|
Syed Abd Halim, S.A., Abd Rashid, N., Woon, C.K. and Abdul Jalil, N.A. (2023) Natural Products Targeting PI3K/AKT in Myocardial Ischemic Reperfusion Injury: A Scoping Review. Pharmaceuticals, 16, Article 739. https://doi.org/10.3390/ph16050739
|
[46]
|
Wang, J. and Li, J. (2009) Activated Protein C: A Potential Cardioprotective Factor against Ischemic Injury during Ische-mia/Reperfusion. American Journal of Translational Research, 1, 381-392.
|
[47]
|
Wen, C., Xue, F., Wang, Y., Jin, J. and Liao, X. (2022) Hypercholesterolemia Attenuates Cardioprotection of Ischemic Preconditioning and Postconditioning with Α7 Nicotinic Acetylcholine Receptor Agonist by Enhancing Inflammation and Inhibiting the PI3K/Akt/eNOS Pathway. Experimental and Therapeutic Medicine, 23, Article No. 342. https://doi.org/10.3892/etm.2022.11272
|
[48]
|
Han, H., Dong, P. and Liu, K. (2022) The Role of NF-κB in Myocardial Ischemia/Reperfusion Injury. Current Protein & Peptide Science, 23, 535-547. https://doi.org/10.2174/1389203723666220817085941
|
[49]
|
Yao, Y., Li, F., Zhang, M., Jin, L., Xie, P., Liu, D., et al. (2022) Targeting Camkii-Δ9 Ameliorates Cardiac Ischemia/Reperfusion Injury by Inhibiting Myocardial Inflammation. Circulation Research, 130, 887-903. https://doi.org/10.1161/circresaha.121.319478
|
[50]
|
Gray, C.B.B., Suetomi, T., Xiang, S., Mishra, S., Blackwood, E.A., Glembotski, C.C., et al. (2017) Camkiiδ Subtypes Differentially Regulate Infarct Formation Following Ex Vivo Myocardial Ischemia/reperfusion through NF-κB and TNF-α. Journal of Molecular and Cellular Cardiology, 103, 48-55. https://doi.org/10.1016/j.yjmcc.2017.01.002
|
[51]
|
Chang, C., Cai, R., Su, Y., Wu, Q. and Su, Q. (2023) Mesenchymal Stem Cell-Derived Exosomal Noncoding RNAs as Alternative Treatments for Myocardial Ischemia-Reperfusion Injury: Current Status and Future Perspectives. Journal of Cardiovascular Translational Research, 16, 1085-1098. https://doi.org/10.1007/s12265-023-10401-w
|
[52]
|
Zhang, S., Li, P., Zhao, L. and Xu, L. (2018) LINC00210 as a miR-328-5p Sponge Promotes Nasopharyngeal Carcinoma Tumorigenesis by Activating NOTCH3 Pathway. Bioscience Reports, 38, BSR20181168. https://doi.org/10.1042/bsr20181168
|
[53]
|
Kong, Y., Liang, X., Liu, L., Zhang, D., Wan, C., Gan, Z., et al. (2015) High Throughput Sequencing Identifies Micrornas Mediating Α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson’s Disease Model. PLOS ONE, 10, e0137432. https://doi.org/10.1371/journal.pone.0137432
|
[54]
|
Zilun, W., Shuaihua, Q., Jinxuan, Z., Yihai, L., Qiaoling, L., Zhonghai, W., et al. (2020) Corrigendum to miRNA-181a Over-Expression in Mesenchymal Stem Cell-Derived Exosomes Influenced Inflammatory Response after Myocardial Ischemia-Reperfusion Injury. Life Sciences, 256, Article 118045. https://doi.org/10.1016/j.lfs.2020.118045
|
[55]
|
Zhao, J., Li, X., Hu, J., Chen, F., Qiao, S., Sun, X., et al. (2019) Mesenchymal Stromal Cell-Derived Exosomes Attenuate Myocardial Ischaemia-Reperfusion Injury through miR-182-Regulated Macrophage Polarization. Cardiovascular Research, 115, 1205-1216. https://doi.org/10.1093/cvr/cvz040
|
[56]
|
O’Neill, L.A.J. and Bowie, A.G. (2007) The Family of Five: Tir-Domain-Containing Adaptors in Toll-Like Receptor Signalling. Nature Reviews Immunology, 7, 353-364. https://doi.org/10.1038/nri2079
|
[57]
|
Yuan, X., Juan, Z., Zhang, R., Sun, X., Yan, R., Yue, F., et al. (2020) Clemastine Fumarate Protects against Myocardial Ischemia Reperfusion Injury by Activating the TLR4/PI3K/Akt Signaling Pathway. Frontiers in Pharmacology, 11, Article 28. https://doi.org/10.3389/fphar.2020.00028
|
[58]
|
Yue, R., Lu, S., Luo, Y., Zeng, J., Liang, H., Qin, D., et al. (2022) Mesenchymal Stem Cell-Derived Exosomal Microrna-182-5p Alleviates Myocardial Ischemia/Reperfusion Injury by Targeting GSDMD in Mice. Cell Death Discovery, 8, Article No. 202. https://doi.org/10.1038/s41420-022-00909-6
|
[59]
|
Sun, M., Wang, R., Xia, R., Xia, Z., Wu, Z. and Wang, T. (2022) Amelioration of Myocardial Ischemia/Reperfusion Injury in Diabetes: A Narrative Review of the Mechanisms and Clinical Applications of Dexmedetomidine. Frontiers in Pharmacology, 13, Article 949754. https://doi.org/10.3389/fphar.2022.949754
|