|
[1]
|
Valdivielso, P., Ramírez-Bueno, A. and Ewald, N. (2014) Current Knowledge of Hypertriglyceridemic Pancreatitis. European Journal of Internal Medicine, 25, 689-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Carr, R.A., Rejowski, B.J., Cote, G.A., Pitt, H.A. and Zyromski, N.J. (2016) Systematic Review of Hypertriglyceridemia-Induced Acute Pancreatitis: A More Virulent Etiology? Pancreatology, 16, 469-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Pothoulakis, I., Paragomi, P., Archibugi, L., Tuft, M., Talukdar, R., Kochhar, R., et al. (2020) Clinical Features of Hypertriglyceridemia-Induced Acute Pancreatitis in an International, Multicenter, Prospective Cohort (APPRENTICE Consortium). Pancreatology, 20, 325-330. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
李华, 张伟, 刘芳, 等. APOC2基因突变致家族性高乳糜微粒血症综合征2例并文献复习[J]. 中华儿科杂志, 2018, 56(9): 697-701.
|
|
[5]
|
Santos-Baez, L.S. and Ginsberg, H.N. (2020) Hypertriglyceridemia—Causes, Significance, and Approaches to Therapy. Frontiers in Endocrinology (Lausanne), 11, Article No. 616. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
张蓉, 刘秉文, 白怀. 中国人内源性高甘油三酯血症与脂蛋白脂酶基因HindⅢ多态性的关系[J]. 中国动脉硬化杂志, 2001, 9(1): 49-52.
|
|
[7]
|
Pantelinac, P. (2009) Changes of Lipoproteins during Insulin Therapy in Diabetes Mellitus Type 1. Medicinski Pregled, 62, 66-69.
|
|
[8]
|
Samuel, V.T. and Shulman, G.I. (2016) The Pathogenesis of Insulin Resistance: Integrating Signaling Pathways and Substrate Flux. Journal of Clinical Investigation, 126, 12-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ali, A.A., Fasen, M., Ng, K. and Shelley, P. (2021) Lipaemic Blood: Alcohol-Induced Acute Hypertriglyceridaemia. BMJ Case Reports, 14, e243167. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Maher, V., Gallagher, J., Agar, R., Griffin, D., Colwell, N., O’Connor, P., et al. (2023) Abbreviated Lipid Guidelines for Clinical Practice: Based on ESC Lipid Guidelines 2019 and ESC Cardiovascular Disease Prevention in Clinical Practice Guidelines 2021. Irish Journal of Medical Science (1971-), 192, 2151-2157. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Alevroudis, I., Kotoulas, S., Tzikas, S. and Vassilikos, V. (2023) Congestion in Heart Failure: From the Secret of a Mummy to Today’s Novel Diagnostic and Therapeutic Approaches: A Comprehensive Review. Journal of Clinical Medicine, 13, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Paquette, M. and Bernard, S. (2022) The Evolving Story of Multifactorial Chylomicronemia Syndrome. Frontiers in Cardiovascular Medicine, 9, Article ID: 886266. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
刘伟, 陈志刚, 王芳, 等. 肥胖与代谢综合征患者高脂血症性胰腺炎的流行病学调查[J]. 中华流行病学杂志, 2023, 44(2): 189-196.
|
|
[14]
|
Yu, B., He, W., He, C., Li, N., Li, J., Zhu, Y., et al. (2020) Low-Molecular-Weight Heparin Combined with Insulin versus Insulin Alone in the Treatment of Hypertriglyceridemic Pancreatitis (LIHTGP Trial): Study Protocol for a Multicenter, Prospective, Single-Blind, Randomized Controlled Trial. Pancreas, 49, 1383-1387. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Biczo, G., Vegh, E.T., Shalbueva, N., Mareninova, O.A., Elperin, J., Lotshaw, E., et al. (2018) Mitochondrial Dysfunction, through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology, 154, 689-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Petersen, O.H., Tepikin, A.V., Gerasimenko, J.V., Gerasimenko, O.V., Sutton, R. and Criddle, D.N. (2009) Fatty Acids, Alcohol and Fatty Acid Ethyl Esters: Toxic Ca2+ Signal Generation and Pancreatitis. Cell Calcium, 45, 634-642. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sutton, R. (2020) Parenchymal Pressure Injury Ca2+ Entry Mechanism in Pancreatitis. Cell Calcium, 88, Article ID: 102208. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Qiu, M., Zhou, X., Zippi, M., Goyal, H., Basharat, Z., Jagielski, M., et al. (2023) Comprehensive Review on the Pathogenesis of Hypertriglyceridaemia-Associated Acute Pancreatitis. Annals of Medicine, 55, Article ID: 2265939. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
杨兴文, 马小芳, 李德红, 等. 不同浓度游离脂肪酸对HA-VSMC增殖活性的影响[J]. 检验医学与临床, 2022, 19(22): 3119-3123.
|
|
[20]
|
Böni-Schnetzler, M., Boller, S., Debray, S., Bouzakri, K., Meier, D.T., Prazak, R., et al. (2009) Free Fatty Acids Induce a Proinflammatory Response in Islets via the Abundantly Expressed Interleukin-1 Receptor I. Endocrinology, 150, 5218-5229. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, Y., Chen, W., Zheng, F., Yu, H. and Wei, K. (2022) Xanthatin Alleviates LPS-Induced Inflammatory Response in RAW264.7 Macrophages by Inhibiting NF-κB, MAPK and STATs Activation. Molecules, 27, Article No. 4603. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chatterjee, S. and More, M. (2023) Cyanobacterial Harmful Algal Bloom Toxin Microcystin and Increased Vibrio Occurrence as Climate-Change-Induced Biological Co-Stressors: Exposure and Disease Outcomes via Their Interaction with Gut-Liver-Brain Axis. Toxins, 15, Article No. 289. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ii, M., Matsunaga, N., Hazeki, K., Nakamura, K., Takashima, K., Seya, T., et al. (2006) A Novel Cyclohexene Derivative, Ethyl (6r)-6-[n-(2-Chloro-4-Fluorophenyl)sulfamoyl]cyclohex-1-Ene-1-Carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling. Molecular Pharmacology, 69, 1288-1295. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
余叶蓉. 胰岛素抵抗状态下高游离脂肪酸血症对血管内皮细胞功能的影响[J]. 中华糖尿病杂志, 2005(4): 313-315.
|
|
[25]
|
张琦, 冯凭. 金芪降糖片对高脂胰岛素抵抗鼠PAI-1和t-PA活性的影响[J]. 天津中医药, 2004, 21(4): 328-331.
|
|
[26]
|
张赵洁, 陈淑娜, 邓联民, 等. 急性胰腺炎患者血脂水平及其临床意义[J]. 深圳中西医结合杂志, 2010, 20(2): 87-90.
|
|
[27]
|
Ross, C.J.D., Liu, G., Kuivenhoven, J.A., Twisk, J., Rip, J., van Dop, W., et al. (2005) Complete Rescue of Lipoprotein Lipase-Deficient Mice by Somatic Gene Transfer of the Naturally Occurring LPLs447x Beneficial Mutation. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 2143-2150. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, Y., Cai, H., Lin, Y., Huang, Z., Zhou, A., Huang, T., et al. (2023) Association of Apolipoprotein A5 Gene Variants with Hyperlipidemic Acute Pancreatitis in Southeastern China. Genetic Testing and Molecular Biomarkers, 27, 284-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Schneider, A., Larusch, J., Sun, X., Aloe, A., Lamb, J., Hawes, R., et al. (2011) Combined Bicarbonate Conductance-Impairing Variants in CFTR and SPINK1 Variants Are Associated with Chronic Pancreatitis in Patients without Cystic Fibrosis. Gastroenterology, 140, 162-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Evans, D. and Beil, F.U. (2007) The D9N, N291S and S447X Variants in the Lipoprotein Lipase (LPL) Gene Are Not Associated with Type III Hyperlipidemia. BMC Medical Genetics, 8, Article No. 56. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
薛红新, 吴丽颖, 李淑玲, 等. 高脂血症性急性胰腺炎与胆源性胰腺炎的临床对比分析[J]. 现代消化及介入诊疗, 2011, 16(1): 9-11.
|
|
[32]
|
Krauß, L.U., Brosig, A., Schlosser, S., Pavel, V., Mehrl, A., Gülow, K., et al. (2023) Therapeutic Plasma Exchange in ICU Patients with Acute Hypertriglyceridemia-Induced Pancreatitis Improves Patient Outcomes. Digestive Diseases, 41, 647-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Greenberg, J.A., Hsu, J., Bawazeer, M., Marshall, J., Friedrich, J.O., Nathens, A., et al. (2016) Clinical Practice Guideline: Management of Acute Pancreatitis. Canadian Journal of Surgery, 59, 128-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
陈俞兵, 周宇, 申屠刚. 胰岛素联合低分子肝素治疗高脂血症性急性胰腺炎的临床效果及安全性分析[J]. 中国中西医结合消化杂志, 2020, 28(5): 370-373.
|
|
[35]
|
Yildirim Şimşir, I., Soyaltin, U.E., Sarer Yürekli, B., Erdoğan, M., Çetinkalp, Ş., Saygili, F., et al. (2019) Therapeutic Plasma Exchange in Hypertriglyceridemic Patients. Turkish Journal of Medical Sciences, 49, 872-878. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
王玉康, 苏俊, 胡炜. 血浆置换联合血液灌流早期强化降脂对高脂血症性急性胰腺炎的作用[J]. 浙江医学, 2019, 41(16): 1731-1735.
|
|
[37]
|
刘晓莉, 廖小凤, 蒋凤英. 高脂血症患者行二重滤过血浆置换治疗的护理[J]. 实用护理杂志, 2002, 18(5): 5-6.
|
|
[38]
|
Damianaki, A., Stambolliu, E., Alexakou, Z. and Petras, D. (2023) Expanding the Potential Therapeutic Options of Hemoperfusion in the Era of Improved Sorbent Biocompatibility. Kidney Research and Clinical Practice, 42, 298-311. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
杨美娟, 陈俏艺, 周韵, 等. CRRT治疗高脂血症重症急性胰腺炎的效果研究[J]. 齐齐哈尔医学院学报, 2020, 41(8): 953-955.
|
|
[40]
|
黄玲, 彭小梅, 唐业莹, 等. 血液灌流与透析滤过治疗重症高脂血症性急性胰腺炎的疗效及护理[J]. 广西医学, 2014(11): 1668-1669, 1672.
|
|
[41]
|
Rhee, E., Kim, H.C., Kim, J.H., Lee, E.Y., Kim, B.J., Kim, E.M., et al. (2019) 2018 Guidelines for the Management of Dyslipidemia. The Korean Journal of Internal Medicine, 34, 723-771. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Foster, G.D., Wyatt, H.R., Hill, J.O., Makris, A.P., Rosenbaum, D.L., Brill, C., et al. (2010) Weight and Metabolic Outcomes after 2 Years on a Low-Carbohydrate versus Low-Fat Diet: a randomized trial. Annals of Internal Medicine, 153, 147-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Grundy, S.M., et al. (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol. Journal of the American College of Cardiology, 73, e285-e350. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Tenenbaum, A. and Fisman, E.Z. (2012) Fibrates Are an Essential Part of Modern Anti-Dyslipidemic Arsenal: Spotlight on Atherogenic Dyslipidemia and Residual Risk Reduction. Cardiovascular Diabetology, 11, Article No. 125. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Sobukawa, Y., Hatta, T., Funaki, D. and Nakatani, E. (2024) Safety of Combined Statin and Fibrate Therapy: Risks of Liver Injury and Acute Kidney Injury in a Cohort Study from the Shizuoka Kokuho Database. Drugs—Real World Outcomes, 11, 317-330. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Witztum, J.L., Gaudet, D., Freedman, S.D., Alexander, V.J., Digenio, A., Williams, K.R., et al. (2019) Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. New England Journal of Medicine, 381, 531-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Carugo, S., Sirtori, C.R., Gelpi, G., Corsini, A., Tokgozoglu, L. and Ruscica, M. (2023) Updates in Small Interfering RNA for the Treatment of Dyslipidemias. Current Atherosclerosis Reports, 25, 805-817. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Dingman, R., Bihorel, S., Gusarova, V., Mendell, J. and Pordy, R. (2024) Evinacumab: Mechanism of Action, Clinical, and Translational Science. Clinical and Translational Science, 17, e13836. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Chan, D.C. and Watts, G.F. (2024) ANGPTL3 and Apoc-III Inhibitors for Treating Hypertriglyceridemia in Context: Horses for Courses? Current Opinion in Lipidology, 35, 101-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Gaudet, D., Méthot, J., Déry, S., Brisson, D., Essiembre, C., Tremblay, G., et al. (2012) Efficacy and Long-Term Safety of Alipogene Tiparvovec (AAV1-LPLS447X) Gene Therapy for Lipoprotein Lipase Deficiency: An Open-Label Trial. Gene Therapy, 20, 361-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
乌日乐, 余双庆, 夏艳, 等. 脂蛋白脂肪酶(LPL)基因缺陷相关疾病与治疗进展[J]. 中国医药导刊, 2024, 26(3): 213-223.
|