宫颈癌筛查方法研究进展
Progress in the Study of Cervical Cancer Screening Methods
DOI: 10.12677/acm.2025.153829, PDF, HTML, XML,    科研立项经费支持
作者: 孙 祺, 苗劲蔚*:首都医科大学附属北京妇产医院(北京妇幼保健院)妇科肿瘤科,北京
关键词: 宫颈癌筛查方法研究进展Cervical Cancer Screening Methods Research Progress
摘要: 宫颈癌是我国最常见的妇科恶性肿瘤,也是一种病因明确且可预防的癌症。宫颈癌筛查在宫颈癌防控中发挥重要作用,随着医疗技术的进步,宫颈癌筛查方法也不断更新发展。宫颈细胞学检查、人乳头瘤病毒检测、阴道镜检查等均为宫颈癌筛查的重要方法,为临床明确病情提供重要参考依据。本文将对目前宫颈癌筛查方法研究进展进行归纳总结,以期为临床工作者的宫颈癌筛查工作提供帮助。
Abstract: Cervical cancer is the most common gynecological malignant tumor in China, and it is also a kind of cancer with clear etiology and can be prevented. Cervical cancer screening plays an important role in the prevention and control of cervical cancer, and with the advancement of medical technology, cervical cancer screening methods are constantly updated and developed. Cervical cytology, human papillomavirus test, colposcopy, etc. are crucial methods for cervical cancer screening, which provide significant references for clinical clarification of the disease. This article will summarize the current research progress of cervical cancer screening methods, in order to provide help for clinical workers in cervical cancer screening.
文章引用:孙祺, 苗劲蔚. 宫颈癌筛查方法研究进展[J]. 临床医学进展, 2025, 15(3): 1989-1998. https://doi.org/10.12677/acm.2025.153829

1. 引言

宫颈癌是女性最常见的妇科恶性肿瘤,发病率及死亡率均位于全球女性癌症的第4位[1]。中国国家癌症中心发布的2022年中国癌症报告数据显示我国宫颈癌的发病率及死亡率仍在上升,并呈现年轻化趋势[2]。宫颈癌病因明确,主要由高危型人乳头瘤病毒(High-Risk Human Papillomavirus, hrHPV)持续感染引起,但早期往往没有特异性临床表现,因此宫颈癌筛查作为二级预防,在宫颈癌防控中起到至关重要的作用。通过宫颈癌筛查,尽早发现宫颈癌前病变和宫颈癌,对宫颈癌前病变给予及时干预和治疗,阻断其进展,对宫颈癌早期诊断和早期治疗可以明显改善宫颈癌患者预后[3]。本文将对目前宫颈癌筛查方法研究进展进行归纳总结,以期为临床工作者的宫颈癌筛查工作提供帮助。

2. 宫颈细胞学检查

1) 巴氏涂片检查

传统的巴氏涂片检查是宫颈细胞学检查的初始方法,通过收集少量宫颈脱落细胞标本铺在载玻片上,经过巴氏染色后置于显微镜下由专业人员阅片并按巴氏分类法诊断。该方法简单无创,检测费用低,曾是宫颈癌主要筛查方式。但存在宫颈细胞从取样器到载玻片转移不充分、细胞分布不均匀,易受血液和黏液影响,以及受检查者主观判断影响等缺点,多项研究显示其敏感性范围为50%~75%,导致较高的假阴性率[4] [5]。并且传统巴氏五级分类对宫颈癌前病变分级不够细致,巴氏涂片检查正逐渐被新的筛查方法替代。

2) 液基薄层细胞学检测

液基薄层细胞学检测通过采集宫颈细胞后将宫颈“细胞刷”贮存于标本瓶内,充分摇匀,制作薄层液基细胞涂片,由专业人员读片后采用TBS (The Bethesda System)分类法进行描述性诊断。该方法弥补了传统巴氏涂片检查的不足,具备细胞结构清晰、背景干净的特点,这使得异常细胞更易于被观察,降低采样不足率[5],显著提升了宫颈病变上皮细胞的检出灵敏度[6] [7]。2023年中国子宫颈癌筛查指南(一)提出虽然细胞学检查检出CIN2+的敏感度较HPV检测低,但因其具有较好的特异性,可以评估即时风险。在农村和资源不足的地区,细胞学检查是一种重要的筛查方法[8]。美国癌症协会2020年指南提出在接种疫苗的人群中,基于细胞学的筛查效率较低,因为异常细胞学的比例较未接种人群减少,未来的宫颈癌筛查建议可能需要纳入HPV疫苗接种状态[9]

3) 人工智能(AI)辅助细胞学检测

基于机器学习算法或深度神经网络算法,通过大量细胞学图像来训练模型,提取细胞特征并模拟学习,从而能够对新的细胞学图像进行分类,识别正常或异常细胞。使用人工智能辅助可以大大降低加工时间、材料和劳动力成本[10]。Wang等研究结果表明,AI辅助细胞学检测具有高灵敏度(90%)和特异度(100%),显著优于传统细胞学检查[11]。一项70万女性参与的前瞻性队列研究[12]发现,AI辅助细胞学系统与人工阅片相比,总符合率为94.7%,灵敏度提高了5.8%。2024年一项研究利用16,056名参与者组成的多中心、回顾性和前瞻性人群数据集,并进行了随机观察性试验,结果表明AI辅助细胞学检测比人工阅片表现出显着更高的特异性和准确性,同时敏感性显着提高了13.3% [13]。Kurita [14]和Yang [15]等也同样认为AI辅助细胞学检测显著提高效率并减轻病理细胞学家的负担。可见AI辅助快速筛查具有巨大的潜力,有望使宫颈癌筛查工作更加准确和高效。

4) DNA倍体分析

DNA倍体分析主要是基于细胞内DNA含量来进行检测,在细胞癌变过程中DNA含量的变化被认为先于细胞形态的改变,精确地测量细胞的DNA含量。DNA倍体分析可实现自动化,具有不受主观因素影响、可重复性好等优势,Guo等发现DNA倍体分析与液基薄层细胞学检测相比,敏感性、特异性、阳性预测值、阴性预测值和漏诊率无显著差异[16]。有学者认为50岁以上女性宫颈常有鳞状上皮萎缩,液基细胞学检测具有较高的假阳性,建议对该年龄段女性联合DNA倍体分析及HPV检测进行初筛[17]。而关春艳等[18]认为倍体分析用颜色深浅反映DNA含量容易受到染液、染色技术、标本处理等影响,倍体分析不可单独用于筛查。2024年发表的一项研究[19]提示DNA倍体分析的特异度、阳性预测值、阴性预测值均低于液基细胞学检测,并且DNA倍体分析与活检病理诊断结果一致性较差,Kappa值仅为0.127。DNA倍体分析的筛查价值仍存在争议,目前尚无法取代液基细胞学检测,可用于液基细胞学判别困难时辅助筛查。

5) 甲基化检测

甲基化是常见的表观遗传学修饰方式,大量研究发现基因启动子甲基化,尤其是宿主抑癌基因的高甲基化状态导致的抑癌基因表达沉默、转录失活与宫颈癌的发生相关。关于不同基因甲基化的研究正广泛开展见表1 [20]-[29]。一项纳入23项研究的荟萃分析表明甲基化检测研究最多的基因是CADM1、FAM19A4、MAL和miR124-2,其对宫颈上皮内瘤变(cervical intraepithelial neoplasia, CIN) 2+检测的合并敏感度和特异度分别为0.68%和0.75% [30]。中国一项前瞻性研究发现PAX1和JAM3甲基化在检测CIN3 +方面优于液基细胞学,在不影响诊断敏感性的情况下,减少了显著转诊至阴道镜检查的次数[26]。《中国子宫颈癌三级规范化防治蓝皮书》指出,DNA甲基化检测技术具有客观、高重复性、与信号放大检测等特性,且具有子宫颈癌早筛较高的特异性与精准性,是一种非常有潜力的子宫颈癌筛查和分流手段[31]。此外甲基化研究还有自取样方式、液体活检方式的开展。但不同基因甲基化检测的判读阈值不同,临床应用缺乏统一标准,2025年中华医学会检验医学分会发布了PAX1联合JAM3双基因甲基化检测的专家共识[32],制定了统一检测流程及质控标准,推动宫颈癌甲基化在实验室检测与临床的规范化应用。

6) p16/Ki-67免疫细胞化学双染检测

Ki-67是细胞增殖标志物,而p16是细胞增殖的负调控因子,如果同时检测到两者表达则表示细胞周期失控和病变[33]。在细胞学初筛为ASC-US/LSIL (Atypical Squamous Cells of Undetermined Significance/Low-grade Squamous Intraepithelial Lesion, ASC-US/LSIL)的人群分流中,一项前瞻性研究[34]纳入529例ASC-US病例和529例LSIL病例比较p16/Ki-67双染检测和HPV检测分流效果,结果表明p16/Ki-67双染检测对CIN2+病变的灵敏度与HPV检测相当或稍低,但特异度更高;同时双染检测在LSIL和年龄 < 30岁的ASCUS女性人群中的高级别病变的阳性预测值显著升高。对于hrHPV初筛阳性人群的分流,双染比细胞学检查灵敏度高,但特异性低[35]。荷兰一项基于人群的子宫颈癌联合筛查队列研究[36]采用宫颈细胞学与hrHPV联合筛查,对1021名HPV阳性且细胞学阴性的女性采用双染进行分流,并与HPV 16/18分型检测的分流方案进行对比,双染显示更高的灵敏度(68.8%比43.8%),其特异度稍低(72.8%比79.4%)。p16/Ki-67疫细胞化学双染检测展现出良好的分流价值,主要用于初筛液基细胞学异常(ASC-US/LSIL)或HPV阳性女性人群的分流。

Table 1. Research on gene methylation in cervical cancer screening

1. 基因甲基化在宫颈癌筛查方向的研究

文献

发表 年份

基因

例数

样本 类型

CIN1 及正常

CIN2

CIN3

宫颈癌

研究结果

Vink等[20]

2023

FAM19A4、miR124-2

1061

宫颈脱 落细胞

690

166

204

1

FAM19A4/miR124-2甲基化在CIN2、CIN3及宫颈癌中的阳性率分别为28%、62%、100%

Kaliff等[21]

2022

FAM19A4、miR124-2

476

宫颈脱 落细胞

415

61

FAM19A4/miR124-2甲基化阳性率在CIN2+中为67%,而在CIN1及以下的女性样本中为28%

Vink等[22]

2021

FAM19A4、miR124-2

979

宫颈脱 落细胞

851

120

8

FAM19A4/miR124-2甲基化分析的CIN3+敏感性为71.3%,特异性为78.3%

Salta等[23]

2021

MAL、FAM19A4、hsa-miR124-2

125

宫颈脱 落细胞

89

34

2

MAL、FAM19A4、hsa-miR124-2甲基化分析的CIN2+敏感性为61.11%,特异性为74.16%

Leffers等[24]

2022

CADM1、MAL

24

血液

24

CADM1和MAL甲基化对宫颈癌的敏感性为83.3%,特异性为95.5%

Molano等[25]

2024

CADM1、MAL、miR124-2

44

自取样 宫颈脱 落细胞

21

4

19

4

miR124-2/MAL甲基化对CIN2+的敏感性和特异性分别为81.8%和47.6%,CADM1的甲基化随病变分级的增加没有显著差异

Chen等[26]

2024

PAX1、JAM3

1851

宫颈脱 落细胞

1522

178

131

20

PAX1、JAM3甲基化对CIN2、CIN3及宫颈癌中的阳性率分别为62.9%、82.4%、100%

Herzog等[27]

2022

DPP6、RALYL、GSX1

506

宫颈脱 落细胞

355

66

62

23

DPP6、RALYL、GSX1甲基化分析对宫颈癌和CIN3的灵敏度分别为100%和78%

Chan等[28]

2024

PAX1、SOX1

403

宫颈脱 落细胞

286

114

3

PAX1、SOX1甲基化分析对CIN2+敏感性分别为73.5%和41.9%,特异性分别为70.3%和83.6%,二者联合效果不如单独PAX1甲基化分析

Sha等[29]

2024

EPB41L3

1396

宫颈脱 落细胞/ 宫颈组织

707

182

281

226

EPB41L3甲基化检测对CIN2+的综合敏感度为67%,特异度为76%

3. HPV检测

1) hrHPV DNA检测

2021年发布的多中心随机临床试验[37]表明,HPV DNA检测是一种有效的初步筛查方法,目前我国宫颈癌筛查策略与国际共识/指南均推荐使用hrHPV DNA检测作为宫颈癌的初筛方法。hrHPV DNA检测具有较高敏感度,但假阳性率较高,并且大部分患者HPV感染呈一过性,多可自然清除。HPV假阳性引起HPV感染人群过度焦虑和恐惧,造成巨大心理负担,并且引起过度检查和诊断,造成医疗资源的浪费[38]。现急需新的检测技术,进一步细化宫颈病变的分层诊断,优化hrHPV阳性患者的分流。

2) HPV E6/E7 mRNA检测

HPV感染宫颈细胞后,会分化为游离型和整合型。HPV E6/E7 mRNA可反映HPV的感染状态,检测阳性提示病毒处于活跃期,HPV已将自身基因整合至宿主细胞中,开始了转录和翻译,是宫颈发生早期病变的特异性标志物[39] [40]。2022年一项纳入2万9千余女性的荟萃分析[41]表明HPV E6/E7 mRNA检测对CIN2+和CIN3+具有相似的横断面敏感性,特异性略高HR-HPV DNA检测。一项纵向前瞻性研究[42]表明HPV mRNA对CIN2+的灵敏度性和特异性分别为96.9%和88.0%,阴性预测值和阳性预测值分别为99.9%和23.6%。检测HPV E6/E7 mRNA的水平能更准确评估病变风险,提高筛查的特异性,降低误诊率,但该检测成本高,时效性差,仍需进一步成本效益分析,评估其卫生经济学效益。

3) HPV E6/E7蛋白检测

HPV E6/E7蛋白是HPV病毒生命周期的主要蛋白,E6蛋白作用于p53,通过影响细胞内多条信号转导通路,使基因突变及外源DNA整合到宿主染色体的概率增大,细胞周期失控;E7蛋白与视网膜母细胞瘤基因蛋白(Retinoblastoma Protein, RB)结合,激活转录因子(Adenovirus E2 Transcription Factor, E2F),使RB-E2F复合体解离,抑制它们的凋亡作用,这些生物学过程导致了肿瘤的发生与发展[43]。2024年一项荟萃分析[44]表明HPV E6/E7蛋白检测的灵敏度和特异度估计范围为54.2%至69.5%,特异度范围为82.8%至99.1%,E6/E7蛋白检测的高特异性支持其用于HPV阳性女性的分流。然而,其敏感度中等,不建议癌蛋白阴性女性进行常规筛查,需要进一步随访。E6/E7蛋白检测仍需进行大规模和纵向研究,明确其诊断及预测价值。

4) HPV病毒载量

多项研究报道[45] [46],hrHPV DNA的载量与宫颈癌变程度相关,对hrHPV DNA定量检测对预判宫颈病变的发展具有指导意义。Malagón等[47]则认为HPV病毒载量的诊断准确性低于其他HPV筛查分流检测的诊断准确性。对于HPV病毒载量的诊断价值目前尚存在争议,该检测也尚未获得宫颈癌筛查指南推荐。

5) HPV自采样检测

女性自己收集阴道样本进行HPV检测,称为HPV自采样检测。自采样是一种安全且简单的方法,就易用性、便利性、隐私性及身心舒适度而言,多项荟萃分析[48] [49]认为自采样是一种高度可接受的宫颈癌筛查样本采集方法。与由医疗机构专业人员进行样本采集相比,hrHPV自采样在增加筛查机会、减缓不舒适感等方面更具有优势。一项纳入72项研究的荟萃分析关于自采样HPV检测接受度研究[48]表明,相较于自采样更喜欢临床医生收集样本的最常见原因是对自采样本缺乏自信。因此人们进行大量研究明确HPV自采样的准确性,Arbyn等[50]认为自身样本的检测与临床医生样本的检测准确性相似;Aarnio等人[51]通过一项随机研究得出自采样与医生采样HPV感染率和组织学中CIN2+和CIN3+检出率相同;Polman [52]的研究也得出相同结论。有研究表明[48]最常见的自采样工具是宫颈拭子,在比较不同自采样工具可接受性的研究中,患者更喜欢宫颈拭子而不是灌洗或宫颈刷等其他工具,但这种偏好可能是由于对宫颈拭子更加熟悉。自采样相较于传统医生采样的方式提高了筛查女性的接受度,但仍有部分女性抗拒阴道操作,为了提高此类人群的筛查率,尿液及月经血HPV检测被逐步探索。2022年一项荟萃分析[53]表明自己收集尿液与临床医生收集的样本相比,尿液自采样显示出相似的临床准确性,表明尿液HPV检测可能是一种不错的替代筛查工具,用于检测宫颈癌前病变。一项研究通过女性月经血进行HPV检测,灵敏度为97.7%,与hrHPV DNA检测的总体一致性为92.7% [54],这种无创自我采样HPV检测是一种很有前途的替代宫颈癌筛查,可避免耻辱感并提高患者参与意愿。但严格的储存和运输条件是尿液及月经血样本一个不可忽视的缺点,目前有干尿斑、干血斑等技术应用使运输更容易[55] [56],提高了尿液、月经血样本检测HPV的可行性。目前多项国际指南均推荐HPV自采样可作为宫颈癌初筛方法,该方法有望在临床进一步广泛应用。

4. 阴道镜检查

1) 光学阴道镜及电子阴道镜

阴道镜检查是宫颈癌筛查异常的重要转诊检查,光学阴道镜主要是利用光学透镜系统来对阴道和宫颈的上皮组织进行放大观察。电子阴道镜是基于电子成像技术,通过一个摄像头来摄取阴道和宫颈的图像,然后将图像信号传输到显示器上进行显示。阴道镜检查由专业人员肉眼观察,或通过醋酸试验、碘染试验来识别下生殖道上皮内病变的大小和位置,进行活检。因此阴道镜检查受检查者主观影响较大,一项回顾性研究[57]以最终宫颈癌手术病理为金标准,评估阴道镜下活检病理的准确性,对CIN2+漏诊率高达10.5%。Wei等[58]研究结果再次证实,阴道镜诊断HSIL+特异度不高,因此传统阴道镜检查需要结合新的科学技术手段来进一步提高诊断效能。

2) 多光谱成像阴道镜

利用不同波长的光对组织进行照射,获取组织在多个光谱波段的反射和吸收信息,通过光谱分析技术处理这些信息,得到组织的光谱特征图像,从而反映组织的生理和病理状态。提高早期病变检测敏感性和特异性。有研究[59]表明,多光谱阴道镜检查更容易区分病理血管的特征,与传统阴道镜相比,其对检测宫颈病变具有更高的灵敏度和特异性。

3) 人工智能电子阴道镜辅助诊断系统

基于深度学习算法,通过对大量阴道镜图像和病理结果的学习训练,使系统能够自动识别和分析阴道镜图像中的病变特征,为医生提供辅助诊断建议。协助医生快速准确识别病变部位,减少漏诊和误诊,提高诊断效率。已有研究显示其在宫颈病变诊断中有较高准确性和应用价值。如Miyagi等[60]研究中,系统检出CIN2+敏感性为95.6%,特异性为83.3%;Hu等研究[61]中,诊断CIN2+的ROC曲线下面积为0.91。但仍需大样本、多中心研究进一步验证。

5. 小结

为响应世界卫生组织提出《加速消除宫颈癌全球战略》,宫颈癌筛查在中国已开展多年。HR-HPV DNA检测因具有较高的灵敏度作为宫颈癌筛查初筛的主要手段,而多数HPV感染为一过性,造成HR-HPV阳性患者巨大心理及经济负担。现急需准确性更高的新兴筛查方法以及对高危HPV感染患者的合理分流策略。分子生物学技术的应用有望进一步提高筛查的准确性和敏感性,例如基因甲基化检测、HPVE6/E7蛋白检测等。人工智能辅助诊断系统可能在未来的筛查中发挥重要作用,提高诊断效率和一致性。此外,自采样等便捷的筛查方式的推广,将提高筛查的覆盖率,尤其是在偏远地区和医疗资源匮乏的地区。总之,宫颈癌筛查对于早期发现和预防宫颈癌至关重要。选择合适的筛查方法或联合应用多种方法,结合个体情况进行个性化筛查,将有助于提高宫颈癌的检出率,降低宫颈癌的发病率和死亡率。同时,不断探索和发展新的筛查技术,将为宫颈癌的防治带来新的希望。

基金项目

北京市卫生健康委员会首都卫生发展科研专项(2022-1G-2112);北京市医院管理中心“登峰”计划(DFL20221201)。

NOTES

*通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2] Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53.
https://doi.org/10.1016/j.jncc.2024.01.006
[3] Quinn, M., Benedet, J., Odicino, F., Maisonneuve, P., Beller, U., Creasman, W., et al. (2006) Carcinoma of the Cervix Uteri. International Journal of Gynecology & Obstetrics, 95, S43-S103.
https://doi.org/10.1016/s0020-7292(06)60030-1
[4] Khakwani, M., Parveen, R. and Azhar, M. (2022) Comparison of PAP Smear and Liquid Based Cytology as a Screening Method for Cervical Carcinoma. Pakistan Journal of Medical Sciences, 38, 1827-1831.
https://doi.org/10.12669/pjms.38.7.5742
[5] Kaban, I., Bacanakgil, B.H. and Koca, S. (2021) The Comparison of Two Methods in Cervical Smear Screening—Which Method Is Better for Smear Adequacy Rates? Ginekologia Polska, 92, 335-338.
https://doi.org/10.5603/gp.a2020.0185
[6] Monsonego, J., Autillo-Touati, A., Bergeron, C., Dachez, R., Liaras, J., Saurel, J., et al. (2001) Liquid-Based Cytology for Primary Cervical Cancer Screening: A Multi-Centre Study. British Journal of Cancer, 84, 360-366.
https://doi.org/10.1054/bjoc.2000.1588
[7] Hashmi, A.A., Naz, S., Ahmed, O., Yaqeen, S.R., Irfan, M., Asif, M.G., et al. (2020) Comparison of Liquid-Based Cytology and Conventional Papanicolaou Smear for Cervical Cancer Screening: An Experience from Pakistan. Cureus, 12, e12293.
https://doi.org/10.7759/cureus.12293
[8] 中国优生科学协会阴道镜和子宫颈病理学分会, 中华医学会妇科肿瘤学分会, 中国抗癌协会妇科肿瘤专业委员会, 等. 中国子宫颈癌筛查指南(一) [J]. 现代妇产科进展, 2023, 32(7): 481-487.
[9] Fontham, E.T.H., Wolf, A.M.D., Church, T.R., Etzioni, R., Flowers, C.R., Herzig, A., et al. (2020) Cervical Cancer Screening for Individuals at Average Risk: 2020 Guideline Update from the American Cancer Society. CA: A Cancer Journal for Clinicians, 70, 321-346.
https://doi.org/10.3322/caac.21628
[10] Holmström, O., Linder, N., Kaingu, H., Mbuuko, N., Mbete, J., Kinyua, F., et al. (2021) Point-of-Care Digital Cytology with Artificial Intelligence for Cervical Cancer Screening in a Resource-Limited Setting. JAMA Network Open, 4, e211740.
https://doi.org/10.1001/jamanetworkopen.2021.1740
[11] Wang, C., Liou, Y., Lin, Y., Chang, C., Chu, P., Lee, Y., et al. (2021) Artificial Intelligence-Assisted Fast Screening Cervical High Grade Squamous Intraepithelial Lesion and Squamous Cell Carcinoma Diagnosis and Treatment Planning. Scientific Reports, 11, Article No. 16244.
https://doi.org/10.1038/s41598-021-95545-y
[12] Bao, H., Sun, X., Zhang, Y., Pang, B., Li, H., Zhou, L., et al. (2020) The Artificial Intelligence‐assisted Cytology Diagnostic System in Large‐Scale Cervical Cancer Screening: A Population‐based Cohort Study of 0.7 Million Women. Cancer Medicine, 9, 6896-6906.
https://doi.org/10.1002/cam4.3296
[13] Wang, J., Yu, Y., Tan, Y., Wan, H., Zheng, N., He, Z., et al. (2024) Artificial Intelligence Enables Precision Diagnosis of Cervical Cytology Grades and Cervical Cancer. Nature Communications, 15, Article No. 4369.
https://doi.org/10.1038/s41467-024-48705-3
[14] Kurita, Y., Meguro, S., Kosugi, I., Enomoto, Y., Kawasaki, H., Kano, T., et al. (2024) Enhancing Cervical Cancer Cytology Screening via Artificial Intelligence Innovation. Scientific Reports, 14, Article No. 19535.
https://doi.org/10.1038/s41598-024-70670-6
[15] Yang, W., Jin, X., Huang, L., Jiang, S., Xu, J., Fu, Y., et al. (2024) Clinical Evaluation of an Artificial Intelligence-Assisted Cytological System among Screening Strategies for a Cervical Cancer High-Risk Population. BMC Cancer, 24, Article No. 776.
https://doi.org/10.1186/s12885-024-12532-y
[16] Guo, Y., Peng, Q., Wang, Y., Li, L., Yi, X., Yan, B., et al. (2021) The Application of DNA Ploidy Analysis in Large-Scale Population Screening for Cervical Cancer. Acta Cytologica, 65, 385-392.
https://doi.org/10.1159/000518052
[17] 李秀萍, 党小雨, 陈燕, 等. DNA倍体分析在50岁以上女性宫颈癌筛查中的意义[J]. 诊断病理学杂志, 2023, 30(8): 802-803, 806.
[18] 关春艳, 董格红, 陈柯霖, 等. HPV阳性女性中宫颈液基细胞学、DNA倍体分析及P16/Ki-67双染检测对宫颈癌前病变的分流效果研究[J]. 标记免疫分析与临床, 2024, 31(6): 1157-1161.
[19] 刘燕翔, 戴欣, 郑玉双, 等. DNA倍体分析、液基细胞学检测对宫颈高危型HPV感染患者分流的应用分析[J]. 标记免疫分析与临床, 2024, 31(8): 1427-1430, 1447.
[20] Vink, F.J., Meijer, C.J.L.M., Hesselink, A.T., Floore, A.N., Lissenberg-Witte, B.I., Bonde, J.H., et al. (2023) FAM19A4/miR124-2 Methylation Testing and Human Papillomavirus (HPV) 16/18 Genotyping in HPV-Positive Women under the Age of 30 Years. Clinical Infectious Diseases, 76, e827-e834.
https://doi.org/10.1093/cid/ciac433
[21] Kaliff, M., Lillsunde Larsson, G., Helenius, G., Karlsson, M.G. and Bergengren, L. (2022) Full Genotyping and FAM19A4/miR124-2 Methylation Analysis in High-Risk Human Papillomavirus-Positive Samples from Women over 30 Years Participating in Cervical Cancer Screening in Örebro, Sweden. PLOS ONE, 17, e0274825.
https://doi.org/10.1371/journal.pone.0274825
[22] Vink, F.J., Lissenberg-Witte, B.I., Meijer, C.J.L.M., Berkhof, J., van Kemenade, F.J., Siebers, A.G., et al. (2021) FAM19A4/miR124-2 Methylation Analysis as a Triage Test for HPV-Positive Women: Cross-Sectional and Longitudinal Data from a Dutch Screening Cohort. Clinical Microbiology and Infection, 27, 125.e1-125.e6.
https://doi.org/10.1016/j.cmi.2020.03.018
[23] Salta, S., Maia‐Moço, L., Estevão‐Pereira, H., Sequeira, J.P., Vieira, R., Bartosch, C., et al. (2021) Performance of DNA Methylation‐Based Biomarkers in the Cervical Cancer Screening Program of Northern Portugal: A Feasibility Study. International Journal of Cancer, 149, 1916-1925.
https://doi.org/10.1002/ijc.33778
[24] Leffers, M., Herbst, J., Kropidlowski, J., Prieske, K., Bohnen, A.L., Peine, S., et al. (2022) Combined Liquid Biopsy Methylation Analysis of CADM1 and MAL in Cervical Cancer Patients. Cancers, 14, Article 3954.
https://doi.org/10.3390/cancers14163954
[25] Molano, M., Machalek, D.A., Tan, G., Garland, S., Balgovind, P., Haqshenas, G., et al. (2024) Performance of CADM1, MAL and miR124-2 Methylation as Triage Markers for Early Detection of Cervical Cancer in Self-Collected and Clinician-Collected Samples: An Exploratory Observational Study in Papua New Guinea. BMJ Open, 14, e081282.
https://doi.org/10.1136/bmjopen-2023-081282
[26] Chen, X., Jin, X., Kong, L., Liou, Y., Liu, P., Dong, Z., et al. (2024) Triage Performance of PAX1m/JAM3m in Opportunistic Cervical Cancer Screening of Non-16/18 Human Papillomavirus-Positive Women: A Multicenter Prospective Study in China. Clinical Epigenetics, 16, Article No. 108.
https://doi.org/10.1186/s13148-024-01731-w
[27] Herzog, C., Sundström, K., Jones, A., Evans, I., Barrett, J.E., Wang, J., et al. (2022) DNA Methylation-Based Detection and Prediction of Cervical Intraepithelial Neoplasia Grade 3 and Invasive Cervical Cancer with the WID™-qCIN Test. Clinical Epigenetics, 14, Article No. 150.
https://doi.org/10.1186/s13148-022-01353-0
[28] Chan, K.K.L., et al. (2025) PAX1/SOX1 DNA Methylation versus Cytology and HPV16/18 Genotyping for the Triage of High-Risk HPV-Positive Women in Cervical Cancer Screening: Retrospective Analysis of Archival Samples. BJOG: An International Journal of Obstetrics and Gynaecology, 132, 197-204.
https://doi.org/10.1111/1471-0528.17965
[29] Sha, Y., Liu, Y., Yang, X., Wang, J., Zhang, R. and Shen, F. (2024) Exploring the Diagnostic Potential of EPB41L3 Methylation in Cervical Cancer and Precancerous Lesions: A Systematic Review and Meta-Analysis. Gynecologic and Obstetric Investigation, 89, 1-10.
https://doi.org/10.1159/000535563
[30] Salta, S., Lobo, J., Magalhães, B., Henrique, R. and Jerónimo, C. (2023) DNA Methylation as a Triage Marker for Colposcopy Referral in HPV-Based Cervical Cancer Screening: A Systematic Review and Meta-Analysis. Clinical Epigenetics, 15, Article No. 125.
https://doi.org/10.1186/s13148-023-01537-2
[31] 陈飞, 王华庆, 赵方辉. 中国子宫颈癌三级规范化防治蓝皮书[M]. 北京: 人民卫生出版社, 2023.
[32] 中国中西医结合学会检验医学专业委员会, 中华医学会检验医学分会, 中国医师协会检验医师分会, 等. 子宫颈癌PAX1联合JAM3双基因甲基化检测流程、报告及临床应用专家共识[J]. 中华检验医学杂志, 2025, 48(2): 192-200.
[33] Reuschenbach, M., Seiz, M., Doeberitz, C.v.K., Vinokurova, S., Duwe, A., Ridder, R., et al. (2011) Evaluation of Cervical Cone Biopsies for Coexpression of P16INK4a and Ki‐67 in Epithelial Cells. International Journal of Cancer, 130, 388-394.
https://doi.org/10.1002/ijc.26017
[34] Bergeron, C., Ikenberg, H., Sideri, M., Denton, K., Bogers, J., Schmidt, D., et al. (2015) Prospective Evaluation of p16/Ki‐67 Dual‐stained Cytology for Managing Women with Abnormal Papanicolaou Cytology: PALMS Study Results. Cancer Cytopathology, 123, 373-381.
https://doi.org/10.1002/cncy.21542
[35] Wright, T.C., Stoler, M.H., Ranger‐Moore, J., Fang, Q., Volkir, P., Safaeian, M., et al. (2021) Clinical Validation of p16/Ki‐67 Dual‐Stained Cytology Triage of HPV‐Positive Women: Results from the impact Trial. International Journal of Cancer, 150, 461-471.
https://doi.org/10.1002/ijc.33812
[36] Uijterwaal, M.H., Polman, N.J., Witte, B.I., van Kemenade, F.J., Rijkaart, D., Berkhof, J., et al. (2014) Triaging HPV‐Positive Women with Normal Cytology by p16/Ki‐67 Dual‐Stained Cytology Testing: Baseline and Longitudinal Data. International Journal of Cancer, 136, 2361-2368.
https://doi.org/10.1002/ijc.29290
[37] Zhang, J., Zhao, Y., Dai, Y., Dang, L., Ma, L., Yang, C., et al. (2021) Effectiveness of High-Risk Human Papillomavirus Testing for Cervical Cancer Screening in China: A Multicenter, Open-Label, Randomized Clinical Trial. JAMA Oncology, 7, 263-270.
https://doi.org/10.1001/jamaoncol.2020.6575
[38] McBride, E., Tatar, O., Rosberger, Z., Rockliffe, L., Marlow, L.A.V., Moss-Morris, R., et al. (2020) Emotional Response to Testing Positive for Human Papillomavirus at Cervical Cancer Screening: A Mixed Method Systematic Review with Meta-Analysis. Health Psychology Review, 15, 395-429.
https://doi.org/10.1080/17437199.2020.1762106
[39] Tjalma, W.A.A. and Depuydt, C.E. (2013) Cervical Cancer Screening: Which HPV Test Should Be Used—l1 or E6/E7? European Journal of Obstetrics & Gynecology and Reproductive Biology, 170, 45-46.
https://doi.org/10.1016/j.ejogrb.2013.06.027
[40] Cuschieri, K. and Wentzensen, N. (2008) Human Papillomavirus mRNA and P16 Detection as Biomarkers for the Improved Diagnosis of Cervical Neoplasia. Cancer Epidemiology, Biomarkers & Prevention, 17, 2536-2545.
https://doi.org/10.1158/1055-9965.epi-08-0306
[41] Arbyn, M., Simon, M., de Sanjosé, S., Clarke, M.A., Poljak, M., Rezhake, R., et al. (2022) Accuracy and Effectiveness of HPV mRNA Testing in Cervical Cancer Screening: A Systematic Review and Meta-Analysis. The Lancet Oncology, 23, 950-960.
https://doi.org/10.1016/s1470-2045(22)00294-7
[42] Granados, R., Duarte, J.A., Luján, D.R., Gutierrez‐Pecharromán, A.M., Solís, I., Molpeceres, L., et al. (2024) RNA Extended Interventional Nucleic Acid Longitudinal Study: Clinical Performance of Aptima Messenger RNA HPV Testing in Cervical Cancer Screening with a 9‐Year Follow‐Up. Cancer Cytopathology, 132, 757-767.
https://doi.org/10.1002/cncy.22895
[43] Singini, M.G., Singh, E., Bradshaw, D., Ramaliba, T., Chen, W.C., Motlhale, M., et al. (2022) Usefulness of High‐Risk HPV Early Oncoprotein (E6 and E7) Serological Markers in the Detection of Cervical Cancer: A Systematic Review and Meta‐Analysis. Journal of Medical Virology, 95, e27900.
https://doi.org/10.1002/jmv.27900
[44] Downham, L., Jaafar, I., Rol, M.L., Nyawira Nyaga, V., Valls, J., Baena, A., et al. (2023) Accuracy of HPV E6/E7 Oncoprotein Tests to Detect High-Grade Cervical Lesions: A Systematic Literature Review and Meta-Analysis. British Journal of Cancer, 130, 517-525.
https://doi.org/10.1038/s41416-023-02490-w
[45] Li, Y., Wang, H., Zhang, Y., Jing, X., Wu, N., Hou, Y., et al. (2020) Correlation between Multi‐Type Human Papillomavirus Infections and Viral Loads and the Cervical Pathological Grade. International Journal of Gynecology & Obstetrics, 152, 96-102.
https://doi.org/10.1002/ijgo.13406
[46] Kim, J., Kim, B.K., Jeon, D., Lee, C.H., Roh, J., Kim, J., et al. (2020) Type-Specific Viral Load and Physical State of HPV Type 16, 18, and 58 as Diagnostic Biomarkers for High-Grade Squamous Intraepithelial Lesions or Cervical Cancer. Cancer Research and Treatment, 52, 396-405.
https://doi.org/10.4143/crt.2019.152
[47] Malagón, T., Louvanto, K., Ramanakumar, A.V., Koushik, A., Coutlée, F. and Franco, E.L. (2019) Viral Load of Human Papillomavirus Types 16/18/31/33/45 as a Predictor of Cervical Intraepithelial Neoplasia and Cancer by Age. Gynecologic Oncology, 155, 245-253.
https://doi.org/10.1016/j.ygyno.2019.09.010
[48] Nishimura, H., Yeh, P.T., Oguntade, H., Kennedy, C.E. and Narasimhan, M. (2021) HPV Self-Sampling for Cervical Cancer Screening: A Systematic Review of Values and Preferences. BMJ Global Health, 6, e003743.
https://doi.org/10.1136/bmjgh-2020-003743
[49] Nelson, E.J., Maynard, B.R., Loux, T., Fatla, J., Gordon, R. and Arnold, L.D. (2016) The Acceptability of Self-Sampled Screening for HPV DNA: A Systematic Review and Meta-analysis. Sexually Transmitted Infections, 93, 56-61.
https://doi.org/10.1136/sextrans-2016-052609
[50] Arbyn, M., Smith, S.B., Temin, S., Sultana, F. and Castle, P. (2018) Detecting Cervical Precancer and Reaching Underscreened Women by Using HPV Testing on Self Samples: Updated Meta-Analyses. BMJ, 363, k4823.
https://doi.org/10.1136/bmj.k4823
[51] Aarnio, R., Isacson, I., Sanner, K., Gustavsson, I., Gyllensten, U. and Olovsson, M. (2021) Comparison of Vaginal Self‐sampling and Cervical Sampling by Medical Professionals for the Detection of HPV and CIN2+: A Randomized Study. International Journal of Cancer, 148, 3051-3059.
https://doi.org/10.1002/ijc.33482
[52] Polman, N.J., Ebisch, R.M.F., Heideman, D.A.M., Melchers, W.J.G., Bekkers, R.L.M., Molijn, A.C., et al. (2019) Performance of Human Papillomavirus Testing on Self-Collected versus Clinician-Collected Samples for the Detection of Cervical Intraepithelial Neoplasia of Grade 2 or Worse: A Randomised, Paired Screen-Positive, Non-Inferiority Trial. The Lancet Oncology, 20, 229-238.
https://doi.org/10.1016/s1470-2045(18)30763-0
[53] Cho, H., Shim, S.R., Lee, J.K. and Hong, J.H. (2022) Accuracy of Human Papillomavirus Tests on Self-Collected Urine versus Clinician-Collected Samples for the Detection of Cervical Precancer: A Systematic Review and Meta-Analysis. Journal of Gynecologic Oncology, 33, e4.
https://doi.org/10.3802/jgo.2022.33.e4
[54] Zhang, J., Tian, X., Chen, Y., Huang, S., Cui, Z., Tian, R., et al. (2021) Feasibility and Accuracy of Menstrual Blood Testing for High-Risk Human Papillomavirus Detection with Capture Sequencing. JAMA Network Open, 4, e2140644.
https://doi.org/10.1001/jamanetworkopen.2021.40644
[55] 何昕珈, 李之薇, 徐静, 等. 尿液检测在宫颈癌筛查与HPV疫苗监测中的研究进展[J]. 现代妇产科进展, 2024, 33(7): 556-558, 560.
[56] Naseri, S., Young, S., Cruz, G. and Blumenthal, P.D. (2022) Screening for High-Risk Human Papillomavirus Using Passive, Self-Collected Menstrual Blood. Obstetrics & Gynecology, 140, 470-476.
https://doi.org/10.1097/aog.0000000000004904
[57] Stuebs, F.A., Schulmeyer, C.E., Mehlhorn, G., Gass, P., Kehl, S., Renner, S.K., et al. (2018) Accuracy of Colposcopy-Directed Biopsy in Detecting Early Cervical Neoplasia: A Retrospective Study. Archives of Gynecology and Obstetrics, 299, 525-532.
https://doi.org/10.1007/s00404-018-4953-8
[58] Wei, B., Zhang, B., Xue, P., Seery, S., Wang, J., Li, Q., et al. (2022) Improving Colposcopic Accuracy for Cervical Precancer Detection: A Retrospective Multicenter Study in China. BMC Cancer, 22, Article No. 388.
https://doi.org/10.1186/s12885-022-09498-0
[59] Yu, W., Long, C., Zhu, T., Zhu, H., Han, Z. and Li, F. (2020) High Resolution Multispectral Endoscopy Significantly Improves the Diagnostic Accuracy of Cervical Intraepithelial Lesions. Journal of Obstetrics and Gynaecology Research, 46, 939-944.
https://doi.org/10.1111/jog.14241
[60] Miyagi, Y., Takehara, K., Nagayasu, Y. and Miyake, T. (2019) Application of Deep Learning to the Classification of Uterine Cervical Squamous Epithelial Lesion from Colposcopy Images Combined with HPV Types. Oncology Letters, 19, 1602-1610.
https://doi.org/10.3892/ol.2019.11214
[61] Hu, L.M., et al. (2019) An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. Journal of the National Cancer Institute, 111, 923-932.