微孔生物炭强化混合基质膜分离CO2性能
The CO2 Separation Performance of Mixed Matrix Membranes Enhanced by Microporous Biochar
DOI: 10.12677/se.2025.151001, PDF, HTML, XML,    科研立项经费支持
作者: 邵音子, 费希同, 黄雅玲, 庄鑫恒, 喻 婕, 张学杨*:徐州工程学院环境工程学院,江苏 徐州
关键词: 微孔生物炭Pebax 1657混合基质膜碳捕集Microporous Biochar Pebax 1657 Mixed Matrix Membrane Carbon Capture
摘要: 我国是农业大国,作为农业生产中的副产物,秸秆年产量巨大,提高秸秆的高值化利用将有利于农业生产的可持续发展。本研究以小麦秸秆为原材料制备了秸秆生物炭,使用小麦秸秆生物炭和Pebax 1657制备了混合基质膜,研究了该混合基质膜分离CO2的性能。研究表明,小麦秸秆生物炭具有高比表面积、丰富的微孔结构以及较为丰富的官能团。Pebax 1657中掺杂4 wt%小麦秸秆生物炭所制备的混合基质膜具有最佳的CO2分离性能,CO2分离渗透系数和选择性分别为106.5 Barrer和74.8,相比未掺杂前的纯Pebax 1657膜分别提升了34.0%和18.0%。
Abstract: China is an agricultural country, and straw, as a by-product of agricultural production, has a substantial annual output. Enhancing the high-value utilization of straw will contribute to the sustainable development of agricultural production. In this study, wheat straw biochar was prepared from wheat straw, and a mixed matrix membrane was prepared with wheat straw biochar and Pebax 1657. The performance of mixed matrix membranes for separating CO2 was investigated. The results indicated that wheat straw biochar has high specific surface area, rich microporous structure, and abundant functional groups. The mixed matrix membrane prepared with 4 wt% wheat straw biochar doped in Pebax 1657 exhibited the best CO2 separation performance. The CO2 separation permeation coefficient and selectivity were 106.5 Barrer and 74.8, respectively, which were 34.0% and 18.0% higher than the pure Pebax 1657 membrane before doping, respectively.
文章引用:邵音子, 费希同, 黄雅玲, 庄鑫恒, 喻婕, 张学杨. 微孔生物炭强化混合基质膜分离CO2性能[J]. 可持续能源, 2025, 15(1): 1-8. https://doi.org/10.12677/se.2025.151001

1. 引言

小麦是我国三大粮食作物之一,产量仅次于水稻和玉米,常年占我国粮食总产量的20%,小麦秸秆的年产量巨大,因此如何高价值利用秸秆是一项关系到农业可持续发展的重要课题[1]。将小麦秸秆热解制成生物炭应用于环境污染治理是目前高价值利用的重要方法之一。小麦秸秆生物炭因其官能团丰富、孔隙结构发达、造价低廉等优点已经被广泛应用于环境污染治理等领域[2] [3]。Qi等人[4]以小麦秸秆为原材料制备了一种新型微波生物炭,该生物炭对Pb²⁺、Cd²⁺和Cu²⁺的最大吸附容量分别为139.44 mg/g、52.92 mg/g和31.25 mg/g,在去除废水中重金属方面具有优异的潜力。Cao等人[5]评价了秸秆等多种生物炭吸附CO2的性能,研究发现小麦秸秆生物炭在25℃对CO2的吸附量约为30 mg/g,且在10次吸附–解吸循环中仍维持在96.87%以上的性能。Qi等人[6]研究了化学改性球磨小麦生物炭吸附挥发性有机物,研究发现WS600-O和WS600-N对VOCs的吸附能力分别为90.99~98.57 mg/g和94.07~102.26 mg/g,是一种具有潜力的VOCs吸附剂。当前,由于CO2大量排放造成的温室效应引起了世界各国的关注,为了应对温室效应,我国提出了“碳达峰、碳中和”的战略目标。在此背景下,各种CO2减排技术的开发成为了研究重点,其中膜分离法被认为是最有潜力的CO2减排技术之一。利用小麦秸秆生物炭的多孔性质和丰富的表面官能团,提升膜分离CO2的性能,也将拓展秸秆生物炭的资源化利用途径。

混合基质膜(MMMs)是一种优异的气体分离膜,由连续相和分散相组成[7]。Pebax 1657是一种优异的MMMs连续相,由40%的PA和60%的PEO所组成[8]。MMMs的填料主要有沸石分子筛[9]、MXene [10]、石墨烯[11]、金属有机框架[12]、碳纳米管[13]等材料。Ajebe等人[14]研究了一种MXene和UiO-66结合到Pebax 1657中的MMMs,研究发现掺入5 wt%的UiO-66和5 wt%的MXene纳米片的MMMs表现出优异的气体分离性能,CO2渗透系数为214.6 Barrer,CO2/N2选择性为102。Wang等人[15]研究了一种多功能化的MCNs掺入Pebax 1657制成的MMMs分离CO2,研究发现在潮湿条件下,MfMCNs/Pebax-1.0 wt%混合基质膜CO2的渗透系数和选择性分别为287.72 Barrer和79.1,与Pebax膜相比,CO2的渗透系数提高了62.9%,选择性提高了33.84%。Habib等人[16]研究了一种NOTT-300掺入Pebax 1657制成的MMMs,研究发现优化后的膜表现出了395 Barrer的CO2渗透系数,以及分别为61和36的CO2/N2和CO2/CH4选择性。

有文献指出,微孔材料对于气体分离非常重要,微孔材料的小孔径接近气体分子的动力学直径,这有利于在膜中实现尺寸选择性分离[17]。Wang等人[18]研究了一种微孔碳纳米球/Pebax 1657 MMMs,研究发现当填料浓度为0.5 wt%时MMMs表现出最佳的选择性,与原始的纯Pebax 1657膜相比提高了39.51%。Li等人[19]利用中微孔结构的吡嗪基氮掺杂多孔碳提高Pebax混合基质膜对CO2的分离性能,该研究实现了457 Barrer的CO2渗透系数和64.7的选择性。

综上,为了提高生物质资源化水平和膜法分离CO2的性能,本研究以小麦秸秆为原料制备了微孔生物炭,并将其与Pebax 1657共混制备成MMMs。研究了微孔生物炭和MMMs的特性,并在25℃、0.2 MPa下研究了MMMs对CO2和N2的分离性能。

2. 材料和方法

2.1. 实验材料

小麦秸秆,产自徐州市某处农田;Pebax 1657,商品级,由法国Arkema公司提供;溴化钾,≥99.5%,光谱纯,由上海阿拉丁生化科技股份有限公司提供;无水乙醇,分析纯,由西陇科学股份有限公司提供;高纯氩气、高纯氮气、高纯二氧化碳,均由徐州市特种气体厂提供;去离子水,实验室自制。

2.2. 混合基质膜的合成

小麦秸秆热解3 h制备成生物炭,将其碾碎过200目筛记为WB备用。取0.4 g Pebax 1657置于乙醇和去离子水以质量比为7:3混合的溶液中,然后将混合物在80℃水浴锅中搅拌2 h得到混合溶液。接着取0.008 g和0.016 g的WB掺入混合溶液中,继续在80℃水浴锅中搅拌1 h后将其倒入聚四氟乙烯环形模具中,在室温下冷却定型12 h后移入25℃恒温鼓风烘干箱中12 h,然后放入35℃真空烘干箱继续干燥24 h进一步去除水分得到MMMs,根据掺杂质量比2%和4%将所得的MMMs分别记为WB2和WB4。

2.3. 材料表征及性能测试方法

使用元素分析仪(Elementar Vario Macro Cube,德国元素)测定WB的C、H、N和S元素的含量。使用热重分析仪(TGA/DSC 3+,梅特勒托利多)测定样品灰分。WB在150℃真空脱气2 h后使用孔径与比表面积分析仪(kuboX1000,北京彼奥德)测试样品N2吸附脱附曲线,并使用Brunauer- Emmett-Teller理论与Density-Functional-Theory理论分别计算生物炭的比表面积和孔径分布。使用纳米粒度及Zeta电位分析仪(Litesizer 500,安东帕)测量样品在水溶液中的Zeta电位;利用傅里叶变换红外光谱仪(Spotlight 400,珀金埃尔默)以KBr压片法和ATR法分别测试原材料和MMMs在650~4000 cm1波段的傅里叶红外光谱。使用全自动显微镜共焦拉曼光谱仪(HORIBA Xplora Plus,堀场)测试原材料的拉曼光谱。使用压差法气体透过率测试仪(SMT-275,济南思克)在25℃恒温条件下以高纯氦气为动力气源测试MMMs的CO2和N2渗透系数。

3. 结果与讨论

3.1. 填料表征

生物炭的理化性质如表1所示,小麦秸秆生物炭的N、C、H、S、O含量分别为1.34%、63.96%、1.94%、0.61%、7.91%,O/C比为0.12。与文献报道中大豆秸秆生物炭(SS)和玉米秸秆生物炭(CS)相比,小麦秸秆生物炭的N元素含量相对较少,O/C比相对较低,灰分含量相对较高。

Table 1. Physicochemical properties of biochar

1. 生物炭的理化性质

Materials

N (%)

C (%)

H (%)

S (%)

O (%)

O/C

Ash (%)

Ref.

WB

1.34

63.96

1.94

0.61

7.91

0.12

24.24

This work

SS

1.60

79.41

1.90

-

10.38

0.13

6.71

[5]

CS

1.41

75.42

2.36

-

10.30

0.14

10.51

[5]

Figure 1. (A) Nitrogen absorption and desorption curve of WB and pore size distribution; (B) Zeta potential distribution; (C) FTIR spectra; (D) Raman spectrum

1. (A) WB的氮气吸脱附曲线与孔径分布;(B) Zeta电位分布;(C) 傅里叶红外光谱;(D) 拉曼光谱

WB的氮气吸脱附曲线与孔径分布如图1(A)所示,WB的比表面积(SSA)、总孔容(PV)和微孔孔容(MPV)分别为52.20 m2/g、0.079 cm3/g和0.022 cm3/g。WB的氮气吸脱附曲线为II型等温线,在低压端曲线偏向Y轴说明材料中存在微孔。WB的孔径分布曲线进一步表明小麦秸秆生物炭存在<2 nm的微孔。Zeta电位分布曲线(图1(B))表明,WB的平均Zeta电位为−33.27 mV,颗粒的Zeta电位反映颗粒间的静电斥力,WB的平均Zeta电位的绝对值大于30 mV,表明WB在纯水中相对稳定。有研究表明,在纯水中稳定性较高的填料可以有效提升MMMs的铸膜质量[20]

WB的傅里叶变换红外光谱(图1(C))表明,小麦秸秆生物炭有-OH (3436 cm1)、-C-H (2922 cm1、2851 cm1)、C=O (1630 cm1)、C-OH (1117 cm1)等丰富的官能团,这与大部分研究结果相一致[21] [22]。有研究表明,填料表面上的含氧官能团可以与Pebax链之间形成强氢键,此外丰富的含氧官能团也可以提高CO2的亲和力,从而提高气体分离性能[23]。WB的拉曼光谱(图1(D))可以观察到小麦秸秆生物炭具有明显的拉曼光谱峰D峰(1323 cm1)和G峰(1576 cm1)。D峰代表无定形的碳,G峰代表石墨化的碳,ID/IG的比值能够反映碳材料的缺陷程度,比值越高说明材料的无序度越大、缺陷越多[24],WB的ID/IG为0.82,表明小麦秸秆生物炭存在缺陷。

3.2. 混合基质膜表征

MMMs的傅里叶变换红外光谱(图2)显示,WB2和WB4均有丰富的官能团。随着小麦秸秆生物炭掺杂量的增加,MMMs并没有产生新的官能团。与文献中纯Pebax 1657膜的傅里叶红外光谱基本保持一致,这表明在混合基质膜中,小麦秸秆生物炭与Pebax 1657之间未发生化学反应,为物理共混[25]

Figure 2. MMMs FTIR spectra

2. MMMs傅里叶红外光谱

3.3. 混合基质膜气体分离性能

测试MMMs对二氧化碳的渗透性能,发现WB2和WB4的二氧化碳渗透系数分别为98.47 Barrer和106.5 Barrer,相比纯Pebax 1657膜的79.45 Barrer分别提高了19.3%和34.0%。对二氧化碳渗透系数与MMMs中小麦秸秆生物炭的掺杂量进行线性相关分析,结果如图3(A)所示,渗透系数与掺杂量呈现较好的线性关系,R2 ≈ 0.95。WB2和WB4的选择性分别为65.6和74.8,相比纯Pebax 1657膜的63.4提升了3.5%和18.0%。对二氧化碳选择性与MMMs中小麦秸秆生物炭的掺杂量进行线性相关分析,结果如图3(B)所示,选择性与掺杂量呈现较好的线性关系,R2 ≈ 0.89。

Figure 3. (A) Carbon dioxide permeability coefficient of MMMs; (B)Selectivity

3. (A) MMMs二氧化碳渗透系数;(B) 选择性

MMMs气体分离性能和其他文献的比较(表2)可见,本研究制备的MMMs在低填料浓度下实现了较高的气体分离性能。在实际应用中,一方面低廉的填料价格和较少的填料浓度可以降低生产成本,另一方面较高的CO2渗透系数和选择性可以提高生产效率和质量。

Table 2. Comparison of gas separation performance of MMMs with other literatures

2. MMMs气体分离性能和其他文献的比较

Filler

Concentration

CO2 permeability coefficient

Selectivity

Separated gas

Ref.

MIL-53

10%

129.0 Barrer

59.4

CO2/N2

[26]

NH2-MIL-53

10%

149.1 Barrer

55.5

CO2/N2

[26]

ZIF-8

30%

125.6 Barrer

44.9

CO2/N2

[27]

Cu(Qc)2

3%

102 Barrer

84

CO2/N2

[25]

MIL-101

15%

70.9 Barrer

46.9

CO2/N2

[28]

MIL101-OH

15%

106.6 Barrer

44.80

CO2/N2

[29]

-

0%

79.45 Barrer

63.4

CO2/N2

This work

WB

2%

98.47 Barrer

65.6

CO2/N2

This work

WB

4%

106.5 Barrer

74.8

CO2/N2

This work

4. 结论

为实现秸秆资源化,本文通过热解法制备了小麦秸秆生物炭,将其掺入Pebax 1657中制成不同浓度的混合基质膜。研究表明,小麦秸秆生物炭具有较高的比表面积和丰富的微孔结构,此外还具有相对丰富的表面官能团。此外,小麦秸秆生物炭的Zeta电位绝对值大于30 mV,在水中具有良好的稳定性,可以有效提升铸膜质量。气体分离性能测试表明,小麦秸秆生物炭的掺入有利于提升混合基质膜的二氧化碳渗透系数以及选择性。其中,WB4的性能最好,二氧化碳渗透系数(106.5 Barrer)相比纯Pebax 1657膜的79.45 Barrer提升了34.0%,选择性(74.8)相比纯Pebax 1657膜的63.4提升了18.0%。此外,低填料添加浓度和低廉的填料价格使其具有较高的商业化应用潜力。

基金项目

江苏省大学生创新创业训练计划项目(xcx2024117)。

NOTES

*通讯作者。

参考文献

[1] 王森培, 赵颖文, 许钰莎, 等. 中国小麦生产布局变迁及区域比较优势研究[J]. 中国食物与营养, 2025, 31(2): 20-26.
[2] Tan, X., Zhu, S., Wang, R., Chen, Y., Show, P., Zhang, F., et al. (2021) Role of Biochar Surface Characteristics in the Adsorption of Aromatic Compounds: Pore Structure and Functional Groups. Chinese Chemical Letters, 32, 2939-2946.
https://doi.org/10.1016/j.cclet.2021.04.059
[3] Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., et al. (2021) An Overview on Engineering the Surface Area and Porosity of Biochar. Science of the Total Environment, 763, Article ID: 144204.
https://doi.org/10.1016/j.scitotenv.2020.144204
[4] Qi, G., Pan, Z., Zhang, X., Chang, S., Wang, H., Wang, M., et al. (2023) Microwave Biochar Produced with Activated Carbon Catalyst: Characterization and Adsorption of Heavy Metals. Environmental Research, 216, Article ID: 114732.
https://doi.org/10.1016/j.envres.2022.114732
[5] Cao, L., Zhang, X., Xu, Y., Xiang, W., Wang, R., Ding, F., et al. (2022) Straw and Wood Based Biochar for CO2 Capture: Adsorption Performance and Governing Mechanisms. Separation and Purification Technology, 287, Article ID: 120592.
https://doi.org/10.1016/j.seppur.2022.120592
[6] Qi, G., Pan, Z., Zhang, X., Miao, X., Xiang, W. and Gao, B. (2022) Effect of Ball Milling with Hydrogen Peroxide or Ammonia Hydroxide on Sorption Performance of Volatile Organic Compounds by Biochar from Different Pyrolysis Temperatures. Chemical Engineering Journal, 450, Article ID: 138027.
https://doi.org/10.1016/j.cej.2022.138027
[7] Kamble, A.R., Patel, C.M. and Murthy, Z.V.P. (2021) A Review on the Recent Advances in Mixed Matrix Membranes for Gas Separation Processes. Renewable and Sustainable Energy Reviews, 145, Article ID: 111062.
https://doi.org/10.1016/j.rser.2021.111062
[8] Meshkat, S., Kaliaguine, S. and Rodrigue, D. (2020) Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 Mixed Matrix Membranes for CO2 Separation. Separation and Purification Technology, 235, Article ID: 116150.
https://doi.org/10.1016/j.seppur.2019.116150
[9] Ebadi, R., Maghsoudi, H. and Babaluo, A.A. (2021) Fabrication and Characterization of Pebax-1657 Mixed Matrix Membrane Loaded with Si-CHA Zeolite for CO2 Separation from CH4. Journal of Natural Gas Science and Engineering, 90, Article ID: 103947.
https://doi.org/10.1016/j.jngse.2021.103947
[10] Shi, F., Sun, J., Wang, J., Liu, M., Yan, Z., Zhu, B., et al. (2021) MXene versus Graphene Oxide: Investigation on the Effects of 2D Nanosheets in Mixed Matrix Membranes for CO2 Separation. Journal of Membrane Science, 620, Article ID: 118850.
https://doi.org/10.1016/j.memsci.2020.118850
[11] Pazani, F. and Aroujalian, A. (2020) Enhanced CO2-Selective Behavior of Pebax-1657: A Comparative Study between the Influence of Graphene-Based Fillers. Polymer Testing, 81, Article ID: 106264.
https://doi.org/10.1016/j.polymertesting.2019.106264
[12] Sarmadi, R., Salimi, M. and Pirouzfar, V. (2020) The Assessment of Honeycomb Structure UiO-66 and Amino Functionalized UiO-66 Metal-Organic Frameworks to Modify the Morphology and Performance of Pebax®1657-Based Gas Separation Membranes for CO2 Capture Applications. Environmental Science and Pollution Research, 27, 40618-40632.
https://doi.org/10.1007/s11356-020-09927-2
[13] Vasileiou, A.N., Theodorakopoulos, G.V., Karousos, D.S., Bouroushian, M., Sapalidis, A.A. and Favvas, E.P. (2023) Nanocarbon-Based Mixed Matrix Pebax-1657 Flat Sheet Membranes for CO2/CH4 Separation. Membranes, 13, Article No. 470.
https://doi.org/10.3390/membranes13050470
[14] Ajebe, E.G., Hu, C., Wang, C., Hung, W., Tsai, H., Hundessa, N.K., et al. (2024) Synergistic Effect of Combining UiO-66 Nanoparticles and MXene Nanosheets in Pebax Mixed-Matrix Membranes for CO2 Capture. Materials Today Sustainability, 26, Article ID: 100818.
https://doi.org/10.1016/j.mtsust.2024.100818
[15] Wang, H., Yang, X., Dai, Y., Yu, M., Zheng, W., Ruan, X., et al. (2024) Multi-Functionalized MCNs Effectively Improve the Interfacial Compatibility of Mixed Matrix Membranes and Enhance CO2 Separation Performance. Separation and Purification Technology, 333, Article ID: 125923.
https://doi.org/10.1016/j.seppur.2023.125923
[16] Habib, N., Shamair, Z., Tara, N., Nizami, A., Akhtar, F.H., Ahmad, N.M., et al. (2020) Development of Highly Permeable and Selective Mixed Matrix Membranes Based on Pebax®1657 and NOTT-300 for CO2 Capture. Separation and Purification Technology, 234, Article ID: 116101.
https://doi.org/10.1016/j.seppur.2019.116101
[17] Cheng, Y., Ying, Y., Japip, S., Jiang, S., Chung, T., Zhang, S., et al. (2018) Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 30, Article ID: 1802401.
https://doi.org/10.1002/adma.201802401
[18] Wang, H., Zheng, W., Yang, X., Ning, M., Li, X., Xi, Y., et al. (2021) Pebax-Based Mixed Matrix Membranes Derived from Microporous Carbon Nanospheres for Permeable and Selective CO2 Separation. Separation and Purification Technology, 274, Article ID: 119015.
https://doi.org/10.1016/j.seppur.2021.119015
[19] Li, P., Ma, W., Zhong, J., Pan, Y., Ren, X., Guo, M., et al. (2024) Improving the CO2 Permeability and Selectivity of Pebax Mixed-Matrix Membranes by Constructing an “Expressway” Using Pyrazine-Based Nitrogen-Doped Porous Carbon with Nitrogen-Containing Groups and Meso-Microporous Structure. Journal of Environmental Chemical Engineering, 12, Article ID: 113144.
https://doi.org/10.1016/j.jece.2024.113144
[20] Gao, Y., Qiao, Z., Zhao, S., Wang, Z. and Wang, J. (2018) In Situ Synthesis of Polymer Grafted ZIFs and Application in Mixed Matrix Membrane for CO2 Separation. Journal of Materials Chemistry A, 6, 3151-3161.
https://doi.org/10.1039/c7ta10322k
[21] 游新秀, 曹苓玉, 徐浩亮, 等. 不同类型生物炭对CO2吸附性能及其机理[J]. 材料科学与工程学报, 2024, 42(2): 269-275+283.
[22] 宋朝霞, 刘永康, 郭耀坤, 等. 小麦秸秆生物炭对孔雀石绿吸附性能的研究[J]. 无机盐工业, 2024, 56(9): 128-135.
[23] Shin, J.E., Lee, S.K., Cho, Y.H. and Park, H.B. (2019) Effect of PEG-MEA and Graphene Oxide Additives on the Performance of Pebax®1657 Mixed Matrix Membranes for CO2 Separation. Journal of Membrane Science, 572, 300-308.
https://doi.org/10.1016/j.memsci.2018.11.025
[24] 李伟, 李英教, 林常, 等. 改性磁性生物炭对亚甲基蓝吸附性能的研究[J]. 化学工业与工程, 2024, 41(6): 110-119.
[25] 宁梦佳, 代岩, 郗元, 等. Cu(Qc)2强化Pebax混合基质膜分离CO2 [J]. 化工进展, 2021, 40(10): 5652-5659.
[26] Meshkat, S., Kaliaguine, S. and Rodrigue, D. (2018) Mixed Matrix Membranes Based on Amine and Non-Amine MIL-53(Al) in Pebax® MH-1657 for CO2 Separation. Separation and Purification Technology, 200, 177-190.
https://doi.org/10.1016/j.seppur.2018.02.038
[27] Mosleh, S., Khanbabaei, G., Mozdianfard, M. and Hemmati, M. (2016) Application of Poly(amide-B-Ethylene Oxide)/Zeolitic Imidazolate Framework Nanocomposite Membrane in Gas Separation. Iranian Polymer Journal, 25, 977-990.
https://doi.org/10.1007/s13726-016-0484-y
[28] Song, C., Li, R., Fan, Z., Liu, Q., Zhang, B. and Kitamura, Y. (2020) CO2/N2 Separation Performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 Mixed Matrix Membranes and Intensification via Sub-Ambient Operation. Separation and Purification Technology, 238, Article ID: 116500.
https://doi.org/10.1016/j.seppur.2020.116500
[29] 王乐乐, 赵丹, 陈淑慧, 等. MIL-101-OH纳米流体混基质膜的制备及其CO2分离性能[J]. 膜科学与技术, 2024, 44(4): 36-47.