|
[1]
|
Miller, W.R. and Arias, C.A. (2024) ESKAPE Pathogens: Antimicrobial Resistance, Epidemiology, Clinical Impact and Therapeutics. Nature Reviews Microbiology, 22, 598-616. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Laxminarayan, R., Impalli, I., Rangarajan, R., Cohn, J., Ramjeet, K., Trainor, B.W., et al. (2024) Expanding Antibiotic, Vaccine, and Diagnostics Development and Access to Tackle Antimicrobial Resistance. The Lancet, 403, 2534-2550. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, N. and Jiang, C. (2023) Antimicrobial Peptides: Structure, Mechanism, and Modification. European Journal of Medicinal Chemistry, 255, Article ID: 115377. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zasloff, M. (2002) Antimicrobial Peptides of Multicellular Organisms. Nature, 415, 389-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Epand, R.M., Walker, C., Epand, R.F. and Magarvey, N.A. (2016) Molecular Mechanisms of Membrane Targeting Antibiotics. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1858, 980-987. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ma, Y., Guo, Z., Xia, B., Zhang, Y., Liu, X., Yu, Y., et al. (2022) Identification of Antimicrobial Peptides from the Human Gut Microbiome Using Deep Learning. Nature Biotechnology, 40, 921-931. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Alexander, P.J., Oyama, L.B., Olleik, H., Godoy Santos, F., O’Brien, S., Cookson, A., et al. (2024) Microbiome-Derived Antimicrobial Peptides Show Therapeutic Activity against the Critically Important Priority Pathogen, Acinetobacter baumannii. npj Biofilms and Microbiomes, 10, Article No. 92. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Santos-Júnior, C.D., Torres, M.D.T., Duan, Y., Rodríguez del Río, Á., Schmidt, T.S.B., Chong, H., et al. (2024) Discovery of Antimicrobial Peptides in the Global Microbiome with Machine Learning. Cell, 187, 3761-3778.e16. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Boman, H.G., Nilsson, I. and Rasmuson, B. (1972) Inducible Antibacterial Defence System in Drosophila. Nature, 237, 232-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zasloff, M. (1987) Magainins, a Class of Antimicrobial Peptides from Xenopus Skin: Isolation, Characterization of Two Active Forms, and Partial cDNA Sequence of a Precursor. Proceedings of the National Academy of Sciences of the United States of America, 84, 5449-5453. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bevier, C.R., Sonnevend, A., Kolodziejek, J., Nowotny, N., Nielsen, P.F. and Michael Conlon, J. (2004) Purification and Characterization of Antimicrobial Peptides from the Skin Secretions of the Mink Frog (Rana septentrionalis). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 139, 31-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Conlon, J.M., Demandt, A., Nielsen, P.F., Leprince, J., Vaudry, H. and Woodhams, D.C. (2009) The Alyteserins: Two Families of Antimicrobial Peptides from the Skin Secretions of the Midwife Toad Alytes Obstetricans (Alytidae). Peptides, 30, 1069-1073. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Conlon, J.M., Sonnevend, A., Pál, T. and Vila-Farrés, X. (2012) Efficacy of Six Frog Skin-Derived Antimicrobial Peptides against Colistin-Resistant Strains of the Acinetobacter baumannii Group. International Journal of Antimicrobial Agents, 39, 317-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
McLean, D.T.F., McCrudden, M.T.C., Linden, G.J., Irwin, C.R., Conlon, J.M. and Lundy, F.T. (2014) Antimicrobial and Immunomodulatory Properties of Pgla-Am1, CPF-AM1, and Magainin-Am1: Potent Activity against Oral Pathogens. Regulatory Peptides, 194, 63-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Neshani, A., Zare, H., Akbari Eidgahi, M.R., Kamali Kakhki, R., Safdari, H., Khaledi, A., et al. (2019) LL-37: Review of Antimicrobial Profile against Sensitive and Antibiotic-Resistant Human Bacterial Pathogens. Gene Reports, 17, Article ID: 100519. [Google Scholar] [CrossRef]
|
|
[16]
|
Barksdale, S.M., Hrifko, E.J. and van Hoek, M.L. (2017) Cathelicidin Antimicrobial Peptide from Alligator mississippiensis Has Antibacterial Activity against Multi-Drug Resistant Acinetobacter baumanii and Klebsiella pneumoniae. Developmental & Comparative Immunology, 70, 135-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zanetti, M., Litteri, L., Griffiths, G., Gennaro, R. and Romeo, D. (1991) Stimulus-Induced Maturation of Probactenecins, Precursors of Neutrophil Antimicrobial Polypeptides. The Journal of Immunology, 146, 4295-4300. [Google Scholar] [CrossRef]
|
|
[18]
|
Michael Conlon, J., Galadari, S., Raza, H. and Condamine, E. (2008) Design of Potent, Non‐Toxic Antimicrobial Agents Based Upon the Naturally Occurring Frog Skin Peptides, Ascaphin‐8 and Peptide XT‐7. Chemical Biology & Drug Design, 72, 58-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
de Breij, A., Riool, M., Cordfunke, R.A., Malanovic, N., de Boer, L., Koning, R.I., et al. (2018) The Antimicrobial Peptide SAAP-148 Combats Drug-Resistant Bacteria and Biofilms. Science Translational Medicine, 10, eaan4044. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ye, Z., Xu, Z., Ouyang, J., Shi, W., Li, S., Wang, X., et al. (2024) Improving the Stability and Anti-Infective Activity of Sea Turtle Amps Using Multiple Structural Modification Strategies. Journal of Medicinal Chemistry, 67, 22104-22123. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Song, J., Wang, J., Zhan, N., Sun, T., Yu, W., Zhang, L., et al. (2019) Therapeutic Potential of Trp-Rich Engineered Amphiphiles by Single Hydrophobic Amino Acid End-tagging. ACS Applied Materials & Interfaces, 11, 43820-43834. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wei, X., Wu, R., Si, D., Liao, X., Zhang, L. and Zhang, R. (2016) Novel Hybrid Peptide Cecropin a (1-8)-LL37 (17-30) with Potential Antibacterial Activity. International Journal of Molecular Sciences, 17, Article 983. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Avitabile, C., Capparelli, R., Rigano, M.M., Fulgione, A., Barone, A., Pedone, C., et al. (2013) Antimicrobial Peptides from Plants: Stabilization of the γ Core of a Tomato Defensin by Intramolecular Disulfide Bond. Journal of Peptide Science, 19, 240-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rozek, A., Powers, J.S., Friedrich, C.L. and Hancock, R.E.W. (2003) Structure-Based Design of an Indolicidin Peptide Analogue with Increased Protease Stability. Biochemistry, 42, 14130-14138. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhang, Y. and Sanner, M.F. (2019) Docking Flexible Cyclic Peptides with Autodock CrankPep. Journal of Chemical Theory and Computation, 15, 5161-5168. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Morris, C.J., Beck, K., Fox, M.A., Ulaeto, D., Clark, G.C. and Gumbleton, M. (2012) Pegylation of Antimicrobial Peptides Maintains the Active Peptide Conformation, Model Membrane Interactions, and Antimicrobial Activity While Improving Lung Tissue Biocompatibility Following Airway Delivery. Antimicrobial Agents and Chemotherapy, 56, 3298-3308. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, L., Shen, T., Liu, Y., Zhou, J., Shi, S., Wang, Y., et al. (2020) Enhancing the Antibacterial Activity of Antimicrobial Peptide PMAP-37(F34-R) by Cholesterol Modification. BMC Veterinary Research, 16, Article No. 419. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yao, S., You, R., Wang, S., Xiong, Y., Huang, X. and Zhu, S. (2021) Netgo 2.0: Improving Large-Scale Protein Function Prediction with Massive Sequence, Text, Domain, Family and Network Information. Nucleic Acids Research, 49, W469-W475. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, P., Hu, L., Liu, G., Jiang, N., Chen, X., Xu, J., et al. (2011) Prediction of Antimicrobial Peptides Based on Sequence Alignment and Feature Selection Methods. PLOS ONE, 6, e18476. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Torres, M.D.T., Melo, M.C.R., Crescenzi, O., Notomista, E. and de la Fuente-Nunez, C. (2021) Mining for Encrypted Peptide Antibiotics in the Human Proteome. Nature Biomedical Engineering, 6, 67-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bhadra, P., Yan, J., Li, J., Fong, S. and Siu, S.W.I. (2018) AmPEP: Sequence-Based Prediction of Antimicrobial Peptides Using Distribution Patterns of Amino Acid Properties and Random Forest. Scientific Reports, 8, Article No. 1697. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Loose, C., Jensen, K., Rigoutsos, I. and Stephanopoulos, G. (2006) A Linguistic Model for the Rational Design of Antimicrobial Peptides. Nature, 443, 867-869. [Google Scholar] [CrossRef] [PubMed]
|