|
[1]
|
Asl, M.N. and Hosseinzadeh, H. (2008) Review of Pharmacological Effects of Glycyrrhiza sp. and Its Bioactive Compounds. Phytotherapy Research, 22, 709-724. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Fiore, C., Eisenhut, M., Ragazzi, E., Zanchin, G. and Armanini, D. (2005) A History of the Therapeutic Use of Liquorice in Europe. Journal of Ethnopharmacology, 99, 317-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
范靖然, 董泽源, 匡易, 等. 乌拉尔甘草地上部分的化学成分及其PTP1B与α-葡萄糖苷酶抑制活性研究[J]. 中国药学(英文版), 2020, 29(5): 305-313.
|
|
[4]
|
Hatano, T., Aga, Y., Shintani, Y., Ito, H., Okuda, T. and Yoshida, T. (2000) Minor Flavonoids from Licorice. Phytochemistry, 55, 959-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hatano, T., Shintani, Y., Aga, Y., Shiota, S., Tsuchiya, T. And Yoshida, T. (2000) Phenolic Constituents of Licorice. VIII. Structures of Glicophenone and Glicoisoflavanone, and Effects of Licorice Phenolics on Methicillin-Resistant Staphylococcus aureus. Chemical and Pharmaceutical Bulletin, 48, 1286-1292. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mitscher, L.A., Drake, S., Gollapudi, S.R. and Okwute, S.K. (1987) A Modern Look at Folkloric Use of Anti-Infective Agents. Journal of Natural Products, 50, 1025-1040. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ganesh S, and Vijey Aanandhi M, (2020) Erythrina Subumbrans (Hassk) Merr: An Overview. International Journal of Research in Pharmaceutical Sciences, 11, 980-986. [Google Scholar] [CrossRef]
|
|
[8]
|
Rukachaisirikul, T., Innok, P., Aroonrerk, N., Boonamnuaylap, W., Limrangsun, S., Boonyon, C., et al. (2007) Antibacterial Pterocarpans from Erythrina subumbrans. Journal of Ethnopharmacology, 110, 171-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Rukachaisirikul, T., Innok, P. and Suksamrarn, A. (2008) Erythrina Alkaloids and a Pterocarpan from the Bark of Erythrina subumbrans. Journal of Natural Products, 71, 156-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
He, J., Chen, L., Heber, D., Shi, W. and Lu, Q. (2006) Antibacterial Compounds from Glycyrrhiza uralensis. Journal of Natural Products, 69, 121-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ward, W.K., Beard, J.C., Halter, J.B., Pfeifer, M.A. and Porte, D. (1984) Pathophysiology of Insulin Secretion in Non-Insulin-Dependent Diabetes Mellitus. Diabetes Care, 7, 491-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dohm, G.L., Tapscott, E.B., Pories, W.J., Dabbs, D.J., Flickinger, E.G., Meelheim, D., et al. (1988) An in Vitro Human Muscle Preparation Suitable for Metabolic Studies. Decreased Insulin Stimulation of Glucose Transport in Muscle from Morbidly Obese and Diabetic Subjects. Journal of Clinical Investigation, 82, 486-494. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
DeFronzo, R.A., Bonadonna, R.C. and Ferrannini, E. (1992) Pathogenesis of NIDDM: A Balanced Overview. Diabetes Care, 15, 318-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Musi, N., Hirshman, M.F., Nygren, J., Svanfeldt, M., Bavenholm, P., Rooyackers, O., et al. (2002) Metformin Increases Amp-Activated Protein Kinase Activity in Skeletal Muscle of Subjects with Type 2 Diabetes. Diabetes, 51, 2074-2081. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yonemitsu, S., Nishimura, H., Shintani, M., Inoue, R., Yamamoto, Y., Masuzaki, H., et al. (2001) Troglitazone Induces GLUT4 Translocation in L6 Myotubes. Diabetes, 50, 1093-1101. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Joost, H. and Thorens, B. (2001) The Extended Glut-Family of Sugar/Polyol Transport Facilitators: Nomenclature, Sequence Characteristics, and Potential Function of Its Novel Members. Molecular Membrane Biology, 18, 247-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gibbs, E.M., Stock, J.L., McCoid, S.C., Stukenbrok, H.A., Pessin, J.E., Stevenson, R.W., et al. (1995) Glycemic Improvement in Diabetic db/db Mice by Overexpression of the Human Insulin-Regulatable Glucose Transporter (GLUT4). Journal of Clinical Investigation, 95, 1512-1518. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Olson, A.L. and Pessin, J.E. (1996) Structure, Function, and Regulation of the Mammalian Facilitative Glucose Transporter Gene Family. Annual Review of Nutrition, 16, 235-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Abbud, W., Habinowski, S., Zhang, J., Kendrew, J., Elkairi, F.S., Kemp, B.E., et al. (2000) Stimulation of Amp-Activated Protein Kinase (AMPK) Is Associated with Enhancement of Glut1-Mediated Glucose Transport. Archives of Biochemistry and Biophysics, 380, 347-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Marshall, B.A., Ren, J.M., Johnson, D.W., Gibbs, E.M., Lillquist, J.S., Soeller, W.C., et al. (1993) Germline Manipulation of Glucose Homeostasis via Alteration of Glucose Transporter Levels in Skeletal Muscle. Journal of Biological Chemistry, 268, 18442-18445. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Robinson, R., Robinson, L.J., James, D.E. and Lawrence, J.C. (1993) Glucose Transport in L6 Myoblasts Overexpressing GLUT1 and GLUT4. Journal of Biological Chemistry, 268, 22119-22126. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Simoncic, P.D., McGlade, C.J. and Tremblay, M.L. (2006) PTP1B and TC-PTP: Novel Roles in Immune-Cell Signaling. This Paper Is One of a Selection of Papers Published in This Special Issue, Entitled Second Messengers and Phosphoproteins—12th International Conference. Canadian Journal of Physiology and Pharmacology, 84, 667-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zabolotny, J.M., Haj, F.G., Kim, Y., Kim, H., Shulman, G.I., Kim, J.K., et al. (2004) Transgenic Overexpression of Protein-Tyrosine Phosphatase 1B in Muscle Causes Insulin Resistance, but Overexpression with Leukocyte Antigen-Related Phosphatase Does Not Additively Impair Insulin Action. Journal of Biological Chemistry, 279, 24844-24851. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., et al. (1999) Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-1B Gene. Science, 283, 1544-1548. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Feldhammer, M., Uetani, N., Miranda-Saavedra, D. and Tremblay, M.L. (2013) PTP1B: A Simple Enzyme for a Complex World. Critical Reviews in Biochemistry and Molecular Biology, 48, 430-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lee, M.S., Kim, C.H., Hoang, D.M., Kim, B.Y., Sohn, C.B., Kim, M.R., et al. (2009) Genistein-Derivatives from Tetracera Scandens Stimulate Glucose-Uptake in L6 Myotubes. Biological and Pharmaceutical Bulletin, 32, 504-508. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Fan, J., Kuang, Y., Dong, Z., Yi, Y., Zhou, Y., Li, B., et al. (2020) Prenylated Phenolic Compounds from the Aerial Parts of Glycyrrhiza uralensis as PTP1B and α-Glucosidase Inhibitors. Journal of Natural Products, 83, 814-824. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liu, C., Deng, P., Wang, B., Liu, A., Wang, M., Li, S., et al. (2023) Coumaronochromones, Flavanones, and Isoflavones from the Twigs and Leaves of Erythrina Subumbrans Inhibit PTP1B and Nitric Oxide Production. Phytochemistry, 206, Article 113550. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sorbo, A., Pucci, E., Nobili, C., Taglieri, I., Passeri, D. and Zoani, C. (2022) Food Safety Assessment: Overview of Metrological Issues and Regulatory Aspects in the European Union. Separations, 9, 53. [Google Scholar] [CrossRef]
|
|
[30]
|
NicAogáin, K. and O’Byrne, C.P. (2016) The Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain. Frontiers in Microbiology, 7, Article 1865. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bucur, F.I., Grigore-Gurgu, L., Crauwels, P., Riedel, C.U. and Nicolau, A.I. (2018) Resistance of Listeria Monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments. Frontiers in Microbiology, 9, Article 2700. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
United States Public Health Service (2000) Oral Health in America: A Report of the Surgeon General. National Institute of Dental and Craniofacial Research. http://www.surgeongeneral.gov/library/oralhealth/
|
|
[33]
|
Loesche, W.J. (1986) Role of Streptococcus Mutans in Human Dental Decay. Microbiological Reviews, 50, 353-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Takahashi, N. and Nyvad, B. (2010) The Role of Bacteria in the Caries Process. Journal of Dental Research, 90, 294-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zimmer, B.L. (2003) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Clinical & Laboratory Standards Institute.
|
|
[36]
|
Chen, L., Ma, L., Park, N. and Shi, W. (2001) Cariogenic Actinomyces Identified with a Β-Glucosidase-Dependent Green Color Reaction Togardenia jasminoides Extract. Journal of Clinical Microbiology, 39, 3009-3012. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sletten, G.B.G. and Dahl, J.E. (1999) Cytotoxic Effects of Extracts of Compomers. Acta Odontologica Scandinavica, 57, 316-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ahn, S., Cho, E., Kim, H., Park, S., Lim, Y. and Kook, J. (2012) The Antimicrobial Effects of Deglycyrrhizinated Licorice Root Extract on Streptococcus mutans UA159 in Both Planktonic and Biofilm Cultures. Anaerobe, 18, 590-596. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ahn, S., Park, S., Lee, Y.J., Cho, E., Lim, Y.K., Li, X.M., et al. (2014) In Vitro Antimicrobial Activities of 1-Methoxyficifolinol, Licorisoflavan A, and 6,8-Diprenylgenistein against Streptococcus mutans. Caries Research, 49, 78-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Parichanon, P., Sattayakhom, A., Matan, N. and Matan, N. (2022) Antimicrobial Activity of Lime Oil in the Vapour Phase against Listeria monocytogenes on Ready-to-Eat Salad during Cold Storage and Its Possible Mode of Action. Food Control, 132, Article 108486. [Google Scholar] [CrossRef]
|
|
[41]
|
Shen, Q., Soni, K.A. and Nannapaneni, R. (2015) Stability of Sublethal Acid Stress Adaptation and Induced Cross Protection against Lauric Arginate in Listeria monocytogenes. International Journal of Food Microbiology, 203, 49-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Klančnik, A., Piskernik, S., Možina, S.S., Gašperlin, L. and Jeršek, B. (2011) Investigation of Some Factors Affecting the Antibacterial Activity of Rosemary Extracts in Food Models by a Food Microdilution Method. International Journal of Food Science & Technology, 46, 413-420. [Google Scholar] [CrossRef]
|
|
[43]
|
Diakogiannis, I., Berberi, A., Siapi, E., Arkoudi-Vafea, A., Giannopoulou, L. and Mastronicolis, S.K. (2013) Growth and Membrane Fluidity of Food-Borne Pathogen Listeria monocytogenes in the Presence of Weak Acid Preservatives and Hydrochloric Acid. Frontiers in Microbiology, 4, Article 152. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Gandhi, M. and Chikindas, M.L. (2007) Listeria: A Foodborne Pathogen That Knows How to Survive. International Journal of Food Microbiology, 113, 1-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Lee, T., Hofferek, V., Separovic, F., Reid, G.E. and Aguilar, M. (2019) The Role of Bacterial Lipid Diversity and Membrane Properties in Modulating Antimicrobial Peptide Activity and Drug Resistance. Current Opinion in Chemical Biology, 52, 85-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Bombelli, A., Araya-Cloutier, C., Vincken, J., Abee, T. and den Besten, H.M.W. (2023) Impact of Food-Relevant Conditions and Food Matrix on the Efficacy of Prenylated Isoflavonoids Glabridin and 6,8-Diprenylgenistein as Potential Natural Preservatives against Listeria monocytogenes. International Journal of Food Microbiology, 390, Article 110109. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Dastidar, S. (2004) Studies on the Antibacterial Potentiality of Isoflavones. International Journal of Antimicrobial Agents, 23, 99-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Chukwujekwu, J.C., Van Heerden, F.R. and Van Staden, J. (2010) Antibacterial Activity of Flavonoids from the Stem Bark of Erythrina caffra Thunb. Phytotherapy Research, 25, 46-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Bae, M.G., Hwang-Bo, J., Lee, D.Y., Lee, Y. and Chung, I.S. (2021) Effects of 6,8-Diprenylgenistein on VEGF-A-Induced Lymphangiogenesis and Lymph Node Metastasis in an Oral Cancer Sentinel Lymph Node Animal Model. International Journal of Molecular Sciences, 22, Article 770.
|
|
[50]
|
Jo, Y., Choi, K., Liu, Q., Kim, S., Ji, H., Kim, M., et al. (2015) Anti-Obesity Effect of 6,8-Diprenylgenistein, an Isoflavonoid of Cudrania tricuspidata Fruits in High-Fat Diet-Induced Obese Mice. Nutrients, 7, 10480-10490. [Google Scholar] [CrossRef] [PubMed]
|