[1]
|
Asl, M.N. and Hosseinzadeh, H. (2008) Review of Pharmacological Effects of Glycyrrhiza sp. and Its Bioactive Compounds. Phytotherapy Research, 22, 709-724. https://doi.org/10.1002/ptr.2362
|
[2]
|
Fiore, C., Eisenhut, M., Ragazzi, E., Zanchin, G. and Armanini, D. (2005) A History of the Therapeutic Use of Liquorice in Europe. Journal of Ethnopharmacology, 99, 317-324. https://doi.org/10.1016/j.jep.2005.04.015
|
[3]
|
范靖然, 董泽源, 匡易, 等. 乌拉尔甘草地上部分的化学成分及其PTP1B与α-葡萄糖苷酶抑制活性研究[J]. 中国药学(英文版), 2020, 29(5): 305-313.
|
[4]
|
Hatano, T., Aga, Y., Shintani, Y., Ito, H., Okuda, T. and Yoshida, T. (2000) Minor Flavonoids from Licorice. Phytochemistry, 55, 959-963. https://doi.org/10.1016/s0031-9422(00)00244-2
|
[5]
|
Hatano, T., Shintani, Y., Aga, Y., Shiota, S., Tsuchiya, T. And Yoshida, T. (2000) Phenolic Constituents of Licorice. VIII. Structures of Glicophenone and Glicoisoflavanone, and Effects of Licorice Phenolics on Methicillin-Resistant Staphylococcus aureus. Chemical and Pharmaceutical Bulletin, 48, 1286-1292. https://doi.org/10.1248/cpb.48.1286
|
[6]
|
Mitscher, L.A., Drake, S., Gollapudi, S.R. and Okwute, S.K. (1987) A Modern Look at Folkloric Use of Anti-Infective Agents. Journal of Natural Products, 50, 1025-1040. https://doi.org/10.1021/np50054a003
|
[7]
|
Ganesh S, and Vijey Aanandhi M, (2020) Erythrina Subumbrans (Hassk) Merr: An Overview. International Journal of Research in Pharmaceutical Sciences, 11, 980-986. https://doi.org/10.26452/ijrps.v11ispl4.4232
|
[8]
|
Rukachaisirikul, T., Innok, P., Aroonrerk, N., Boonamnuaylap, W., Limrangsun, S., Boonyon, C., et al. (2007) Antibacterial Pterocarpans from Erythrina subumbrans. Journal of Ethnopharmacology, 110, 171-175. https://doi.org/10.1016/j.jep.2006.09.022
|
[9]
|
Rukachaisirikul, T., Innok, P. and Suksamrarn, A. (2008) Erythrina Alkaloids and a Pterocarpan from the Bark of Erythrina subumbrans. Journal of Natural Products, 71, 156-158. https://doi.org/10.1021/np070506w
|
[10]
|
He, J., Chen, L., Heber, D., Shi, W. and Lu, Q. (2006) Antibacterial Compounds from Glycyrrhiza uralensis. Journal of Natural Products, 69, 121-124. https://doi.org/10.1021/np058069d
|
[11]
|
Ward, W.K., Beard, J.C., Halter, J.B., Pfeifer, M.A. and Porte, D. (1984) Pathophysiology of Insulin Secretion in Non-Insulin-Dependent Diabetes Mellitus. Diabetes Care, 7, 491-502. https://doi.org/10.2337/diacare.7.5.491
|
[12]
|
Dohm, G.L., Tapscott, E.B., Pories, W.J., Dabbs, D.J., Flickinger, E.G., Meelheim, D., et al. (1988) An in Vitro Human Muscle Preparation Suitable for Metabolic Studies. Decreased Insulin Stimulation of Glucose Transport in Muscle from Morbidly Obese and Diabetic Subjects. Journal of Clinical Investigation, 82, 486-494. https://doi.org/10.1172/jci113622
|
[13]
|
DeFronzo, R.A., Bonadonna, R.C. and Ferrannini, E. (1992) Pathogenesis of NIDDM: A Balanced Overview. Diabetes Care, 15, 318-368. https://doi.org/10.2337/diacare.15.3.318
|
[14]
|
Musi, N., Hirshman, M.F., Nygren, J., Svanfeldt, M., Bavenholm, P., Rooyackers, O., et al. (2002) Metformin Increases Amp-Activated Protein Kinase Activity in Skeletal Muscle of Subjects with Type 2 Diabetes. Diabetes, 51, 2074-2081. https://doi.org/10.2337/diabetes.51.7.2074
|
[15]
|
Yonemitsu, S., Nishimura, H., Shintani, M., Inoue, R., Yamamoto, Y., Masuzaki, H., et al. (2001) Troglitazone Induces GLUT4 Translocation in L6 Myotubes. Diabetes, 50, 1093-1101. https://doi.org/10.2337/diabetes.50.5.1093
|
[16]
|
Joost, H. and Thorens, B. (2001) The Extended Glut-Family of Sugar/Polyol Transport Facilitators: Nomenclature, Sequence Characteristics, and Potential Function of Its Novel Members. Molecular Membrane Biology, 18, 247-256. https://doi.org/10.1080/09687680110090456
|
[17]
|
Gibbs, E.M., Stock, J.L., McCoid, S.C., Stukenbrok, H.A., Pessin, J.E., Stevenson, R.W., et al. (1995) Glycemic Improvement in Diabetic db/db Mice by Overexpression of the Human Insulin-Regulatable Glucose Transporter (GLUT4). Journal of Clinical Investigation, 95, 1512-1518. https://doi.org/10.1172/jci117823
|
[18]
|
Olson, A.L. and Pessin, J.E. (1996) Structure, Function, and Regulation of the Mammalian Facilitative Glucose Transporter Gene Family. Annual Review of Nutrition, 16, 235-256. https://doi.org/10.1146/annurev.nu.16.070196.001315
|
[19]
|
Abbud, W., Habinowski, S., Zhang, J., Kendrew, J., Elkairi, F.S., Kemp, B.E., et al. (2000) Stimulation of Amp-Activated Protein Kinase (AMPK) Is Associated with Enhancement of Glut1-Mediated Glucose Transport. Archives of Biochemistry and Biophysics, 380, 347-352. https://doi.org/10.1006/abbi.2000.1935
|
[20]
|
Marshall, B.A., Ren, J.M., Johnson, D.W., Gibbs, E.M., Lillquist, J.S., Soeller, W.C., et al. (1993) Germline Manipulation of Glucose Homeostasis via Alteration of Glucose Transporter Levels in Skeletal Muscle. Journal of Biological Chemistry, 268, 18442-18445. https://doi.org/10.1016/s0021-9258(17)46645-2
|
[21]
|
Robinson, R., Robinson, L.J., James, D.E. and Lawrence, J.C. (1993) Glucose Transport in L6 Myoblasts Overexpressing GLUT1 and GLUT4. Journal of Biological Chemistry, 268, 22119-22126. https://doi.org/10.1016/s0021-9258(20)80656-5
|
[22]
|
Simoncic, P.D., McGlade, C.J. and Tremblay, M.L. (2006) PTP1B and TC-PTP: Novel Roles in Immune-Cell Signaling. This Paper Is One of a Selection of Papers Published in This Special Issue, Entitled Second Messengers and Phosphoproteins—12th International Conference. Canadian Journal of Physiology and Pharmacology, 84, 667-675. https://doi.org/10.1139/y06-012
|
[23]
|
Zabolotny, J.M., Haj, F.G., Kim, Y., Kim, H., Shulman, G.I., Kim, J.K., et al. (2004) Transgenic Overexpression of Protein-Tyrosine Phosphatase 1B in Muscle Causes Insulin Resistance, but Overexpression with Leukocyte Antigen-Related Phosphatase Does Not Additively Impair Insulin Action. Journal of Biological Chemistry, 279, 24844-24851. https://doi.org/10.1074/jbc.m310688200
|
[24]
|
Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., et al. (1999) Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-1B Gene. Science, 283, 1544-1548. https://doi.org/10.1126/science.283.5407.1544
|
[25]
|
Feldhammer, M., Uetani, N., Miranda-Saavedra, D. and Tremblay, M.L. (2013) PTP1B: A Simple Enzyme for a Complex World. Critical Reviews in Biochemistry and Molecular Biology, 48, 430-445. https://doi.org/10.3109/10409238.2013.819830
|
[26]
|
Lee, M.S., Kim, C.H., Hoang, D.M., Kim, B.Y., Sohn, C.B., Kim, M.R., et al. (2009) Genistein-Derivatives from Tetracera Scandens Stimulate Glucose-Uptake in L6 Myotubes. Biological and Pharmaceutical Bulletin, 32, 504-508. https://doi.org/10.1248/bpb.32.504
|
[27]
|
Fan, J., Kuang, Y., Dong, Z., Yi, Y., Zhou, Y., Li, B., et al. (2020) Prenylated Phenolic Compounds from the Aerial Parts of Glycyrrhiza uralensis as PTP1B and α-Glucosidase Inhibitors. Journal of Natural Products, 83, 814-824. https://doi.org/10.1021/acs.jnatprod.9b00262
|
[28]
|
Liu, C., Deng, P., Wang, B., Liu, A., Wang, M., Li, S., et al. (2023) Coumaronochromones, Flavanones, and Isoflavones from the Twigs and Leaves of Erythrina Subumbrans Inhibit PTP1B and Nitric Oxide Production. Phytochemistry, 206, Article 113550. https://doi.org/10.1016/j.phytochem.2022.113550
|
[29]
|
Sorbo, A., Pucci, E., Nobili, C., Taglieri, I., Passeri, D. and Zoani, C. (2022) Food Safety Assessment: Overview of Metrological Issues and Regulatory Aspects in the European Union. Separations, 9, 53. https://doi.org/10.3390/separations9020053
|
[30]
|
NicAogáin, K. and O’Byrne, C.P. (2016) The Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain. Frontiers in Microbiology, 7, Article 1865. https://doi.org/10.3389/fmicb.2016.01865
|
[31]
|
Bucur, F.I., Grigore-Gurgu, L., Crauwels, P., Riedel, C.U. and Nicolau, A.I. (2018) Resistance of Listeria Monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments. Frontiers in Microbiology, 9, Article 2700. https://doi.org/10.3389/fmicb.2018.02700
|
[32]
|
United States Public Health Service (2000) Oral Health in America: A Report of the Surgeon General. National Institute of Dental and Craniofacial Research. http://www.surgeongeneral.gov/library/oralhealth/
|
[33]
|
Loesche, W.J. (1986) Role of Streptococcus Mutans in Human Dental Decay. Microbiological Reviews, 50, 353-380. https://doi.org/10.1128/mr.50.4.353-380.1986
|
[34]
|
Takahashi, N. and Nyvad, B. (2010) The Role of Bacteria in the Caries Process. Journal of Dental Research, 90, 294-303. https://doi.org/10.1177/0022034510379602
|
[35]
|
Zimmer, B.L. (2003) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Clinical & Laboratory Standards Institute.
|
[36]
|
Chen, L., Ma, L., Park, N. and Shi, W. (2001) Cariogenic Actinomyces Identified with a Β-Glucosidase-Dependent Green Color Reaction Togardenia jasminoides Extract. Journal of Clinical Microbiology, 39, 3009-3012. https://doi.org/10.1128/jcm.39.8.3009-3012.2001
|
[37]
|
Sletten, G.B.G. and Dahl, J.E. (1999) Cytotoxic Effects of Extracts of Compomers. Acta Odontologica Scandinavica, 57, 316-322. https://doi.org/10.1080/000163599428544
|
[38]
|
Ahn, S., Cho, E., Kim, H., Park, S., Lim, Y. and Kook, J. (2012) The Antimicrobial Effects of Deglycyrrhizinated Licorice Root Extract on Streptococcus mutans UA159 in Both Planktonic and Biofilm Cultures. Anaerobe, 18, 590-596. https://doi.org/10.1016/j.anaerobe.2012.10.005
|
[39]
|
Ahn, S., Park, S., Lee, Y.J., Cho, E., Lim, Y.K., Li, X.M., et al. (2014) In Vitro Antimicrobial Activities of 1-Methoxyficifolinol, Licorisoflavan A, and 6,8-Diprenylgenistein against Streptococcus mutans. Caries Research, 49, 78-89. https://doi.org/10.1159/000362676
|
[40]
|
Parichanon, P., Sattayakhom, A., Matan, N. and Matan, N. (2022) Antimicrobial Activity of Lime Oil in the Vapour Phase against Listeria monocytogenes on Ready-to-Eat Salad during Cold Storage and Its Possible Mode of Action. Food Control, 132, Article 108486. https://doi.org/10.1016/j.foodcont.2021.108486
|
[41]
|
Shen, Q., Soni, K.A. and Nannapaneni, R. (2015) Stability of Sublethal Acid Stress Adaptation and Induced Cross Protection against Lauric Arginate in Listeria monocytogenes. International Journal of Food Microbiology, 203, 49-54. https://doi.org/10.1016/j.ijfoodmicro.2015.02.027
|
[42]
|
Klančnik, A., Piskernik, S., Možina, S.S., Gašperlin, L. and Jeršek, B. (2011) Investigation of Some Factors Affecting the Antibacterial Activity of Rosemary Extracts in Food Models by a Food Microdilution Method. International Journal of Food Science & Technology, 46, 413-420. https://doi.org/10.1111/j.1365-2621.2010.02504.x
|
[43]
|
Diakogiannis, I., Berberi, A., Siapi, E., Arkoudi-Vafea, A., Giannopoulou, L. and Mastronicolis, S.K. (2013) Growth and Membrane Fluidity of Food-Borne Pathogen Listeria monocytogenes in the Presence of Weak Acid Preservatives and Hydrochloric Acid. Frontiers in Microbiology, 4, Article 152. https://doi.org/10.3389/fmicb.2013.00152
|
[44]
|
Gandhi, M. and Chikindas, M.L. (2007) Listeria: A Foodborne Pathogen That Knows How to Survive. International Journal of Food Microbiology, 113, 1-15. https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
|
[45]
|
Lee, T., Hofferek, V., Separovic, F., Reid, G.E. and Aguilar, M. (2019) The Role of Bacterial Lipid Diversity and Membrane Properties in Modulating Antimicrobial Peptide Activity and Drug Resistance. Current Opinion in Chemical Biology, 52, 85-92. https://doi.org/10.1016/j.cbpa.2019.05.025
|
[46]
|
Bombelli, A., Araya-Cloutier, C., Vincken, J., Abee, T. and den Besten, H.M.W. (2023) Impact of Food-Relevant Conditions and Food Matrix on the Efficacy of Prenylated Isoflavonoids Glabridin and 6,8-Diprenylgenistein as Potential Natural Preservatives against Listeria monocytogenes. International Journal of Food Microbiology, 390, Article 110109. https://doi.org/10.1016/j.ijfoodmicro.2023.110109
|
[47]
|
Dastidar, S. (2004) Studies on the Antibacterial Potentiality of Isoflavones. International Journal of Antimicrobial Agents, 23, 99-102. https://doi.org/10.1016/j.ijantimicag.2003.06.003
|
[48]
|
Chukwujekwu, J.C., Van Heerden, F.R. and Van Staden, J. (2010) Antibacterial Activity of Flavonoids from the Stem Bark of Erythrina caffra Thunb. Phytotherapy Research, 25, 46-48. https://doi.org/10.1002/ptr.3159
|
[49]
|
Bae, M.G., Hwang-Bo, J., Lee, D.Y., Lee, Y. and Chung, I.S. (2021) Effects of 6,8-Diprenylgenistein on VEGF-A-Induced Lymphangiogenesis and Lymph Node Metastasis in an Oral Cancer Sentinel Lymph Node Animal Model. International Journal of Molecular Sciences, 22, Article 770.
|
[50]
|
Jo, Y., Choi, K., Liu, Q., Kim, S., Ji, H., Kim, M., et al. (2015) Anti-Obesity Effect of 6,8-Diprenylgenistein, an Isoflavonoid of Cudrania tricuspidata Fruits in High-Fat Diet-Induced Obese Mice. Nutrients, 7, 10480-10490. https://doi.org/10.3390/nu7125544
|