孟德尔随机化方法在子宫内膜癌研究中的应用现状与展望
The Application Status and Prospects of the Mendelian Randomization Method in Endometrial Cancer Research
DOI: 10.12677/acm.2025.153831, PDF, HTML, XML,   
作者: 沙 怡, 孙晓青:西安医学院研究生工作部,陕西 西安;谭宏伟*:西北妇女儿童医院妇科,陕西 西安
关键词: 子宫内膜癌孟德尔随机化分析危险因素相关性Endometrial Cancer Mendelian Randomization Analysis Risk Factor Correlation
摘要: 孟德尔随机化(Mendelian Randomization, MR)作为一种基于遗传变异的因果推断方法,近年来在子宫内膜癌的风险因素研究中获得广泛应用。文章综述了孟德尔随机化方法在子宫内膜癌风险因素中的应用进展,以期为子宫内膜癌因果关系的研究提供新思路。
Abstract: Mendelian Randomization (MR), as a genetic variant-based causal inference method, has been widely applied in recent years to the study of risk factors for endometrial cancer. This article reviews the progress in the application of the Mendelian Randomization method to the investigation of risk factors for endometrial cancer, aiming to provide new insights for research into causal relationships in endometrial cancer.
文章引用:沙怡, 孙晓青, 谭宏伟. 孟德尔随机化方法在子宫内膜癌研究中的应用现状与展望[J]. 临床医学进展, 2025, 15(3): 2004-2009. https://doi.org/10.12677/acm.2025.153831

1. 背景介绍

1.1. 子宫内膜癌的现状

子宫内膜癌(Endometrial Cancer, EC)是女性生殖系统中最常见的恶性肿瘤之一,尤其在绝经后女性中,随着年龄的增长,子宫内膜癌的发病率显著增加[1]。2022年,新诊断的EC病例为420,242例,死亡人数为97,704例[2],预计到2045年,发病率和死亡率将分别增加50%和70% [3]。虽然手术切除和激素治疗在早期阶段取得了显著成效,但晚期子宫内膜癌的复发率和死亡率仍然较高。

子宫内膜癌的发生与多种因素密切相关,包括遗传易感性、激素水平、肥胖、糖尿病等环境与生活方式因素[4]。然而,传统的观察性研究难以区分因果关系与关联关系,导致部分研究结果无法有效推导实际的病因学。因此,近年来,孟德尔随机化(Mendelian Randomization, MR)作为一种新的研究方法,通过遗传变异推断因果关系,为揭示子宫内膜癌的发病机制提供了新的视角。

1.2. 孟德尔随机化概述

孟德尔随机化是一种通过遗传变异作为工具变量(Single Nucleotide Polymorphism, SNP),推断暴露因素与疾病之间因果关系的方法。当与蛋白质组学数据相结合时,这种方法已被证明在确定包括癌症在内的多种疾病的新治疗靶点方面很有价值[5] [6]。与传统的观察性研究相比,MR能够有效避免混杂因素和反向因果关系的干扰,因此被广泛应用于流行病学和基因组学研究中。MR基于孟德尔遗传定律,认为遗传变异在减数分裂过程中随机分配,因此可以视作自然实验,帮助研究者推断暴露因素是否真正导致了某种疾病的发生。

MR分析主要依赖于基因变异与暴露因素之间的相关性,并进一步检验这些暴露因素与疾病风险之间的关系[7]。近年来,MR方法已被应用于子宫内膜癌的风险因素探索,尤其在肥胖、激素水平、免疫细胞、肠道菌群等方面的因果关系中展现了独特的优势,以下就每个领域分别进行阐述。

2. 孟德尔随机化在子宫内膜癌风险因素探索中的应用

2.1. 肥胖与子宫内膜癌风险

肥胖是子宫内膜癌最强的已知风险因素之一。一项针对日本人群的MR分析显示,BMI增加与子宫内膜癌风险增加有因果关系[8]。2016年发表的一项MR研究使用了来自ECAC的大规模GWAS数据,表明BMI与不同亚型EC风险增加有关,而腰臀比这一衡量指标与EC并非独立相关[9]。值得关注的是Freuer等人的研究指出,有证据表明手臂脂肪,而非躯干或腿部脂肪,是EC的危险因素[10]。Kennedy等人[11]发表的关于儿童和成人肥胖与EC的MR研究发现:成人体型增加了总体子宫内膜癌和子宫内膜样癌风险,而儿童体型的影响极小。相比之下,儿童体型会增加非子宫内膜样癌EC的风险。这一研究结果强调,对于肥胖儿童而言,在向成年期过渡的过程中减轻体重,或许是降低人群中EC发病负担的有效策略。尽管如此,肥胖与EC相关性研究结果仍无法避免MR多效性及人种偏差,结论仍需大量前瞻性临床研究来进一步证明。

2.2. 2型糖尿病与子宫内膜癌风险

一些荟萃分析的结果支持EC与2型糖尿病存在正相关[12] [13]。Yuan等人[14]使用399个SNP作为2型糖尿病的工具变量,研究结果表明,基因预测的2型糖尿病与EC风险增加有关。2024年Zhang等人[15]的研究同样证明2型糖尿病(OR: 1.06; 95% CI: 1.00~1.12)和空腹胰岛素水平(OR: 1.97; 95% CI: 1.30~2.98)与EC风险增加相关,尤其是子宫内膜样癌。我们需要进一步的研究来发现2型糖尿病与子宫内膜癌风险相关的机制和/或预测特征,这可以为早期筛查及临床指南的制定提供信息。MR分析主要集中在具有欧洲血统的个体上,最大限度地减少了人口结构引起的潜在偏差,但这可能限制了结果对其他种族的普遍性。

2.3. 性激素与子宫内膜癌风险

持续暴露于高水平雌激素被认为是EC的风险因素。2016年一项MR研究表明了雌二醇与EC风险增加之间的正相关,并确定CYP19A1是主要影响基因,并且BMI较高的女性的关联性更强[16]。Larsson等人进行的雌二醇与癌症的MR研究也指出,基因预测的内源性17β雌二醇浓度较高与EC风险增加有关[17]。然而,基于最新雌二醇水平的全基因组关联性研究数据的MR分析未发现雌二醇与子宫内膜癌风险的明确联系,尽管如此,当单独分析CYP19A1 (rs7175531)与子宫内膜癌时,先前的研究得到了证实[18]。值得注意的是目前存在以下局限性:1) 雌二醇全基因组关联研究数据纳入绝经前和绝经后妇女,无法评估其影响发生的时间。2) 月经周期中存在激素波动,且雌二醇测量时间点在不同女性月经周期中不一致,因缺乏所有女性月经周期信息,无法对此进行调整。适当扩充样本量,以及在女性月经周期的各个不同时间节点对雌二醇展开更为细致的测量,将有助于获取更为可靠、令人信服的MR分析成果。在雄性激素方面,2020年发表的一项关于睾酮对子宫内膜癌影响的MR研究结果表明,睾酮会增加EC的风险(主要是总子宫内膜癌和子宫内膜样癌)。此外,该研究指出SHBG对女性EC风险有保护作用[19]。Mullee等人进行的MR结果同样支持其研究结果[20]

2.4. 免疫细胞与子宫内膜癌的关系

观察性研究的证据表明免疫细胞与子宫内膜癌之间存在联系[21] [22],但此类研究难以确定因果关系,而孟德尔随机化分析通过遗传变异为因果推断提供了新视角。Li等[23]的MR研究发现表达CD38的IgD+ CD24 B细胞、表达IgD的IgD+ CD24 B细胞、表达IgD的IgD+ CD38dim B细胞、表达BAFF-R的IgD+ CD24+ B细胞、表达BAFF-R的IgD CD24 B细胞、表达IgD CD27 B细胞、表达BAFF-R的IgD CD38+ B细胞、CD25++ CD45RA+ CD4+ T细胞、CD28 CD8+ T细胞、表达CCR7的幼稚CD8+ T细胞、髓样细胞、自然杀伤细胞、嗜碱性粒细胞与子宫内膜癌风险增加相关。CD62L+浆细胞样树突状细胞和CD14 CD16+单核细胞百分比与子宫内膜癌风险降低相关。Zou等[24]的MR研究发现,CM CD4+%T免疫表型在子宫内膜癌的发展中具有潜在的关键性。上述研究为免疫细胞在子宫内膜癌中的作用提供了新的见解,提示免疫细胞群体可能成为预防和治疗子宫内膜癌的重要靶点。然而,免疫细胞在子宫内膜癌中的复杂免疫机制及其双向因果关系仍需进一步研究和验证,以全面阐明免疫反应与癌症发展的关系。

2.5. 肠道菌群与子宫内膜癌的关系

子宫内膜癌患者的肠道菌群结构失衡,主要体现在益生菌的减少上[25]。Kong等[26]通过利用肠道菌群和子宫内膜癌的全基因组关联研究(Genome-Wide Association Study, GWAS)汇总数据进行MR分析,发现有8种肠道菌群丰度可能与子宫内膜样癌低风险之间存在潜在关联,这些微生物包括乳酸菌科、粪球菌属3、Dorea属、黄酮属、乳酸菌属、副普雷沃菌属、瘤胃梭菌属9和拟杆菌属,提示该类菌群可能是预防和治疗子宫内膜癌的潜在手段,对预防和控制子宫内膜癌发生具有重要意义。然而,鉴于肠道菌群与子宫内膜癌之间相互作用的生物学机制极为复杂,二者之间的双向因果关系仍需通过进一步的研究来加以验证和阐明。

2.6. 新兴治疗靶点的发现:IGF2R与CST3

随着分子水平分析技术的持续进步,研究者们将目光逐渐拓展到了潜在治疗靶点的探寻上,这为子宫内膜癌的治疗研究开辟了新的方向。在一项基于共定位分析和汇总数据孟德尔随机化(Summary Mendelian Randomization, SMR)分析的研究中[27],研究人员识别出14个潜在的药物靶点:7个子宫内膜样癌基因和7个非子宫内膜样癌基因。其中,胰岛素生长因子2受体(Insulin-Like Growth Factor 2 Receptor, IGF2R) (OR = 1.165; 95% CI: 1.067~1.272; P = 1.046 × 10−2)和半胱天冬酶3 (Cystatin 3, CST3) (OR = 0.523; 95% CI: 0.339~0.804; P = 7.010 × 10−3)被强调为关键药物靶点,在转录和翻译水平上都有因果证据。IGF2R被发现与子宫内膜样癌密切相关,且其表达升高是内膜样癌的重要危险因素,而CST3则在非子宫内膜样癌中呈现保护作用[27]。这些发现为子宫内膜癌的靶向治疗提供了理论基础。未来需要进一步的实验和临床研究来评估其疗效。

3. 结论与展望

孟德尔随机化(MR)方法在子宫内膜癌(EC)研究中提供了新的视角,能够有效避免混杂因素和反向因果问题,揭示了肥胖、2型糖尿病、性激素、免疫细胞、肠道菌群等多种因素与EC之间的因果关系。特别是IGF2R和CST3等潜在靶点的发现,为靶向治疗提供了新的理论依据。MR为研究者开辟了因果关系探究的全新路径,但MR研究的结果需与传统流行病学研究结果相结合,谨慎解释MR分析结果。总之,MR分析可以推动子宫内膜癌病因研究,有望为子宫内膜癌的早期筛査、精准治疗和个性化医疗提供更加坚实的证据基础。

NOTES

*通讯作者。

参考文献

[1] Crosbie, E.J., Kitson, S.J., McAlpine, J.N., Mukhopadhyay, A., Powell, M.E. and Singh, N. (2022) Endometrial Cancer. The Lancet, 399, 1412-1428.
https://doi.org/10.1016/s0140-6736(22)00323-3
[2] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[3] Bujnak, A., File, B. and Tewari, K. (2025) Clinical Use of Dostarlimab in Advanced Stage and Recurrent Endometrial Cancer: Patient Selection and Perspectives. Cancer Management and Research, 17, 161-170.
https://doi.org/10.2147/cmar.s341469
[4] Chandramohan, A., Manchanda, S., Renganathan, R., Popat, P.B., Shah, D., Dhamija, E., et al. (2023) Impact of the 2023 FIGO Staging System for Endometrial Cancer on the Use of Imaging Services: An Indian Perspective. Indian Journal of Radiology and Imaging, 34, 309-323.
https://doi.org/10.1055/s-0043-1777355
[5] Sun, J., Zhao, J., Jiang, F., Wang, L., Xiao, Q., Han, F., et al. (2023) Identification of Novel Protein Biomarkers and Drug Targets for Colorectal Cancer by Integrating Human Plasma Proteome with Genome. Genome Medicine, 15, Article No. 75.
https://doi.org/10.1186/s13073-023-01229-9
[6] Su, W., Gu, X., Dou, M., Duan, Q., Jiang, Z., Yin, K., et al. (2023) Systematic Druggable Genome-Wide Mendelian Randomisation Identifies Therapeutic Targets for Alzheimer’s Disease. Journal of Neurology, Neurosurgery & Psychiatry, 94, 954-961.
https://doi.org/10.1136/jnnp-2023-331142
[7] Birney, E. (2021) Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 12, a041302.
https://doi.org/10.1101/cshperspect.a041302
[8] Masuda, T., Ogawa, K., Kamatani, Y., Murakami, Y., Kimura, T. and Okada, Y. (2020) A Mendelian Randomization Study Identified Obesity as a Causal Risk Factor of Uterine Endometrial Cancer in Japanese. Cancer Science, 111, 4646-4651.
https://doi.org/10.1111/cas.14667
[9] Painter, J.N., O’Mara, T.A., Marquart, L., Webb, P.M., Attia, J., Medland, S.E., et al. (2016) Genetic Risk Score Mendelian Randomization Shows That Obesity Measured as Body Mass Index, but Not Waist: Hip Ratio, Is Causal for Endometrial Cancer. Cancer Epidemiology, Biomarkers & Prevention, 25, 1503-1510.
https://doi.org/10.1158/1055-9965.epi-16-0147
[10] Freuer, D., Linseisen, J., O’Mara, T.A., Leitzmann, M., Baurecht, H., Baumeister, S., et al. (2021) Body Fat Distribution and Risk of Breast, Endometrial, and Ovarian Cancer: A Two-Sample Mendelian Randomization Study. Cancers, 13, Article No. 5053.
https://doi.org/10.3390/cancers13205053
[11] Kennedy, O.J., Bafligil, C., O’Mara, T.A., Wang, X., Evans, D.G., Kar, S., et al. (2022) Child and Adult Adiposity and Subtype-Specific Endometrial Cancer Risk: A Multivariable Mendelian Randomisation Study. International Journal of Obesity, 47, 87-90.
https://doi.org/10.1038/s41366-022-01231-y
[12] Ling, S., Brown, K., Miksza, J.K., Howells, L., Morrison, A., Issa, E., et al. (2020) Association of Type 2 Diabetes with Cancer: A Meta-Analysis with Bias Analysis for Unmeasured Confounding in 151 Cohorts Comprising 32 Million People. Diabetes Care, 43, 2313-2322.
https://doi.org/10.2337/dc20-0204
[13] Pearson-Stuttard, J., Papadimitriou, N., Markozannes, G., Cividini, S., Kakourou, A., Gill, D., et al. (2021) Type 2 Diabetes and Cancer: An Umbrella Review of Observational and Mendelian Randomization Studies. Cancer Epidemiology, Biomarkers & Prevention, 30, 1218-1228.
https://doi.org/10.1158/1055-9965.epi-20-1245
[14] Yuan, S., Kar, S., Carter, P., Vithayathil, M., Mason, A.M., Burgess, S., et al. (2020) Is Type 2 Diabetes Causally Associated with Cancer Risk? Evidence from a Two-Sample Mendelian Randomization Study. Diabetes, 69, 1588-1596.
https://doi.org/10.2337/db20-0084
[15] Zhang, X., Pu, C., Wang, L., Lin, X., Lai, H., Wu, S., et al. (2024) Unraveling the Causal Association between Lifestyle and Metabolic Factors with Endometrial Cancer: Evidence from a Mendelian Randomization Study. Discover Oncology, 15, Article No. 575.
https://doi.org/10.1007/s12672-024-01439-6
[16] Thompson, D.J., O’Mara, T.A., Glubb, D.M., Painter, J.N., Cheng, T., Folkerd, E., et al. (2015) CYP19A1 Fine-Mapping and Mendelian Randomization: Estradiol Is Causal for Endometrial Cancer. Endocrine-Related Cancer, 23, 77-91.
https://doi.org/10.1530/erc-15-0386
[17] Larsson, S.C., Kar, S., Perry, J.R.B., Carter, P., Vithayathil, M., Mason, A.M., et al. (2021) Serum Estradiol and 20 Site-Specific Cancers in Women: Mendelian Randomization Study. The Journal of Clinical Endocrinology & Metabolism, 107, e467-e474.
https://doi.org/10.1210/clinem/dgab713
[18] Johansson, Å., Schmitz, D., Höglund, J., Hadizadeh, F., Karlsson, T. and Ek, W.E. (2022) Investigating the Effect of Estradiol Levels on the Risk of Breast, Endometrial, and Ovarian Cancer. Journal of the Endocrine Society, 6, bvac100.
https://doi.org/10.1210/jendso/bvac100
[19] Ruth, K.S., Day, F.R., Tyrrell, J., Thompson, D.J., Wood, A.R., Mahajan, A., et al. (2020) Using Human Genetics to Understand the Disease Impacts of Testosterone in Men and Women. Nature Medicine, 26, 252-258.
https://doi.org/10.1038/s41591-020-0751-5
[20] Mullee, A., Dimou, N., Allen, N., O’Mara, T., Gunter, M.J. and Murphy, N. (2021) Testosterone, Sex Hormone-Binding Globulin, Insulin-Like Growth Factor-1 and Endometrial Cancer Risk: Observational and Mendelian Randomization Analyses. British Journal of Cancer, 125, 1308-1317.
https://doi.org/10.1038/s41416-021-01518-3
[21] Kolben, T., Mannewitz, M., Perleberg, C., Schnell, K., Anz, D., Hahn, L., et al. (2022) Presence of Regulatory T-Cells in Endometrial Cancer Predicts Poorer Overall Survival and Promotes Progression of Tumor Cells. Cellular Oncology, 45, 1171-1185.
https://doi.org/10.1007/s13402-022-00708-2
[22] Mandal, G., Biswas, S., Anadon, C.M., Yu, X., Gatenbee, C.D., Prabhakaran, S., et al. (2022) Iga-Dominated Humoral Immune Responses Govern Patients' Outcome in Endometrial Cancer. Cancer Research, 82, 859-871.
https://doi.org/10.1158/0008-5472.can-21-2376
[23] Li, Y., Liu, J., Wang, Q., Zhou, Y., Zhang, C. and Pei, J. (2024) The Causal Effects of Genetically Determined Immune Cells on Gynecologic Malignancies: A Mendelian Randomization Study. Frontiers in Oncology, 14, Article ID: 1371309.
https://doi.org/10.3389/fonc.2024.1371309
[24] Zou, X., Shen, J., Zhang, H., Kong, F., Jin, X. and Zhang, L. (2024) Association between Immune Cells and Endometrial Cancer: A Bidirectional Mendelian Randomization Study. Medicine, 103, e38129.
https://doi.org/10.1097/md.0000000000038129
[25] Zheng, W., Lin, X., Chen, H., Yang, Z., Zhao, H., Li, S., et al. (2025) Gut Microbiota and Endometrial Cancer: Research Progress on the Pathogenesis and Application. Annals of Medicine, 57, Article ID: 2451766.
https://doi.org/10.1080/07853890.2025.2451766
[26] Kong, Y., Liu, S., Wang, X. and Qie, R. (2024) Associations between Gut Microbiota and Gynecological Cancers: A Bi-Directional Two-Sample Mendelian Randomization Study. Medicine, 103, e37628.
https://doi.org/10.1097/md.0000000000037628
[27] Zhu, J., Zhang, T., Jiang, J., Yang, M., Xia, N. and Chen, Y. (2024) Genetic Variation Perspective Reveals Potential Drug Targets for Subtypes of Endometrial Cancer. Scientific Reports, 14, Article No. 28180.
https://doi.org/10.1038/s41598-024-78689-5