[1]
|
Fahed, G., Aoun, L., Bou Zerdan, M., Allam, S., Bou Zerdan, M., Bouferraa, Y., et al. (2022) Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. International Journal of Molecular Sciences, 23, Article 786. https://doi.org/10.3390/ijms23020786
|
[2]
|
Ling, C. and Rönn, T. (2019) Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metabolism, 29, 1028-1044. https://doi.org/10.1016/j.cmet.2019.03.009
|
[3]
|
He, J.J., Hao, F.C., Song, S.Q., Zhang, J.L., Zhou, H.Y., Zhang, J., et al. (2024) METTL Family in Health and Disease. Molecular Biomedicine, 5, Article No. 33. https://doi.org/10.1186/s43556-024-00194-y
|
[4]
|
Bahr, A., Hankeln, T., Fiedler, T., Hegemann, J. and Schmidt, E.R. (1999) Molecular Analysis of METTL1, a Novel Human Methyltransferase-Like Gene with a High Degree of Phylogenetic Conservation. Genomics, 57, 424-428. https://doi.org/10.1006/geno.1999.5780
|
[5]
|
Li, R., Liu, X., Deng, K. and Wang, X. (2023) M7G Methylated Core Genes (METTL1 and WDR4) and Associated RNA Risk Signatures Are Associated with Prognosis and Immune Escape in HCC. BMC Medical Genomics, 16, Article No. 179. https://doi.org/10.1186/s12920-023-01614-8
|
[6]
|
He, M.Y., Wang, Y., Xie, J.J., Pu, J.Y., Shen, Z.H., Wang, A., et al. (2023) M7G Modification of FTH1 and Pri-Mir-26a Regulates Ferroptosis and Chemotherapy Resistance in Osteosarcoma. Oncogene, 43, 341-353. https://doi.org/10.1038/s41388-023-02882-5
|
[7]
|
Li, Q.W., Jiang, S., Lei, K.X., Han, H., Chen, Y.Q., Lin, W.M., et al. (2024) Metabolic Rewiring during Bone Development Underlies tRNA m7G—Associated Primordial Dwarfism. Journal of Clinical Investigation, 134, e177220. https://doi.org/10.1172/jci177220
|
[8]
|
Dong, R., Wang, C.X., Tang, B., Cheng, Y.Y., Peng, X.H., Yang, X.M., et al. (2024) WDR4 Promotes HCC Pathogenesis through N7-Methylguanosine by Regulating and Interacting with METTL1. Cellular Signalling, 118, Article 111145. https://doi.org/10.1016/j.cellsig.2024.111145
|
[9]
|
Wang, Y., Xiong, G., Cai, W. and Tao, Q. (2024) METTL1 Facilitates Ameloblastoma Invasive Growth via MAPK Signaling Pathway. Gene, 905, Article 148234. https://doi.org/10.1016/j.gene.2024.148234
|
[10]
|
Xu, F., Cai, D., Liu, S., et al. (2023) N7-Methylguanosine Regulatory Genes Well Represented by METTL1 Define Vastly Different Prognostic, Immune and Therapy Landscapes in Adrenocortical Carcinoma. American Journal of Cancer Research, 13, 538-568.
|
[11]
|
Li, J.Z., Wang, L.F., Hahn, Q., Nowak, R.P., Viennet, T., Orellana, E.A., et al. (2023) Structural Basis of Regulated m7G tRNA Modification by METTL1-WDR4. Nature, 613, 391-397. https://doi.org/10.1038/s41586-022-05566-4
|
[12]
|
Qi, Y.-N., Liu, Z., Hong, L.-L., Li, P. and Ling, Z.-Q. (2023) Methyltransferase-Like Proteins in Cancer Biology and Potential Therapeutic Targeting. Journal of Hematology & Oncology, 16, Article No. 89. https://doi.org/10.1186/s13045-023-01477-7
|
[13]
|
Cui, J., Sendinc, E., Liu, Q., Kim, S., Fang, J.Y. and Gregory, R.I. (2024) m3C32 tRNA Modification Controls Serine Codon-Biased mRNA Translation, Cell Cycle, and DNA-Damage Response. Nature Communications, 15, Article No. 5775. https://doi.org/10.1038/s41467-024-50161-y
|
[14]
|
Mao, X.-L., Li, Z.-H., Huang, M.-H., Wang, J.-T., Zhou, J.-B., Li, Q.-R., et al. (2021) Mutually Exclusive Substrate Selection Strategy by Human m3C RNA Transferases METTL2A and METTL6. Nucleic Acids Research, 49, 8309-8323. https://doi.org/10.1093/nar/gkab603
|
[15]
|
Xu, L., Liu, X., Sheng, N., Oo, K.S., Liang, J., Chionh, Y.H., et al. (2017) Three Distinct 3-Methylcytidine (m3C) Methyltransferases Modify tRNA and mRNA in Mice and Humans. Journal of Biological Chemistry, 292, 14695-14703. https://doi.org/10.1074/jbc.m117.798298
|
[16]
|
Li, S.B., Zhou, H.L., Liao, S.H., Wang, X.Y., Zhu, Z.L., Zhang, J.H., et al. (2022) Structural Basis for METTL6-Mediated m3C RNA Methylation. Biochemical and Biophysical Research Communications, 589, 159-164. https://doi.org/10.1016/j.bbrc.2021.12.013
|
[17]
|
Huang, M.-H., Wang, J.-T., Zhang, J.-H., Mao, X.-L., Peng, G.-X., Lin, X.Y., et al. (2023) Mitochondrial RNA m3C Methyltransferase METTL8 Relies on an Isoform-Specific N-Terminal Extension and Modifies Multiple Heterogenous TRNAS. Science Bulletin, 68, 2094-2105. https://doi.org/10.1016/j.scib.2023.08.002
|
[18]
|
Kleiber, N., Lemus-Diaz, N., Stiller, C., Heinrichs, M., Mai, M.M., Hackert, P., et al. (2022) The RNA Methyltransferase METTL8 Installs m3C32 in Mitochondrial tRNAsThr/ser(Ucn) to Optimise tRNA Structure and Mitochondrial Translation. Nature Communications, 13, Article No. 209. https://doi.org/10.1038/s41467-021-27905-1
|
[19]
|
Schöller, E., Marks, J., Marchand, V., Bruckmann, A., Powell, C.A., Reichold, M., et al. (2021) Balancing of Mitochondrial Translation through METTL8-Mediated m3C Modification of Mitochondrial tRNAS. Molecular Cell, 81, 4810-4825. https://doi.org/10.1016/j.molcel.2021.10.018
|
[20]
|
Meyer, K.D. and Jaffrey, S.R. (2017) Rethinking m6A Readers, Writers, and Erasers. Annual Review of Cell and Developmental Biology, 33, 319-342. https://doi.org/10.1146/annurev-cellbio-100616-060758
|
[21]
|
Huang, J.B., Dong, X., Gong, Z., Qin, L.-Y., Yang, S., Zhu, Y.-L., et al. (2018) Solution Structure of the RNA Recognition Domain of METTL3-METTL14 N6-Methyladenosine Methyltransferase. Protein & Cell, 10, 272-284. https://doi.org/10.1007/s13238-018-0518-7
|
[22]
|
Iyer, L.M., Zhang, D.P. and Aravind, L. (2015) Adenine Methylation in Eukaryotes: Apprehending the Complex Evolutionary History and Functional Potential of an Epigenetic Modification. BioEssays, 38, 27-40. https://doi.org/10.1002/bies.201500104
|
[23]
|
Wang, P., Doxtader, K.A. and Nam, Y. (2016) Structural Basis for Cooperative Function of METTL3 and METTL14 Methyltransferases. Molecular Cell, 63, 306-317. https://doi.org/10.1016/j.molcel.2016.05.041
|
[24]
|
Quarto, G., Li Greci, A., Bizet, M., Penning, A., Primac, I., Murisier, F., et al. (2025) Fine-Tuning of Gene Expression through the METTL3-METTL14-Dnmt1 Axis Controls ESC Differentiation. Cell, 188, 998-1018. https://doi.org/10.1016/j.cell.2024.12.009
|
[25]
|
Cesaro, B., Iaiza, A., Piscopo, F., Tarullo, M., Cesari, E., Rotili, D., et al. (2023) Enhancing Sensitivity of Triple‐Negative Breast Cancer to DNA‐Damaging Therapy through Chemical Inhibition of the m6A Methyltransferase METTL3. Cancer Communications, 44, 282-286. https://doi.org/10.1002/cac2.12509
|
[26]
|
Zhang, J., Chen, F., Tang, M., Xu, W.Z., Tian, Y., Liu, Z.C., et al. (2024) The ARID1A-METTL3-m6A Axis Ensures Effective RNase H1-Mediated Resolution of R-Loops and Genome Stability. Cell Reports, 43, Article 113779. https://doi.org/10.1016/j.celrep.2024.113779
|
[27]
|
Luo, Q., Mo, J.Z., Chen, H., Hu, Z.T., Wang, B.H., Wu, J.B., et al. (2022) Structural Insights into Molecular Mechanism for N6-Adenosine Methylation by MT-A70 Family Methyltransferase METTL4. Nature Communications, 13, Article No. 5636. https://doi.org/10.1038/s41467-022-33277-x
|
[28]
|
Chen, H., Gu, L., Orellana, E.A., Wang, Y.Y., Guo, J.J., Liu, Q., et al. (2020) METTL4 Is an SnRNA m6Am Methyltransferase that Regulates RNA Splicing. Cell Research, 30, 544-547. https://doi.org/10.1038/s41422-019-0270-4
|
[29]
|
Turkalj, E.M. and Vissers, C. (2022) The Emerging Importance of METTL5-Mediated Ribosomal RNA Methylation. Experimental & Molecular Medicine, 54, 1617-1625. https://doi.org/10.1038/s12276-022-00869-y
|
[30]
|
Rong, B.W., Zhang, Q., Wan, J.K., Xing, S.H., Dai, R.F., Li, Y., et al. (2020) Ribosome 18S m6A Methyltransferase METTL5 Promotes Translation Initiation and Breast Cancer Cell Growth. Cell Reports, 33, Article 108544. https://doi.org/10.1016/j.celrep.2020.108544
|
[31]
|
Sepich-Poore, C., Zheng, Z., Schmitt, E., Wen, K., Zhang, Z.S., Cui, X., et al. (2022) The METTL5-TRMT112 N6-Methyladenosine Methyltransferase Complex Regulates mRNA Translation via 18S rRNA Methylation. Journal of Biological Chemistry, 298, Article 101590. https://doi.org/10.1016/j.jbc.2022.101590
|
[32]
|
Russell, D.A., Chau, M.K., Shi, Y., Levasseur, I.N., Maldonato, B.J. and Totah, R.A. (2023) METTL7A (TMT1A) and METTL7B (TMT1B) Are Responsible for Alkyl S-Thiol Methyl Transferase Activity in Liver. Drug Metabolism and Disposition, 51, 1024-1034. https://doi.org/10.1124/dmd.123.001268
|
[33]
|
Wang, Z., He, J., Bach, D., Huang, Y., Li, Z., Liu, H., et al. (2022) Induction of m6A Methylation in Adipocyte Exosomal LncRNAs Mediates Myeloma Drug Resistance. Journal of Experimental & Clinical Cancer Research, 41, Article No. 4. https://doi.org/10.1186/s13046-021-02209-w
|
[34]
|
Jakobsson, M.E. (2021) Structure, Activity and Function of the Dual Protein Lysine and Protein N-Terminal Methyltransferase METTL13. Life, 11, Article 1121. https://doi.org/10.3390/life11111121
|
[35]
|
Liu, S., Hausmann, S., Carlson, S.M., Fuentes, M.E., Francis, J.W., Pillai, R., et al. (2019) METTL13 Methylation of Eef1a Increases Translational Output to Promote Tumorigenesis. Cell, 176, 491-504. https://doi.org/10.1016/j.cell.2018.11.038
|
[36]
|
Chen, H., Shi, Z.N., Guo, J.J., Chang, K.-J., Chen, Q.Q., Yao, C.-H., et al. (2020) The Human Mitochondrial 12S rRNA m4C Methyltransferase METTL15 Is Required for Mitochondrial Function. Journal of Biological Chemistry, 295, 8505-8513. https://doi.org/10.1074/jbc.ra119.012127
|
[37]
|
Ruszkowska, A. (2021) METTL16, Methyltransferase-Like Protein 16: Current Insights into Structure and Function. International Journal of Molecular Sciences, 22, Article 2176. https://doi.org/10.3390/ijms22042176
|
[38]
|
Warda, A.S., Kretschmer, J., Hackert, P., Lenz, C., Urlaub, H., Höbartner, C., et al. (2017) Human METTL16 Is a N6-Methyladenosine (m6A) Methyltransferase that Targets Pre‐mRNAS and Various Non‐Coding RNAs. EMBO Reports, 18, 2004-2014. https://doi.org/10.15252/embr.201744940
|
[39]
|
Mashkovskaia, A.V., Mariasina, S.S., Serebryakova, M.V., Rubtsova, M.P., Dontsova, O.A. and Sergiev, P.V. (2024) Testing a Hypothesis of 12S rRNA Methylation by Putative METTL17 Methyltransferase. Acta Naturae, 15, 75-82. https://doi.org/10.32607/actanaturae.25441
|
[40]
|
Ast, T., Itoh, Y., Sadre, S., McCoy, J.G., Namkoong, G., Wengrod, J.C., et al. (2024) METTL17 Is an Fe-S Cluster Checkpoint for Mitochondrial Translation. Molecular Cell, 84, 359-374. https://doi.org/10.1016/j.molcel.2023.12.016
|
[41]
|
Li, H., Yu, K.L., Hu, H.L., Zhang, X.D., Zeng, S.Y., Li, J.W., et al. (2024) METTL17 Coordinates Ferroptosis and Tumorigenesis by Regulating Mitochondrial Translation in Colorectal Cancer. Redox Biology, 71, Article 103087. https://doi.org/10.1016/j.redox.2024.103087
|
[42]
|
Małecki, J., Jakobsson, M.E., Ho, A.Y.Y., Moen, A., Rustan, A.C. and Falnes, P.Ø. (2017) Uncovering Human METTL12 as a Mitochondrial Methyltransferase that Modulates Citrate Synthase Activity through Metabolite-Sensitive Lysine Methylation. Journal of Biological Chemistry, 292, 17950-17962. https://doi.org/10.1074/jbc.m117.808451
|
[43]
|
Matsuura-Suzuki, E., Shimazu, T., Takahashi, M., Kotoshiba, K., Suzuki, T., Kashiwagi, K., et al. (2022) Mettl18-Mediated Histidine Methylation of RPL3 Modulates Translation Elongation for Proteostasis Maintenance. Elife, 11, e72780. https://doi.org/10.7554/elife.72780
|
[44]
|
Shimazu, T., Furuse, T., Balan, S., Yamada, I., Okuno, S., Iwanari, H., et al. (2018) Role of METTL20 in Regulating β-Oxidation and Heat Production in Mice under Fasting or Ketogenic Conditions. Scientific Reports, 8, Article No. 1179. https://doi.org/10.1038/s41598-018-19615-4
|
[45]
|
Hamey, J.J., Wienert, B., Quinlan, K.G.R. and Wilkins, M.R. (2017) METTL21B Is a Novel Human Lysine Methyltransferase of Translation Elongation Factor 1A: Discovery by CRISPR/Cas9 Knockout. Molecular & Cellular Proteomics, 16, 2229-2242. https://doi.org/10.1074/mcp.m116.066308
|
[46]
|
Małecki, J., Aileni, V.K., Ho, A.Y.Y., Schwarz, J., Moen, A., Sørensen, V., et al. (2017) The Novel Lysine Specific Methyltransferase METTL21B Affects mRNA Translation through Inducible and Dynamic Methylation of Lys-165 in Human Eukaryotic Elongation Factor 1 Alpha (eEF1A). Nucleic Acids Research, 45, 4370-4389. https://doi.org/10.1093/nar/gkx002
|
[47]
|
Taylor, R. (2013) Type 2 Diabetes: Etiology and Reversibility. Diabetes Care, 36, 1047-1055. https://doi.org/10.2337/dc12-1805
|
[48]
|
De Jesus, D.F., Zhang, Z., Kahraman, S., Brown, N.K., Chen, M., Hu, J., et al. (2019) m6A mRNA Methylation Regulates Human β-Cell Biology in Physiological States and in Type 2 Diabetes. Nature Metabolism, 1, 765-774. https://doi.org/10.1038/s42255-019-0089-9
|
[49]
|
Men, L., Sun, J., Luo, G.Z. and Ren, D.C. (2019) Acute Deletion of METTL14 in β-Cells of Adult Mice Results in Glucose Intolerance. Endocrinology, 160, 2388-2394. https://doi.org/10.1210/en.2019-00350
|
[50]
|
Wang, Y., Sun, J.J., Lin, Z., Zhang, W.Z., Wang, S., Wang, W.Q., et al. (2020) m6A mRNA Methylation Controls Functional Maturation in Neonatal Murine β-Cells. Diabetes, 69, 1708-1722. https://doi.org/10.2337/db19-0906
|
[51]
|
Sun, J.J., Wang, Y.Q., Fu, H., Kang, F.Y., Song, J.X., Xu, M., et al. (2023) METTl3-Mediated m6A Methylation Controls Pancreatic Bipotent Progenitor Fate and Islet Formation. Diabetes, 73, 237-249. https://doi.org/10.2337/db23-0360
|
[52]
|
Li, Y.H., Zhang, Q.Y., Cui, G.S., Zhao, F., Tian, X., Sun, B.-F., et al. (2020) m6A Regulates Liver Metabolic Disorders and Hepatogenous Diabetes. Genomics, Proteomics & Bioinformatics, 18, 371-383. https://doi.org/10.1016/j.gpb.2020.06.003
|
[53]
|
Qiu, T.M., Zhang, J.Y., Song, J.W., Wu, C.B., Yao, X.F., Wang, N.N., et al. (2025) Arsenic Inducible Islet β-Cell Dysfunction and Ferroptosis through m6A-YTHDF2-Dependent CHAC1 Enhancement. Ecotoxicology and Environmental Safety, 289, Article 117479. https://doi.org/10.1016/j.ecoenv.2024.117479
|
[54]
|
Qiu, T.M., Wu, C.B., Yao, X.F., Han, Q.Y., Wang, N.N., Yuan, W.Z., et al. (2022) AS3MT Facilitates NLRP3 Inflammasome Activation by m6A Modification during Arsenic-Induced Hepatic Insulin Resistance. Cell Biology and Toxicology, 39, 2165-2181. https://doi.org/10.1007/s10565-022-09703-7
|
[55]
|
Jin, J., Shang, Y.W., Zheng, S.Q., Dai, L.M., Tang, J.Y., Bian, X.Y., et al. (2024) Exosomes as Nanostructures Deliver miR-204 in Alleviation of Mitochondrial Dysfunction in Diabetic Nephropathy through Suppressing Methyltransferase-Like 7A-Mediated CIDEC N6-Methyladenosine Methylation. Aging, 16, 3302-3331. https://doi.org/10.18632/aging.205535
|
[56]
|
Liu, X.Q., Jiang, L., Zeng, H.X., Gao, L., Guo, S.S., Chen, C.Y., et al. (2023) Circ-0000953 Deficiency Exacerbates Podocyte Injury and Autophagy Disorder by Targeting Mir665-3p-Atg4b in Diabetic Nephropathy. Autophagy, 20, 1072-1097. https://doi.org/10.1080/15548627.2023.2286128
|
[57]
|
Jiang, L., Liu, X.Q., Hu, X.R., Gao, L., Zeng, H.X., Wang, X., et al. (2022) METTL3-Mediated m6A Modification of TIMP2 mRNA Promotes Podocyte Injury in Diabetic Nephropathy. Molecular Therapy, 30, 1721-1740. https://doi.org/10.1016/j.ymthe.2022.01.002
|
[58]
|
Suo, L., Liu, C., Zhang, Q.-Y., Yao, M.-D., Ma, Y., Yao, J., et al. (2022) METTL3-Mediated N6-Methyladenosine Modification Governs Pericyte Dysfunction during Diabetes-Induced Retinal Vascular Complication. Theranostics, 12, 277-289. https://doi.org/10.7150/thno.63441
|
[59]
|
Wang, T., Li, X., Tao, Y., Wang, X.J., Li, L.M. and Liu, J.J. (2024) METTL3-Mediated NDUFB5 m6A Modification Promotes Cell Migration and Mitochondrial Respiration to Promote the Wound Healing of Diabetic Foot Ulcer. Journal of Translational Medicine, 22, Article No. 643. https://doi.org/10.1186/s12967-024-05463-6
|
[60]
|
Lin, Y.F., Shen, X.M., Ke, Y.Z., Lan, C., Chen, X.Y., Liang, B., et al. (2022) Activation of Osteoblast Ferroptosis via the METTL3/ASK1‐p38 Signaling Pathway in High Glucose and High Fat (HGHF)‐Induced Diabetic Bone Loss. The FASEB Journal, 36, e22147. https://doi.org/10.1096/fj.202101610r
|
[61]
|
Cao, Z.M., An, Y. and Lu, Y.H. (2024) Altered N6-Methyladenosine Modification Patterns and Transcript Profiles Contributes to Cognitive Dysfunction in High-Fat Induced Diabetic Mice. International Journal of Molecular Sciences, 25, Article 1990. https://doi.org/10.3390/ijms25041990
|
[62]
|
Dong, S., Zhang, J.J., Fu, Y.S., Tang, G., Chen, J.F., Sun, D., et al. (2024) METTL3-Mediated m6A Modification of SIRT1 mRNA Affects the Progression of Diabetic Cataracts through Cellular Autophagy and Senescence. Journal of Translational Medicine, 22, Article No. 865. https://doi.org/10.1186/s12967-024-05691-w
|
[63]
|
Zhou, S.M., Sun, Y., Xing, Y.J., Wang, Z., Wan, S., Yao, X.M., et al. (2022) Exenatide Ameliorates Hydrogen Peroxide-Induced Pancreatic β-Cell Apoptosis through Regulation of METTL3-Mediated m6A Methylation. European Journal of Pharmacology, 924, Article 174960. https://doi.org/10.1016/j.ejphar.2022.174960
|
[64]
|
Luo, Y.F., Li, J.-E., Zeng, H.X., Zhang, Y.Y., Yang, S.Q. and Liu, J.P. (2025) Semaglutide Alleviates the Pancreatic β Cell Function via the METTL14 Signaling and Modulating Gut Microbiota in Type 2 Diabetes Mellitus Mice. Life Sciences, 361, Article 123328. https://doi.org/10.1016/j.lfs.2024.123328
|
[65]
|
Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M. and Sanyal, A.J. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922. https://doi.org/10.1038/s41591-018-0104-9
|
[66]
|
Peng, Z.S., Gong, Y.G., Wang, X.J., He, W.M., Wu, L.T., Zhang, L.Y., et al. (2022) METTL3-m6A-Rubicon Axis Inhibits Autophagy in Nonalcoholic Fatty Liver Disease. Molecular Therapy, 30, 932-946. https://doi.org/10.1016/j.ymthe.2021.09.016
|
[67]
|
Xu, R.H., Xiao, X.L., Zhang, S.G., Pan, J.S., Tang, Y.J., Zhou, W.J., et al. (2022) The Methyltransferase METTL3-Mediated Fatty Acid Metabolism Revealed the Mechanism of Cinnamaldehyde on Alleviating Steatosis. Biomedicine & Pharmacotherapy, 153, Article 113367. https://doi.org/10.1016/j.biopha.2022.113367
|
[68]
|
Li, X.Z., Yuan, B.C., Lu, M., Wang, Y.Q., Ding, N., Liu, C.H., et al. (2021) The Methyltransferase METTL3 Negatively Regulates Nonalcoholic Steatohepatitis (NASH) Progression. Nature Communications, 12, Article No. 7213. https://doi.org/10.1038/s41467-021-27539-3
|
[69]
|
Yang, X.J., Yuan, Y.H. and Xie, D.S. (2021) Low Molecular Pectin Inhibited the Lipid Accumulation by Upregulation of METTL7B. Applied Biochemistry and Biotechnology, 193, 1469-1481. https://doi.org/10.1007/s12010-021-03486-z
|
[70]
|
Haslam, D.W. and James, W.P.T. (2005) Obesity. The Lancet, 366, 1197-1209. https://doi.org/10.1016/s0140-6736(05)67483-1
|
[71]
|
Bradfield, J.P., Vogelezang, S., Felix, J.F., et al. (2019) A Trans-Ancestral Meta-Analysis of Genome-Wide Association Studies Reveals Loci Associated with Childhood Obesity. Human Molecular Genetics, 28, 3327-3338.
|
[72]
|
Xie, R.X., Yan, S.J., Zhou, X.L., Gao, Y.Y., Qian, Y., Hou, J.G., et al. (2023) Activation of METTL3 Promotes White Adipose Tissue Beiging and Combats Obesity. Diabetes, 72, 1083-1094. https://doi.org/10.2337/db22-0775
|
[73]
|
Wang, Y.Q., Gao, M., Zhu, F.X., Li, X.Z., Yang, Y., Yan, Q.X., et al. (2020) METTL3 Is Essential for Postnatal Development of Brown Adipose Tissue and Energy Expenditure in Mice. Nature Communications, 11, Article No. 1648. https://doi.org/10.1038/s41467-020-15488-2
|
[74]
|
Qin, Y.Q., Li, B.H., Arumugam, S., Lu, Q.X., Mankash, S.M., Li, J.Z., et al. (2021) m6A mRNA Methylation-Directed Myeloid Cell Activation Controls Progression of NAFLD and Obesity. Cell Reports, 37, Article 109968. https://doi.org/10.1016/j.celrep.2021.109968
|
[75]
|
Xiao, L., De Jesus, D.F., Ju, C.-W., Wei, J.B., Hu, J., DiStefano-Forti, A., et al. (2024) m6A mRNA Methylation in Brown Fat Regulates Systemic Insulin Sensitivity via an Inter-Organ Prostaglandin Signaling Axis Independent of UCP1. Cell Metabolism, 36, 2207-2227. https://doi.org/10.1016/j.cmet.2024.08.006
|
[76]
|
Zhang, Z.X., Hou, Y.G., Wang, Y., Gao, T., Ma, Z.Y., Yang, Y., et al. (2020) Regulation of Adipocyte Differentiation by METTL4, a 6 mA Methylase. Scientific Reports, 10, Article No. 8285. https://doi.org/10.1038/s41598-020-64873-w
|
[77]
|
Kobayashi, M., Ohsugi, M., Sasako, T., Awazawa, M., Umehara, T., Iwane, A., et al. (2018) The RNA Methyltransferase Complex of WTAP, METTL3, and METTL14 Regulates Mitotic Clonal Expansion in Adipogenesis. Molecular and Cellular Biology, 38, e00116-18. https://doi.org/10.1128/mcb.00116-18
|
[78]
|
Yi, X., Liu, J.Y., Wu, P., Gong, Y., Xu, X.Y. and Li, W.D. (2019) The Key microRNA on Lipid Droplet Formation during Adipogenesis from Human Mesenchymal Stem Cells. Journal of Cellular Physiology, 235, 328-338. https://doi.org/10.1002/jcp.28972
|