[1]
|
Sabri, K., Ells, A.L., Lee, E.Y., Dutta, S. and Vinekar, A. (2022) Retinopathy of Prematurity: A Global Perspective and Recent Developments. Pediatrics, 150, e2021053924. https://doi.org/10.1542/peds.2021-053924
|
[2]
|
Wood, E.H., Chang, E.Y., Beck, K., Hadfield, B.R., Quinn, A.R. and Harper, C.A. (2021) 80 Years of Vision: Preventing Blindness from Retinopathy of Prematurity. Journal of Perinatology, 41, 1216-1224. https://doi.org/10.1038/s41372-021-01015-8
|
[3]
|
Tsai, A.S., Chou, H., Ling, X.C., Al-Khaled, T., Valikodath, N., Cole, E., et al. (2022) Assessment and Management of Retinopathy of Prematurity in the Era of Anti-Vascular Endothelial Growth Factor (VEGF). Progress in Retinal and Eye Research, 88, Article ID: 101018. https://doi.org/10.1016/j.preteyeres.2021.101018
|
[4]
|
Dai, Y., Zhu, L., Zhou, Y., Wu, Y., Chen, D., Wang, R., et al. (2021) Incidence of Retinopathy of Prematurity Treatment in Extremely Preterm Infants in China. Paediatric and Perinatal Epidemiology, 36, 380-389. https://doi.org/10.1111/ppe.12810
|
[5]
|
Fevereiro-Martins, M., Marques-Neves, C., Guimarães, H. and Bicho, M. (2023) Retinopathy of Prematurity: A Review of Pathophysiology and Signaling Pathways. Survey of Ophthalmology, 68, 175-210. https://doi.org/10.1016/j.survophthal.2022.11.007
|
[6]
|
Shao, Z., Dorfman, A.L., Seshadri, S., Djavari, M., Kermorvant-Duchemin, E., Sennlaub, F., et al. (2011) Choroidal Involution Is a Key Component of Oxygen-Induced Retinopathy. Investigative Opthalmology & Visual Science, 52, 6238-6248. https://doi.org/10.1167/iovs.10-6742
|
[7]
|
Stahl, A., Lepore, D., Fielder, A., Fleck, B., Reynolds, J.D., Chiang, M.F., et al. (2019) Ranibizumab versus Laser Therapy for the Treatment of Very Low Birthweight Infants with Retinopathy of Prematurity (RAINBOW): An Open-Label Randomised Controlled Trial. The Lancet, 394, 1551-1559. https://doi.org/10.1016/s0140-6736(19)31344-3
|
[8]
|
Frosini, S., Franco, F., Vicini, G., Nicolosi, C., Varriale, G., Dani, C., et al. (2020) Efficacy and Safety of Intravitreal Bevacizumab for the Treatment of Retinopathy of Prematurity: A Single-Center Retrospective Review. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 3337-3342. https://doi.org/10.1080/14767058.2020.1818214
|
[9]
|
Tran, K.D., Cernichiaro-Espinosa, L.A. and Berrocal, A.M. (2018) Management of Retinopathy of Prematurity—Use of Anti-VEGF Therapy. Asia-Pacific journal of ophthalmology, 7, 56-62.
|
[10]
|
Fleck, B.W., Reynolds, J.D., Zhu, Q., Lepore, D., Marlow, N., Stahl, A., et al. (2022) Time Course of Retinopathy of Prematurity Regression and Reactivation after Treatment with Ranibizumab or Laser in the RAINBOW Trial. Ophthalmology Retina, 6, 628-637. https://doi.org/10.1016/j.oret.2022.02.006
|
[11]
|
Kim, H., Kim, J. and Ryu, J. (2022) Noncoding RNAs as a Novel Approach to Target Retinopathy of Prematurity. Frontiers in Pharmacology, 13, Article 1033341. https://doi.org/10.3389/fphar.2022.1033341
|
[12]
|
Mintz-Hittner, H.A., Kennedy, K.A. and Chuang, A.Z. (2011) Efficacy of Intravitreal Bevacizumab for Stage 3+ Retinopathy of Prematurity. New England Journal of Medicine, 364, 603-615. https://doi.org/10.1056/nejmoa1007374
|
[13]
|
Ortiz-Seller, A., Martorell, P., Barranco, H., Pascual-Camps, I., Morcillo, E. and Ortiz, J.L. (2024) Comparison of Different Agents and Doses of Anti-Vascular Endothelial Growth Factors (Aflibercept, Bevacizumab, Conbercept, Ranibizumab) versus Laser for Retinopathy of Prematurity: A Network Meta-Analysis. Survey of Ophthalmology, 69, 585-605. https://doi.org/10.1016/j.survophthal.2024.02.005
|
[14]
|
Chhablani, J., Rani, P.K., Balakrishnan, D. and Jalali, S. (2013) Unusual Adverse Choroidal Reaction to Intravitreal Bevacizumab in Aggressive Posterior Retinopathy of Prematurity: The Indian Twin Cities ROP Screening (ITCROPS) Data Base Report Number 7. Seminars in Ophthalmology, 29, 222-225. https://doi.org/10.3109/08820538.2013.835842
|
[15]
|
Jalali, S., Balakrishnan, D., Zeynalova, Z., Padhi, T.R. and Rani, P.K. (2012) Serious Adverse Events and Visual Outcomes of Rescue Therapy Using Adjunct Bevacizumab to Laser and Surgery for Retinopathy of Prematurity. the Indian Twin Cities Retinopathy of Prematurity Screening Database Report Number 5. Archives of Disease in Childhood—Fetal and Neonatal Edition, 98, F327-F333. https://doi.org/10.1136/archdischild-2012-302365
|
[16]
|
Chang, Y., Chen, Y., Lai, T., Chou, H., Chen, C., Hsieh, W., et al. (2019) Involution of Retinopathy of Prematurity and Neurodevelopmental Outcomes after Intravitreal Bevacizumab Treatment. PLOS ONE, 14, e0223972. https://doi.org/10.1371/journal.pone.0223972
|
[17]
|
Lee, A. and Shirley, M. (2021) Ranibizumab: A Review in Retinopathy of Prematurity. Pediatric Drugs, 23, 111-117. https://doi.org/10.1007/s40272-020-00433-z
|
[18]
|
Marlow, N., Stahl, A., Lepore, D., Fielder, A., Reynolds, J.D., Zhu, Q., et al. (2021) 2-Year Outcomes of Ranibizumab versus Laser Therapy for the Treatment of Very Low Birthweight Infants with Retinopathy of Prematurity (RAINBOW Extension Study): Prospective Follow-Up of an Open Label, Randomised Controlled Trial. The Lancet Child & Adolescent Health, 5, 698-707. https://doi.org/10.1016/s2352-4642(21)00195-4
|
[19]
|
Chang, E., Josan, A.S., Purohit, R., Patel, C.K. and Xue, K. (2022) A Network Meta-Analysis of Retreatment Rates Following Bevacizumab, Ranibizumab, Aflibercept, and Laser for Retinopathy of Prematurity. Ophthalmology, 129, 1389-1401. https://doi.org/10.1016/j.ophtha.2022.06.042
|
[20]
|
Raghuveer, T.S., Zackula, R.E. and Hartnett, M.E. (2024) Aflibercept to Treat Retinopathy of Prematurity: Need for More Research. Journal of Perinatology, 45, 282-286. https://doi.org/10.1038/s41372-024-01997-1
|
[21]
|
Stahl, A., Sukgen, E.A., Wu, W., Lepore, D., Nakanishi, H., Mazela, J., et al. (2022) Effect of Intravitreal Aflibercept vs Laser Photocoagulation on Treatment Success of Retinopathy of Prematurity: The FIREFLEYE Randomized Clinical Trial. JAMA, 328, 348-359. https://doi.org/10.1001/jama.2022.10564
|
[22]
|
Cheng, Y., Zhu, X., Linghu, D. and Liang, J. (2020) Comparison of the Effectiveness of Conbercept and Ranibizumab Treatment for Retinopathy of Prematurity. Acta Ophthalmologica, 98, e1004-e1008. https://doi.org/10.1111/aos.14460
|
[23]
|
Bai, Y., Nie, H., Wei, S., Lu, X., Ke, X., Ouyang, X., et al. (2018) Efficacy of Intravitreal Conbercept Injection in the Treatment of Retinopathy of Prematurity. British Journal of Ophthalmology, 103, 494-498. https://doi.org/10.1136/bjophthalmol-2017-311662
|
[24]
|
Gao, C., Mu, G., Zhao, H., Zheng, J., Feng, Q., Wu, Y., et al. (2023) Intraocular Pressure Effect of Intravitreal Conbercept Injection for Retinopathy of Prematurity. Frontiers in Pharmacology, 14, Article 1165356. https://doi.org/10.3389/fphar.2023.1165356
|
[25]
|
Li, H., Lei, N., Zhang, M., Li, Y., Xiao, H. and Hao, X. (2012) Pharmacokinetics of a Long-Lasting Anti-VEGF Fusion Protein in Rabbit. Experimental Eye Research, 97, 154-159. https://doi.org/10.1016/j.exer.2011.09.002
|
[26]
|
Cheng, Y., Sun, S., Deng, X., Zhu, X., Linghu, D., Sun, X., et al. (2021) Systemic Conbercept Pharmacokinetics and VEGF Pharmacodynamics Following Intravitreal Injections of Conbercept in Patients with Retinopathy of Prematurity. British Journal of Ophthalmology, 106, 1295-1300. https://doi.org/10.1136/bjophthalmol-2021-319131
|
[27]
|
陈娟, 张韫琦, 谢素贞, 等. 玻璃体腔注射雷珠单抗与康柏西普治疗早产儿视网膜病变疗效比较[J]. 国际眼科杂志, 2024, 24(5): 697-703.
|
[28]
|
Furuncuoglu, U., Vural, A., Kural, A., Onur, I.U. and Yigit, F.U. (2022) Serum Vascular Endothelial Growth Factor, Insulin-Like Growth Factor-1 and Aflibercept Levels in Retinopathy of Prematurity. Japanese Journal of Ophthalmology, 66, 151-158. https://doi.org/10.1007/s10384-021-00895-9
|
[29]
|
Wu, Z., Zhao, J., Lam, W., Yang, M., Chen, L., Huang, X., et al. (2021) Comparison of Clinical Outcomes of Conbercept versus Ranibizumab Treatment for Retinopathy of Prematurity: A Multicentral Prospective Randomised Controlled Trial. British Journal of Ophthalmology, 106, 975-979. https://doi.org/10.1136/bjophthalmol-2020-318026
|
[30]
|
Hartnett, M.E. (2023) Pathophysiology of Retinopathy of Prematurity. Annual Review of Vision Science, 9, 39-70. https://doi.org/10.1146/annurev-vision-093022-021420
|
[31]
|
Chen, W., He, S. and Xiang, D. (2021) Hypoxia-induced Retinal Pigment Epithelium Cell-Derived bFGF Promotes the Migration and Angiogenesis of HUVECs through Regulating TGF-β1/smad2/3 Pathway. Gene, 790, Article ID: 145695. https://doi.org/10.1016/j.gene.2021.145695
|
[32]
|
Fang, L., Barber, A.J. and Shenberger, J.S. (2014) Regulation of Fibroblast Growth Factor 2 Expression in Oxygen-Induced Retinopathy. Investigative Ophthalmology & Visual Science, 56, 207-215. https://doi.org/10.1167/iovs.14-15616
|
[33]
|
Fruttiger, M., Calver, A.R., Krüger, W.H., Mudhar, H.S., Michalovich, D., Takakura, N., et al. (1996) PDGF Mediates a Neuron-Astrocyte Interaction in the Developing Retina. Neuron, 17, 1117-1131. https://doi.org/10.1016/s0896-6273(00)80244-5
|
[34]
|
Yokota, K., Yamada, H., Mori, H., Hattori, Y., Omi, M., Yamamoto, Y., et al. (2024) Platelet-Derived Growth Factor Subunit a Strengthens the Neurovascular Unit and Inhibits Retinal Vascular Regression under Hyperoxic Conditions. International Journal of Molecular Sciences, 25, Article 12945. https://doi.org/10.3390/ijms252312945
|
[35]
|
Abdelgalil, A.A., Alkahtani, H.M. and Al-Jenoobi, F.I. (2019) Sorafenib. Profiles of Drug Substances, Excipients and Related Methodology, 44, 239-266. https://doi.org/10.1016/bs.podrm.2018.11.003
|
[36]
|
Jin, J., Xie, Y., Zhang, J., Wang, J., Dai, S., He, W., et al. (2023) Sunitinib Resistance in Renal Cell Carcinoma: From Molecular Mechanisms to Predictive Biomarkers. Drug Resistance Updates, 67, Article ID: 100929. https://doi.org/10.1016/j.drup.2023.100929
|
[37]
|
Baudin, E., Goichot, B., Berruti, A., Hadoux, J., Moalla, S., Laboureau, S., et al. (2024) Sunitinib for Metastatic Progressive Phaeochromocytomas and Paragangliomas: Results from FIRSTMAPPP, an Academic, Multicentre, International, Randomised, Placebo-Controlled, Double-Blind, Phase 2 Trial. The Lancet, 403, 1061-1070. https://doi.org/10.1016/s0140-6736(23)02554-0
|
[38]
|
Tian, L.L., Ren, B., Gao, X.W., et al. (2014) Inhibition of Retinopathy of Prematurity in Rat by Intravitreal Injection of Sorafenib. International Journal of Ophthalmology, 7, 198-204.
|
[39]
|
Xiong, Q., Li, Z., Zhang, J., Yang, L., Chen, X., Gong, Y., et al. (2022) Exploration of Hub Genes in Retinopathy of Prematurity Based on Bioinformatics Analysis of the Oxygen-Induced Retinopathy Model. Journal of Ophthalmology, 2022, Article ID: 9835524. https://doi.org/10.1155/2022/9835524
|
[40]
|
Heloterä, H. and Alitalo, K. (2007) The VEGF Family, the Inside Story. Cell, 130, 591-592. https://doi.org/10.1016/j.cell.2007.08.012
|
[41]
|
Pérez-Gutiérrez, L. and Ferrara, N. (2023) Biology and Therapeutic Targeting of Vascular Endothelial Growth Factor A. Nature Reviews Molecular Cell Biology, 24, 816-834. https://doi.org/10.1038/s41580-023-00631-w
|
[42]
|
Tang, F., Pacheco, M.T.F., Chen, P., Liang, D. and Li, W. (2018) Secretogranin III Promotes Angiogenesis through MEK/ERK Signaling Pathway. Biochemical and Biophysical Research Communications, 495, 781-786. https://doi.org/10.1016/j.bbrc.2017.11.080
|
[43]
|
Dai, C., Waduge, P., Ji, L., Huang, C., He, Y., Tian, H., et al. (2022) Secretogranin III Stringently Regulates Pathological but Not Physiological Angiogenesis in Oxygen-Induced Retinopathy. Cellular and Molecular Life Sciences, 79, Article No. 63. https://doi.org/10.1007/s00018-021-04111-2
|
[44]
|
He, Y., Tian, H., Dai, C., Wen, R., Li, X., Webster, K.A., et al. (2021) Optimal Efficacy and Safety of Humanized Anti-SCG3 Antibody to Alleviate Oxygen-Induced Retinopathy. International Journal of Molecular Sciences, 23, Article 350. https://doi.org/10.3390/ijms23010350
|
[45]
|
Dai, C., Tian, H., Bhatt, A., Su, G., Webster, K.A. and Li, W. (2022) Safety and Efficacy of Systemic Anti-SCG3 Therapy to Treat Oxygen-Induced Retinopathy. Frontiers in Bioscience-Landmark, 27, Article No. 130. https://doi.org/10.31083/j.fbl2704130
|
[46]
|
Vlodavsky, I., Singh, P., Boyango, I., Gutter-Kapon, L., Elkin, M., Sanderson, R.D., et al. (2016) Heparanase: From Basic Research to Therapeutic Applications in Cancer and Inflammation. Drug Resistance Updates, 29, 54-75. https://doi.org/10.1016/j.drup.2016.10.001
|
[47]
|
Jayatilleke, K.M. and Hulett, M.D. (2020) Heparanase and the Hallmarks of Cancer. Journal of Translational Medicine, 18, Article No. 453. https://doi.org/10.1186/s12967-020-02624-1
|
[48]
|
Hu, J., Song, X., He, Y.Q., Freeman, C., Parish, C.R., Yuan, L., et al. (2012) Heparanase and Vascular Endothelial Growth Factor Expression Is Increased in Hypoxia-Induced Retinal Neovascularization. Investigative Opthalmology & Visual Science, 53, 6810. https://doi.org/10.1167/iovs.11-9144
|
[49]
|
Liang, X.J., Yuan, L., Hu, J., et al. (2012) Phosphomannopentaose Sulfate (PI-88) Suppresses Angiogenesis by Downregulating Heparanase and Vascular Endothelial Growth Factor in an Oxygen-Induced Retinal Neovascularization Animal Model. Molecular Vision, 18, 1649-1657.
|
[50]
|
Cavallaro, G., Filippi, L., Bagnoli, P., La Marca, G., Cristofori, G., Raffaeli, G., et al. (2013) The Pathophysiology of Retinopathy of Prematurity: An Update of Previous and Recent Knowledge. Acta Ophthalmologica, 92, 2-20. https://doi.org/10.1111/aos.12049
|
[51]
|
Rivera, J.C., Sitaras, N., Noueihed, B., Hamel, D., Madaan, A., Zhou, T., et al. (2013) Microglia and Interleukin-1β in Ischemic Retinopathy Elicit Microvascular Degeneration through Neuronal Semaphorin-3a. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 1881-1891. https://doi.org/10.1161/atvbaha.113.301331
|
[52]
|
Zhou, T.E., Rivera, J.C., Bhosle, V.K., Lahaie, I., Shao, Z., Tahiri, H., et al. (2016) Choroidal Involution Is Associated with a Progressive Degeneration of the Outer Retinal Function in a Model of Retinopathy of Prematurity. The American Journal of Pathology, 186, 3100-3116. https://doi.org/10.1016/j.ajpath.2016.08.004
|
[53]
|
Sayah, D.N., Zhou, T.E., Omri, S., Mazzaferri, J., Quiniou, C., Wirth, M., et al. (2020) Novel Anti-Interleukin-1β Therapy Preserves Retinal Integrity: A Longitudinal Investigation Using OCT Imaging and Automated Retinal Segmentation in Small Rodents. Frontiers in Pharmacology, 11, Article 296. https://doi.org/10.3389/fphar.2020.00296
|
[54]
|
Tremblay, S., Miloudi, K., Chaychi, S., Favret, S., Binet, F., Polosa, A., et al. (2013) Systemic Inflammation Perturbs Developmental Retinal Angiogenesis and Neuroretinal Function. Investigative Opthalmology & Visual Science, 54, 8125-8139. https://doi.org/10.1167/iovs.13-12496
|
[55]
|
Hong, H.K., Lee, H.J., Ko, J.H., Park, J.H., Park, J.Y., Choi, C.W., et al. (2014) Neonatal Systemic Inflammation in Rats Alters Retinal Vessel Development and Simulates Pathologic Features of Retinopathy of Prematurity. Journal of Neuroinflammation, 11, Article No. 87. https://doi.org/10.1186/1742-2094-11-87
|
[56]
|
Islam, R., Islam, M.M., Nilsson, P.H., Mohlin, C., Hagen, K.T., Paschalis, E.I., et al. (2021) Combined Blockade of Complement C5 and TLR Co-Receptor CD14 Synergistically Inhibits Pig-To-Human Corneal Xenograft Induced Innate Inflammatory Responses. Acta Biomaterialia, 127, 169-179. https://doi.org/10.1016/j.actbio.2021.03.047
|
[57]
|
Auyeung, K.K., Han, Q. and Ko, J.K. (2016) Astragalus membranaceus: A Review of Its Protection against Inflammation and Gastrointestinal Cancers. The American Journal of Chinese Medicine, 44, 1-22. https://doi.org/10.1142/s0192415x16500014
|
[58]
|
Wu, J., Ke, X., Ma, N., Wang, W., Fu, W., Zhang, H., et al. (2016) Formononetin, an Active Compound of Astragalus membranaceus (Fisch) Bunge, Inhibits Hypoxia-Induced Retinal Neovascularization via the HIF-1α/Vegf Signaling Pathway. Drug Design, Development and Therapy, 10, 3071-3081. https://doi.org/10.2147/dddt.s114022
|
[59]
|
Liu, X., Wang, B., Sun, Y., Jia, Y. and Xu, Z. (2019) Astragalus Root Extract Inhibits Retinal Cell Apoptosis and Repairs Damaged Retinal Neovascularization in Retinopathy of Prematurity. Cell Cycle, 18, 3147-3159. https://doi.org/10.1080/15384101.2019.1669998
|