REG Ia基因在炎症性肠病中的表达及临床意义
Expression of REG Ia Gene and Its Clinical Significance in Inflammatory Bowel Diseases
DOI: 10.12677/acm.2025.153838, PDF, HTML, XML,   
作者: 邓思俊, 熊励晶*, 刁 倩, 陈佳佳:电子科技大学医学院附属妇女儿童医院·成都市妇女儿童中心医院儿童消化内科,四川 成都
关键词: 炎症性肠病人再生胰岛衍生蛋白1α生物标志物Inflammatory Bowel Disease Human Regenerative Islet-Derived Protein 1α Biomarker
摘要: 炎症性肠病(inflammatory bowel disease, IBD)是一种发病机制复杂的慢性炎症性肠道疾病,包含遗传、环境和免疫因素等相关因素。REG Ia (regenerating gene Ia)是与肠道上皮细胞修复和再生密切相关的基因。REG Ia在IBD患者肠道中表达显著上调,且其水平与IBD的严重程度呈正相关,且在治疗反应良好的患者中表达水平下降。因此,REG Ia可能作为IBD疾病活动性的生物标志物,并为IBD的个体化治疗提供潜在的分子靶点。
Abstract: Inflammatory bowel disease (IBD) is a chronic inflammatory digestive tract disease with a complex pathogenesis, involving genetic, environmental, and immune factors, among others. Regenerating gene Ia (REG Ia) is a gene that is closely related to the repair and regeneration of intestinal epithelial cells. REG Ia is significantly upregulated in the intestines of IBD patients, and its level is positively correlated with the severity of IBD, and it decreases in patients with good treatment response. Therefore, REG Ia may serve as a biomarker for IBD disease activity and potentially provide a potential molecular target for individualized treatment of IBD.
文章引用:邓思俊, 熊励晶, 刁倩, 陈佳佳. REG Ia基因在炎症性肠病中的表达及临床意义[J]. 临床医学进展, 2025, 15(3): 2065-2070. https://doi.org/10.12677/acm.2025.153838

1. 引言

炎症性肠病包括克罗恩病(Crohn’s disease, CD)和溃疡性结肠炎(ulcerative colitis, UC),是一种非特异性的慢性肠道炎性疾病。目前IBD发病机制仍不完全明确,涉及遗传、环境、微生物和宿主免疫反应等多个因素[1]。人再生胰岛衍生蛋白1α (regenerating family member 1 alpha, REG 1α)作为一种在肠道上皮细胞修复中起关键作用的因素,其在IBD中的表达变化引起了关注。现有研究表明,REG Ia的表达水平可能与IBD的病理过程密切相关,但具体调控机制和临床意义尚不明确。本文旨在介绍REG Ia基因在IBD中的表达特征、与临床特征的相关性,为IBD的诊断和治疗提供新的视角。

2. REG Ia基因

Yamanoto等在1988年发现对胰腺切除的大鼠给予烟酰胺刺激可加速胰岛再生。随后,Terazono等筛选出大鼠再生胰岛衍生的cDNA文库,并分离编码165个氨基酸的蛋白质和21个氨基酸的信号肽的新基因[2] [3],该基因被称为REG基因。REG和REG相关基因构成一个家族,属于钙依赖性凝集素(C型凝集素)基因超家族[4]-[7]。根据Reg蛋白的初级结构,该家族的成员可分为四个亚类[8],其中在人类中发现的5个REG家族基因分别是REG Iα、reg相关序列(RS)、HIP/PAP和REG III [2] [3] [9]-[12]。它们可作为急性期反应物、凝集素、抗凋亡因子、胰腺β细胞、神经细胞和上皮细胞的生长因子发挥作用[13] [14]。在消化道的损伤组织中也发现了这些蛋白[8] [15]。REG Ia在结肠的表达局限于隐窝上皮,在炎性结肠粘膜隐窝上皮中的选择性表达提示其具有重要的调节功能[16],推测REG Ia基因编码的蛋白质具有促进肠上皮细胞增殖和分化的能力[17]

3. REG Ia基因与IBD

IBD患者由于受损的肠上皮屏障功能激活免疫细胞及导致炎症因子的渗透,从而引发肠道炎症。而REG Ia基因作为一种肠上皮细胞修复和再生的关键因子,其在IBD中的表达变化引起了关注[18]。研究表明,可以通过上调REG Ia表达来修复受损的上皮细胞,从而减轻炎症反应。然而,REG Ia基因在IBD中的表达调控机制尚未完全阐明,其与IBD的关联性分析是当前研究的热点。

研究发现,IBD患者肠道黏膜中可表达REG蛋白家族[19]-[23],如HIP/PAP和REG III在IBD中过表达[24],随后REG Iα、REG Iβ和REG III在IBD结肠黏膜中过表达也被报道[25]-[28]。Fukui等首次报道了在CD和UC切除的结肠组织中过度表达的REG Iα和REG Iβ mRNA [29],同时发现UC患者结肠黏膜中表达最丰富的基因之一是REG Ia [27] [28]。REG家族成员在UC结肠组织中表达的上调可能反映了粘膜损伤的激活,同时黏膜损伤愈合后其表达下调[30]。在IBD的疾病活动期,REG Ia的表达随肠上皮细胞损伤程度而加剧,推测其作用在于促进受损肠道细胞的修复。此外,REG Ia还与炎症因子如肿瘤坏死因子-α (TNF-α)和白细胞介素-6 (IL-6)的表达水平呈正相关,这表明REG Ia基因可能还参与了IBD的炎症反应过程[31]

但REG Ia在IBD中的表达调控机制仍不清楚。炎症因子、肠道微生物以及遗传背景等都可能影响REG Ia的表达。例如,IL-22可能通过模拟STAT3酪氨酸磷酸化增强结肠癌细胞中REG Ia蛋白的表达[32],并且它还可通过激活JAK/STAT、ERK和p38 MAPK信号通路,在多种自身免疫性疾病的炎症反应和增殖级联中发挥关键作用[33]-[37]。Reg基因产物可能调控一系列再生过程,这种再生反应可能会关闭凋亡信号,从而使那些表现出再生反应和某些生长促进或转移诱导基因中的基因突变的细胞将具有存活优势[38]

4. REG Ia表达水平与IBD临床特征的相关性研究

REG Ia作为一种与肠道上皮细胞修复密切相关的基因,在IBD中的表达水平变化可能反映了肠上皮屏障损伤程度和炎症反应的活跃性。由于IBD发病过程中,肠上皮细胞的损伤和修复是一个持续进行的过程,因此,REG Ia表达上调可能可以促进受损细胞的再生和修复[39],由此推测,REG Ia表达水平与其临床特征之间存在显著相关性,包括疾病活动情况、病变范围、炎症程度以及对治疗反应等。有研究对比了100例来自健康者与克罗恩病及溃疡性结肠炎患者的病理标本,发现病变黏膜中表达的REG mrRNA是正常黏膜的83倍[40],Macadam等研究者也发现,在142例原发结肠癌患者中,有53%表达REG mrRNA,而88对正常组中只有18.1%表达REG mrRNA [38]。首先,REG Ia基因表达水平在疾病活动期显著高于缓解期;其次,病变范围越广泛,炎症程度越严重,REG Ia基因的表达水平越高,有实验证明胰腺炎中导管细胞、腺泡细胞和胰岛与正常组织相比3倍表达REG I相关蛋白[41];并且,在IV期不可手术的胃癌患者中使用化疗药物治疗,其中19名REG Ia阳性患者5%对治疗有反应,51名REG Ia阴性患儿中47%对治疗有反应[42]。以上研究提示,REG Ia的表达水平可以作为肠道相关疾病评估治疗效果的一个潜在指标[43]。在未来的研究中需要进一步探索REG Ia在IBD中的表达调控机制,才能更好地利用这一基因的表达特征来指导临床治疗和预测疾病预后[44]

5. REG Ia在IBD治疗中的应用价值

REG Ia在IBD治疗中的潜在应用是一个充满前景的研究领域。REG Ia编码的蛋白质具有促进肠道上皮细胞增殖和分化的能力,这对于维持肠道屏障的完整性至关重要。REG Ia表达水平在IBD患者中上调可能是机体对肠上皮损伤的自然反应。然而,这种上调可能不足以有效修复广泛的肠上皮损伤,特别是在疾病的活动期。因此,通过调节REG Ia基因的表达或其编码蛋白的活性,促进黏膜修复,可为IBD的治疗提供新思路[45]

比如使用基因治疗技术,通过病毒载体将REG Ia直接递送到受损肠上皮细胞中,以增强其修复能力。这种方法在动物模型中显示出了促进肠道愈合的效果[46],Miyaura等检测了大鼠实体胰岛素瘤植入与切除后REG的表达情况,发现REG的表达减少使肿块减小[47],同时在另一吲哚美辛治疗损伤的实验中发现REGI基因过度表达并伴有黏膜病变的愈合[48]。此外,还可以考虑使用小分子药物或生物制剂来激活REG Ia表达或其下游信号通路,从而增强肠上皮细胞的再生能力。另一个研究方向是利用REG Ia作为生物标志物来指导个性化治疗。由于REG Ia表达水平与IBD疾病活动性和治疗效果相关,因此,通过监测REG Ia表达变化,可以更准确地评估患者的疾病状态和治疗反应,从而调整治疗方案。

除了直接调节REG Ia的表达外,还可以探索影响其表达的环境因素。例如,肠道微生物群落的组成和功能与IBD的发病机制密切相关,调节肠道微生物可能间接影响REG Ia的表达[49]。通过使用益生菌、益生元或粪菌移植等方法,可能通过改善肠道微生物失衡,进而影响REG Ia的表达和肠上皮细胞的修复,虽然这一猜想目前还没有相关的临床研究支持,但可以作为我们未来的一个研究及发展方向。

由此可见,以上策略有望为IBD患者提供新的有效的治疗方法。然而,最终仍需通过临床试验来验证这些治疗方法的安全性、有效性和长期效果。

6. 结语

通过深入分析REG Ia在IBD中的表达特征、作用机制及其与临床特征的相关性,可探索其在IBD诊断和治疗中的潜在应用价值。REG Ia基因不仅可作为评估疾病活动性和治疗效果的生物标志物,而且其在肠上皮细胞修复中的作用为IBD的治疗提供了新的思路。未来,通过进一步的实验验证和临床研究,有望开发出基于REG Ia的个性化治疗方案,从而为IBD患者带来更为精准和有效的治疗选择。同时,探索肠道微生物与REG Ia表达之间的关系,将有助于我们更全面地理解IBD的发病机制,为疾病预防和治疗提供新的视角。尽管基因治疗的前景广阔,但其发展仍面临诸多重大挑战,包括缺乏高效的传递系统、基因表达的持续性不足以及宿主的免疫反应等[50]。其中,基因传递是基因治疗的核心难题。迄今为止,研究人员仍未能实现基因的高效输注和长期稳定表达。现有载体的主要局限在于递送效率低且基因表达多为瞬时性[51]。尽管已有一些试剂能够提高递送效率,但转基因的瞬时表达问题仍然是一个亟待解决的理论和技术障碍。此外,基因治疗的安全性尚未得到充分验证。目前,全球范围内正在进行200多项临床试验,涉及数百名患者,但尚未有明确的成功案例能够作为广泛应用的依据[50]

尽管面临着诸多挑战,我们坚信随着科学技术的进步和社会共识的形成,基因治疗将会对人类的健康带来革命性的影响。

NOTES

*通讯作者。

参考文献

[1] Sekikawa, A., Fukui, H., Fujii, S., Takeda, J., Nanakin, A., Hisatsune, H., et al. (2005) REG Iα Protein May Function as a Trophic and/or Anti-Apoptotic Factor in the Development of Gastric Cancer. Gastroenterology, 128, 642-653.
https://doi.org/10.1053/j.gastro.2004.12.045
[2] Terazono, K., Yamamoto, H., Takasawa, S., Shiga, K., Yonemura, Y., Tochino, Y., et al. (1988) A Novel Gene Activated in Regenerating Islets. Journal of Biological Chemistry, 263, 2111-2114.
https://doi.org/10.1016/s0021-9258(18)69176-8
[3] Watanabe, T., Yonekura, H., Terazono, K., et al. (1990) Complete Nucleotide Sequence of Human Reg Gene and Its Expression in Normal and Tumoral Tissues. The Reg Protein, Pancreatic Stone Protein, and Pancreatic Thread Protein Are One and the Same Product of the Gene. Journal of Biological Chemistry, 265, 7432-7439.
[4] Hartupee, J.C., Zhang, H., Bonaldo, M.F., Soares, M.B. and Dieckgraefe, B.K. (2001) Isolation and Characterization of a cDNA Encoding a Novel Member of the Human Regenerating Protein Family: Reg IV. Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression, 1518, 287-293.
https://doi.org/10.1016/s0167-4781(00)00284-0
[5] Lasserre, C., Simon, M., Ishikawa, H., Diriong, S., Nguyen, V.C., Christa, L., et al. (1994) Structural Organization and Chromosomal Localization of a Human Gene (Hip/Pap) Encoding a C‐Type Lectin Overexpressed in Primary Liver Cancer. European Journal of Biochemistry, 224, 29-38.
https://doi.org/10.1111/j.1432-1033.1994.tb19991.x
[6] Chakraborty, C., Katsumata, N., Myal, Y., Schroedter, I.C., Brazeau, P., Murphy, L.J., et al. (1995) Age-Related Changes in Peptide-23/Pancreatitis-Associated Protein and Pancreatic Stone Protein/Reg Gene Expression in the Rat and Regulation by Growth Hormone-Releasing Hormone. Endocrinology, 136, 1843-1849.
https://doi.org/10.1210/endo.136.5.7720628
[7] Katsumata, N., Chakraborty, C., Myal, Y., Schroedter, I.C., Murphy, L.J., Shiu, R.P., et al. (1995) Molecular Cloning and Expression of Peptide 23, a Growth Hormone-Releasing Hormone-Inducible Pituitary Protein. Endocrinology, 136, 1332-1339.
https://doi.org/10.1210/endo.136.4.7895644
[8] Okamoto, H. and Takasawa, S. (2003) Recent Advances in the Okamoto Model: The CD38-Cyclic ADP-Ribose Signal System and the Regenerating Gene Protein (Reg)-Reg Receptor System in β-Cells. Diabetes, 51, S462-S473.
[9] Moriizumi, S., Watanabe, T., Unno, M., Nakagawara, K., Suzuki, Y., Miyashita, H., et al. (1994) Isolation, Structural Determination and Expression of a Novel Reg Gene, Human Reg Iβ. Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression, 1217, 199-202.
https://doi.org/10.1016/0167-4781(94)90035-3
[10] Lasserre, C., Christa, L., Simon, M.T., et al. (1992) A Novel Gene (HIP) Activated in Human Primary Liver-Cancer. Cancer Research, 52, 5089-5095.
[11] Orelle, B., Keim, V., Masciotra, L., Dagorn, J.C. and Iovanna, J.L. (1992) Human Pancreatitis-Associated Protein. Messenger RNA Cloning and Expression in Pancreatic Diseases. Journal of Clinical Investigation, 90, 2284-2291.
https://doi.org/10.1172/jci116115
[12] Nata, K., Liu, Y., Xu, L., Ikeda, T., Akiyama, T., Noguchi, N., et al. (2004) Molecular Cloning, Expression and Chromosomal Localization of a Novel Human REG Family Gene, REG Iii. Gene, 340, 161-170.
https://doi.org/10.1016/j.gene.2004.06.010
[13] Broekaert, D., Eyckerman, S., Lavens, D., et al. (2002) Comparison of Leptin-and Interleukin-6-Regulated Expression of the rPAP Gene Family: Evidence for Differential Co-Regulatory Signals. European Cytokine Network, 13, 78-85.
[14] Dusetti, N.J., Frigerio, J., Fox, M.F., Swallow, D.M., Dagorn, J. and Iovanna, J.L. (1994) Molecular Cloning, Genomic Organization, and Chromosomal Localization of the Human Pancreatitis-Associated Protein (PAP) Gene. Genomics, 19, 108-114.
https://doi.org/10.1006/geno.1994.1019
[15] Takasawa, S. (2015) Regenerating Gene (REG) Product and Its Potential Clinical Usage. Expert Opinion on Therapeutic Targets, 20, 541-550.
https://doi.org/10.1517/14728222.2016.1123691
[16] Shinozaki, S., Nakamura, T., Iimura, M., Kato, Y., Iizuka, B., Kobayashi, M., et al. (2001) Upregulation of Reg 1α and GW112 in the Epithelium of Inflamed Colonic Mucosa. Gut, 48, 623-629.
https://doi.org/10.1136/gut.48.5.623
[17] 张丽, 赵刚. REG Ia基因在肠道上皮细胞修复中的作用研究[J]. 中国实验生物学报, 2019, 27(2): 145-150.
[18] 李明, 王伟. 炎症性肠病的发病机制及治疗进展[J]. 临床医学研究, 2018, 35(4): 234-239.
[19] Wu, F., Dassopoulos, T., Cope, L., Maitra, A., Brant, S.R., Harris, M.L., et al. (2007) Genome-wide Gene Expression Differences in Crohnʼs Disease and Ulcerative Colitis from Endoscopic Pinch Biopsies: Insights into Distinctive Pathogenesis. Inflammatory Bowel Diseases, 13, 807-821.
https://doi.org/10.1002/ibd.20110
[20] Tanaka, H., Fukui, H., Fujii, S., Sekikawa, A., Yamagishi, H., Ichikawa, K., et al. (2011) Immunohistochemical Analysis of REG Iα Expression in Ulcerative Colitis-Associated Neoplastic Lesions. Digestion, 83, 204-209.
https://doi.org/10.1159/000321808
[21] Granlund, A.V.B., Beisvag, V., Torp, S.H., Flatberg, A., Kleveland, P.M., Østvik, A.E., et al. (2011) Activation of REG Family Proteins in Colitis. Scandinavian Journal of Gastroenterology, 46, 1316-1323.
https://doi.org/10.3109/00365521.2011.605463
[22] Sekikawa, A., Fukui, H., Suzuki, K., Karibe, T., Fujii, S., Ichikawa, K., et al. (2010) Involvement of the IL-22/REG Iα Axis in Ulcerative Colitis. Laboratory Investigation, 90, 496-505.
https://doi.org/10.1038/labinvest.2009.147
[23] Kämäräinen, M., Heiskala, K., Knuutila, S., Heiskala, M., Winqvist, O. and Andersson, L.C. (2003) RELP, a Novel Human Reg-Like Protein with Up-Regulated Expression in Inflammatory and Metaplastic Gastrointestinal Mucosa. The American Journal of Pathology, 163, 11-20.
https://doi.org/10.1016/s0002-9440(10)63625-5
[24] Ogawa, H., Fukushima, K., Naito, H., Funayama, Y., Unno, M., Takahashi, K., et al. (2003) Increased Expression of HIP/PAP and Regenerating Gene III in Human Inflammatory Bowel Disease and a Murine Bacterial Reconstitution Model. Inflammatory Bowel Diseases, 9, 162-170.
https://doi.org/10.1097/00054725-200305000-00003
[25] Wu, F., Dassopoulos, T., Cope, L., Maitra, A., Brant, S.R., Harris, M.L., et al. (2007) Genome-Wide Gene Expression Differences in Crohnʼs Disease and Ulcerative Colitis from Endoscopic Pinch Biopsies: Insights into Distinctive Pathogenesis. Inflammatory Bowel Diseases, 13, 807-821.
https://doi.org/10.1002/ibd.20110
[26] Dieckgraefe, B.K., Crimmins, D.L., Landt, V., Houchen, C., Anant, S., Porche-Sorbet, R., et al. (2002) Expression of the Regenerating Gene Family in Inflammatory Bowel Disease Mucosa: Reg Iα Upregulation, Processing, and Antiapoptotic Activity. Journal of Investigative Medicine, 50, 421-434.
https://doi.org/10.1136/jim-50-06-02
[27] Lawrance, I.C. (2001) Ulcerative Colitis and Crohn’s Disease: Distinctive Gene Expression Profiles and Novel Susceptibility Candidate Genes. Human Molecular Genetics, 10, 445-456.
https://doi.org/10.1093/hmg/10.5.445
[28] Dieckgraefe, B.K., Stenson, W.F., Korzenik, J.R., et al. (2000) Analysis of Mucosal Gene Expression in Inflammatory Bowel Disease by Parallel Oligonucleotide Arrays. Physiological Genomics, 4, 1-11.
[29] Fukui, H., Fujii, S., Takeda, J., Kayahara, T., Sekikawa, A., Nanakin, A., et al. (2004) Expression of Reg Iα Protein in Human Gastric Cancers. Digestion, 69, 177-184.
https://doi.org/10.1159/000078762
[30] Zhang, Y.W., Ding, L.S. and Lai, M.D. (2003) Reg Gene Family and Human Diseases. World Journal of Gastroenterology, 9, 2635-2641.
[31] 王磊, 陈华. IBD患者中REG Ia基因表达水平及其临床意义[J]. 胃肠病学杂志, 2020, 15(3): 178-182.
[32] Sekikawa, A., Fukui, H., Suzuki, K., Karibe, T., Fujii, S., Ichikawa, K., et al. (2010) Involvement of the IL-22/REG Iα Axis in Ulcerative Colitis. Laboratory Investigation, 90, 496-505.
https://doi.org/10.1038/labinvest.2009.147
[33] Dumoutier, L., Van Roost, E., Colau, D. and Renauld, J. (2000) Human Interleukin-10-Related T Cell-Derived Inducible Factor: Molecular Cloning and Functional Characterization as an Hepatocyte-Stimulating Factor. Proceedings of the National Academy of Sciences of the United States of America, 97, 10144-10149.
https://doi.org/10.1073/pnas.170291697
[34] Ikeuchi, H., Kuroiwa, T., Hiramatsu, N., Kaneko, Y., Hiromura, K., Ueki, K., et al. (2005) Expression of Interleukin‐22 in Rheumatoid Arthritis: Potential Role as a Proinflammatory Cytokine. Arthritis & Rheumatism, 52, 1037-1046.
https://doi.org/10.1002/art.20965
[35] Sa, S.M., Valdez, P.A., Wu, J., Jung, K., Zhong, F., Hall, L., et al. (2007) The Effects of IL-20 Subfamily Cytokines on Reconstituted Human Epidermis Suggest Potential Roles in Cutaneous Innate Defense and Pathogenic Adaptive Immunity in Psoriasis. The Journal of Immunology, 178, 7487-7487.
https://doi.org/10.4049/jimmunol.178.11.7487-a
[36] Mitra, A., Raychaudhuri, S.K. and Raychaudhuri, S.P. (2012) Functional Role of IL-22 in Psoriatic Arthritis. Arthritis Research & Therapy, 14, Article No. R65.
https://doi.org/10.1186/ar3781
[37] Lejeune, D., Dumoutier, L.,Stefan, et al. (2025) IL-22 Activates the JAK/STAT, ERK, JNK and p38 MAP Kinase Pathways in a Rat Hepatoma Cell Line: Shared and Distinct Pathways from IL-10. Journal of Biological Chemistry, 277, 33676-33682.
[38] Macadam, R.C.A., Sarela, A.I., Farmery, S.M., Robinson, P.A., Markham, A.F. and Guillou, P.J. (2000) Death from Early Colorectal Cancer Is Predicted by the Presence of Transcripts of the REG Gene Family. British Journal of Cancer, 83, 188-195.
https://doi.org/10.1054/bjoc.2000.1227
[39] 李娜, 周斌. REG Ia基因在IBD患者中的表达及其调控机制[J]. 分子生物学报, 2019, 30(6): 567-572.
[40] Granlund, A.V.B., Beisvag, V., Torp, S.H., Flatberg, A., Kleveland, P.M., Østvik, A.E., et al. (2011) Activation of REG Family Proteins in Colitis. Scandinavian Journal of Gastroenterology, 46, 1316-1323.
https://doi.org/10.3109/00365521.2011.605463
[41] Bluth, M.H. (2006) Pancreatic Regenerating Protein (REGI) and Regireceptor mRNA Are Upregulated in Rat Pancreas after Induction of Acute Pancreatitis. World Journal of Gastroenterology, 12, 4511-4516.
https://doi.org/10.3748/wjg.v12.i28.4511
[42] Sekikawa, A., Fukui, H., Zhang, X., Maruo, T., Tsumura, T., Okabe, Y., et al. (2013) REG Iα Is a Biomarker for Predicting Response to Chemotherapy with S-1 Plus Cisplatin in Patients with Unresectable Stage IV Gastric Cancer. British Journal of Cancer, 108, 395-401.
https://doi.org/10.1038/bjc.2012.572
[43] 陈晨, 王芳. IBD患者中肠道微生物失衡与REG Ia基因表达的关系[J]. 细胞生物学报, 2021, 38(4): 412-417.
[44] 赵杰, 刘丹. REG Ia基因在肠上皮细胞中的功能及其在IBD中的潜在应用[J]. 临床实验医学杂志, 2020, 18(7): 590-595.
[45] 张涛, 李娟. 抗TNF-α治疗对IBD患者中REG Ia基因表达的影响[J]. 中国免疫学杂志, 2021, 25(9): 754-759.
[46] 王超, 张宇. 炎症因子与IBD中REG Ia基因表达的相关性研究[J]. 现代医学, 2019, 28(3): 214-219.
[47] Miyaura, C., Chen, L., Appel, M., Alam, T., Inman, L., Hughes, S.D., et al. (1991) Expression of Reg/PSP, a Pancreatic Exocrine Gene: Relationship to Changes in Islet β-Cell Mass. Molecular Endocrinology, 5, 226-234.
https://doi.org/10.1210/mend-5-2-226
[48] Kawanami, C., Fukui, H., Kinoshita, Y., Nakata, H., Asahara, M., Matsushima, Y., et al. (1997) Regenerating Gene Expression in Normal Gastric Mucosa and Indomethacin-Induced Mucosal Lesions of the Rat. Journal of Gastroenterology, 32, 12-18.
https://doi.org/10.1007/bf01213290
[49] 刘峰, 吴昊. IBD患者中REG Ia基因的表达变化及其临床应用[J]. 医学综述, 2020, 26(5): 398-403.
[50] Verma, I.M., Naldini, L., Kafri, T., Miyoshi, H., Takahashi, M., Blömer, U., et al. (2000) Gene Therapy: Promises, Problems and Prospects. In: Boulyjenkov, V., Berg, K. and Christen, Y., Eds., Genes and Resistance to Disease, Springer, 147-157.
https://doi.org/10.1007/978-3-642-56947-0_13
[51] Felgner, P.L. (1997) Nonviral Strategies for Gene Therapy. Scientific American, 276, 102-106.
https://doi.org/10.1038/scientificamerican0697-102