|
[1]
|
Tuo, Y.Y., Li, Y., Li, Y., Ma, J.J., Yang, X.Y., Wu, S.S., et al. (2024) Global, Regional, and National Burden of Thalassemia, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. eClinicalMedicine, 72, Article ID: 102619. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wang, Y.-J., Li, Z.-X., Gu, H.-Q., Zhai, Y., Zhou, Q., Jiang, Y., et al. (2022) China Stroke Statistics: An Update on the 2019 Report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. Stroke and Vascular Neurology, 7, 415-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hankey, G.J. (2017) Stroke. The Lancet, 389, 641-654. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Singer, O.C., Berkefeld, J., Nolte, C.H., Bohner, G., Reich, A., Wiesmann, M., et al. (2015) Collateral Vessels in Proximal Middle Cerebral Artery Occlusion: The ENDOSTROKE Study. Radiology, 274, 851-858. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bang, O.Y., Saver, J.L., Buck, B.H., Alger, J.R., Starkman, S., Ovbiagele, B., et al. (2007) Impact of Collateral Flow on Tissue Fate in Acute Ischaemic Stroke. Journal of Neurology, Neurosurgery & Psychiatry, 79, 625-629. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Powers, W.J., Rabinstein, A.A., Ackerson, T., et al. (2018) Guidelines for the Early Management of Patients with Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 49, e46-e110. [Google Scholar] [CrossRef]
|
|
[7]
|
Saver, J.L., Goyal, M., Bonafe, A., Diener, H., Levy, E.I., Pereira, V.M., et al. (2015) Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke. New England Journal of Medicine, 372, 2285-2295. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tomsick, T.A., Yeatts, S.D., Liebeskind, D.S., Carrozzella, J., Foster, L., Goyal, M., et al. (2014) Endovascular Revascularization Results in IMS III: Intracranial ICA and M1 Occlusions. Journal of NeuroInterventional Surgery, 7, 795-802. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Goyal, M., Demchuk, A.M., Menon, B.K., Eesa, M., Rempel, J.L., Thornton, J., et al. (2015) Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke. New England Journal of Medicine, 372, 1019-1030. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Campbell, B.C.V., Mitchell, P.J., Kleinig, T.J., Dewey, H.M., Churilov, L., Yassi, N., et al. (2015) Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. New England Journal of Medicine, 372, 1009-1018. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Asadi, H., Dowling, R., Yan, B. and Mitchell, P. (2014) Machine Learning for Outcome Prediction of Acute Ischemic Stroke Post Intra-Arterial Therapy. PLOS ONE, 9, e88225. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Monteiro, M., Fonseca, A.C., Freitas, A.T., Pinho e Melo, T., Francisco, A.P., Ferro, J.M., et al. (2018) Using Machine Learning to Improve the Prediction of Functional Outcome in Ischemic Stroke Patients. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15, 1953-1959. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Heo, J., Yoon, J.G., Park, H., Kim, Y.D., Nam, H.S. and Heo, J.H. (2019) Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke. Stroke, 50, 1263-1265. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bacchi, S., Zerner, T., Oakden-Rayner, L., Kleinig, T., Patel, S. and Jannes, J. (2020) Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes. Academic Radiology, 27, e19-e23. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Begoli, E., Bhattacharya, T. and Kusnezov, D. (2019) The Need for Uncertainty Quantification in Machine-Assisted Medical Decision Making. Nature Machine Intelligence, 1, 20-23. [Google Scholar] [CrossRef]
|
|
[16]
|
Kim, D., Choi, K., Kim, J., Hong, J., Choi, S., Park, M., et al. (2023) Deep Learning-Based Personalised Outcome Prediction after Acute Ischaemic Stroke. Journal of Neurology, Neurosurgery & Psychiatry, 94, 369-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Alaka, S.A., Menon, B.K., Brobbey, A., Williamson, T., Goyal, M., Demchuk, A.M., et al. (2020) Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models. Frontiers in Neurology, 11, Article 889. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Calderaro, J., Seraphin, T.P., Luedde, T. and Simon, T.G. (2022) Artificial Intelligence for the Prevention and Clinical Management of Hepatocellular Carcinoma. Journal of Hepatology, 76, 1348-1361. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Panni, P., Gory, B., Xie, Y., Consoli, A., Desilles, J., Mazighi, M., et al. (2019) Acute Stroke with Large Ischemic Core Treated by Thrombectomy. Stroke, 50, 1164-1171. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Vora, N.A., Shook, S.J., Schumacher, H.C., Tievsky, A.L., Albers, G.W., Wechsler, L.R., et al. (2011) A 5-Item Scale to Predict Stroke Outcome after Cortical Middle Cerebral Artery Territory Infarction. Stroke, 42, 645-649. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, Z.Y., Wang, S., Dong, D., Wei, J.W., Fang, C., Zhou, X.Z., et al. (2019) The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics, 9, 1303-1322. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Choy, G., Khalilzadeh, O., Michalski, M., Do, S., Samir, A.E., Pianykh, O.S., et al. (2018) Current Applications and Future Impact of Machine Learning in Radiology. Radiology, 288, 318-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Czap, A.L. and Sheth, S.A. (2021) Overview of Imaging Modalities in Stroke. Neurology, 97, S42-S51. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Moons, K.G.M., Royston, P., Vergouwe, Y., Grobbee, D.E. and Altman, D.G. (2009) Prognosis and Prognostic Research: What, Why, and How? BMJ, 338, b375. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Doheim, M.F., Hagrass, A.I., Elrefaey, M., Al-Bayati, A.R., Bhatt, N.R., Lang, M., et al. (2023) From Therapeutic Nihilism to Armamentarium: A Meta-Analysis of Randomized Clinical Trials Assessing Safety and Efficacy of Endovascular Therapy for Acute Large Ischemic Strokes. Interventional Neuroradiology, Article ID: 15910199231170681.
|
|
[26]
|
Goyal, M., Menon, B.K., van Zwam, W.H., Dippel, D.W.J., Mitchell, P.J., Demchuk, A.M., et al. (2016) Endovascular Thrombectomy after Large-Vessel Ischaemic Stroke: A Meta-Analysis of Individual Patient Data from Five Randomised Trials. The Lancet, 387, 1723-1731. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
van Os, H.J.A., Ramos, L.A., Hilbert, A., van Leeuwen, M., van Walderveen, M.A.A., Kruyt, N.D., et al. (2018) Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms. Frontiers in Neurology, 9, Article 784. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Venema, E., Mulder, M.J.H.L., Roozenbeek, B., Broderick, J.P., Yeatts, S.D., Khatri, P., et al. (2017) Selection of Patients for Intra-Arterial Treatment for Acute Ischaemic Stroke: Development and Validation of a Clinical Decision Tool in Two Randomised Trials. BMJ, 357, j1710. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sommer, J., Dierksen, F., Zeevi, T., Tran, A.T., Avery, E.W., Mak, A., et al. (2024) Deep Learning for Prediction of Post-Thrombectomy Outcomes Based on Admission CT Angiography in Large Vessel Occlusion Stroke. Frontiers in Artificial Intelligence, 7, Article 1369702. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Martín Vicario, C., Rodríguez Salas, D., Maier, A., Hock, S., Kuramatsu, J., Kallmuenzer, B., et al. (2024) Uncertainty-aware Deep Learning for Trustworthy Prediction of Long-Term Outcome after Endovascular Thrombectomy. Scientific Reports, 14, Article No. 5544. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Brugnara, G., Neuberger, U., Mahmutoglu, M.A., Foltyn, M., Herweh, C., Nagel, S., et al. (2020) Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning. Stroke, 51, 3541-3551. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hamann, J., Herzog, L., Wehrli, C., Dobrocky, T., Bink, A., Piccirelli, M., et al. (2020) Machine‐Learning‐Based Outcome Prediction in Stroke Patients with Middle Cerebral Artery‐M1 Occlusions and Early Thrombectomy. European Journal of Neurology, 28, 1234-1243. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Winder, A., Wilms, M., Fiehler, J. and Forkert, N.D. (2021) Treatment Efficacy Analysis in Acute Ischemic Stroke Patients Using in Silico Modeling Based on Machine Learning: A Proof-of-Principle. Biomedicines, 9, Article 1357. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Petrović, I., Broggi, S., Killer-Oberpfalzer, M., Pfaff, J.A.R., Griessenauer, C.J., Milosavljević, I., et al. (2024) Predictors of In-Hospital Mortality after Thrombectomy in Anterior Circulation Large Vessel Occlusion: A Retrospective, Machine Learning Study. Diagnostics, 14, Article 1531. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yang, T.T., Hu, Y.X., Pan, X.D., Lou, S., Zou, J.J., Deng, Q.W., et al. (2023) Interpretable Machine Learning Model Predicting Early Neurological Deterioration in Ischemic Stroke Patients Treated with Mechanical Thrombectomy: A Retrospective Study. Brain Sciences, 13, Article 557. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, J.F., Tao, W.D., Wang, Z., Chen, X., Wu, B. and Liu, M. (2021) Radiomics-Based Prediction of Hemorrhage Expansion among Patients with Thrombolysis/thrombectomy Related-Hemorrhagic Transformation Using Machine Learning. Therapeutic Advances in Neurological Disorders, 14, 1-12.
|
|
[37]
|
Hilbert, A., Ramos, L.A., van Os, H.J.A., Olabarriaga, S.D., Tolhuisen, M.L., Wermer, M.J.H., et al. (2019) Data-Efficient Deep Learning of Radiological Image Data for Outcome Prediction after Endovascular Treatment of Patients with Acute Ischemic Stroke. Computers in Biology and Medicine, 115, Article ID: 103516. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhang, H.Y., Polson, J., Nael, K., Salamon, N., Yoo, B., Speier, W., et al. (2021) A Machine Learning Approach to Predict Acute Ischemic Stroke Thrombectomy Reperfusion Using Discriminative MR Image Features. 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Athens, 27-30 July 2021, 1-4. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Liggins, J.T.P., Yoo, A.J., Mishra, N.K., Wheeler, H.M., Straka, M., Leslie-Mazwi, T.M., et al. (2013) A Score Based on Age and DWI Volume Predicts Poor Outcome Following Endovascular Treatment for Acute Ischemic Stroke. International Journal of Stroke, 10, 705-709. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, Y., Liu, Y.C., Hong, Z., Wang, Y. and Lu, X.L. (2022) Combining Machine Learning with Radiomics Features in Predicting Outcomes after Mechanical Thrombectomy in Patients with Acute Ischemic Stroke. Computer Methods and Programs in Biomedicine, 225, Article ID: 107093. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Oura, D., Takamiya, S., Ihara, R., Niiya, Y. and Sugimori, H. (2023) Predicting Mechanical Thrombectomy Outcome and Time Limit through ADC Value Analysis: A Comprehensive Clinical and Simulation Study Using Machine Learning. Diagnostics, 13, Article 2138. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Heo, J., Yoon, Y., Han, H.J., Kim, J., Park, K.Y., Kim, B.M., et al. (2023) Prediction of Cerebral Hemorrhagic Transformation after Thrombectomy Using a Deep Learning of Dual-Energy CT. European Radiology, 34, 3840-3848. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhang, J., Yang, Y., Sun, H., et al. (2014) Hemorrhagic Transformation after Cerebral Infarction: Current Concepts and Challenges. Annals of Translational Medicine, 2, Article 81.
|
|
[44]
|
Jadhav, A.P., Molyneaux, B.J., Hill, M.D. and Jovin, T.G. (2018) Care of the Post-Thrombectomy Patient. Stroke, 49, 2801-2807. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Khatri, R., McKinney, A.M., Swenson, B. and Janardhan, V. (2012) Blood-Brain Barrier, Reperfusion Injury, and Hemorrhagic Transformation in Acute Ischemic Stroke. Neurology, 79, S52-S57. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yu, W., Xia, C., Tao, B., Xiao, Y., Gao, Z.Y., Zhu, F., et al. (2023) CT Hyperdense Lesions after Endovascular Therapy in Acute Ischemic Stroke: Imaging Findings and Clinical Significance. Cerebrovascular Diseases, 53, 607-617. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Heo, J., Sim, Y., Kim, B.M., Kim, D.J., Kim, Y.D., Nam, H.S., et al. (2024) Radiomics Using Non-Contrast CT to Predict Hemorrhagic Transformation Risk in Stroke Patients Undergoing Revascularization. European Radiology, 34, 6005-6015. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zeng, W.X., Li, W., Huang, K.B., Lin, Z.Z., Dai, H., He, Z.L., et al. (2022) Predicting Futile Recanalization, Malignant Cerebral Edema, and Cerebral Herniation Using Intelligible Ensemble Machine Learning Following Mechanical Thrombectomy for Acute Ischemic Stroke. Frontiers in Neurology, 13, Article 982783. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Xu, H.F., Jia, B.X., Huo, X.C., Mo, D.P., Ma, N., Gao, F., et al. (2020) Predictors of Futile Recanalization after Endovascular Treatment in Patients with Acute Ischemic Stroke in a Multicenter Registry Study. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 105067. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Da Ros, V., Cavallo, A., Di Donna, C., D’Onofrio, A., Trulli, M., Di Candia, S., et al. (2024) Ensemble Machine Learning to Predict Futile Recanalization after Mechanical Thrombectomy Based on Non-Contrast CT Imaging. Journal of Stroke and Cerebrovascular Diseases, 33, Article ID: 107890. [Google Scholar] [CrossRef] [PubMed]
|