[1]
|
Celli, B., Fabbri, L., Criner, G., Martinez, F.J., Mannino, D., Vogelmeier, C., et al. (2022) Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. American Journal of Respiratory and Critical Care Medicine, 206, 1317-1325. https://doi.org/10.1164/rccm.202204-0671pp
|
[2]
|
GOLD (2023) Global Strategy for Prevention, Diagnosis and Management of COPD: 2024 Report.
|
[3]
|
Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012) Global and Regional Mortality from 235 Causes of Death for 20 Age Groups in 1990 and 2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2095-2128. https://doi.org/10.1016/s0140-6736(12)61728-0
|
[4]
|
Vos, T., Flaxman, A.D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., et al. (2012) Years Lived with Disability (YLDs) for 1160 Sequelae of 289 Diseases and Injuries 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2163-2196. https://doi.org/10.1016/s0140-6736(12)61729-2
|
[5]
|
Adeloye, D., Chua, S., Lee, C., Basquill, C., Papana, A., Theodoratou, E., et al. (2015) Global and Regional Estimates of COPD Prevalence: Systematic Review and Meta-Analysis. Journal of Global Health, 5, Article ID: 020415. https://doi.org/10.7189/jogh.05.020415
|
[6]
|
Adeloye, D., Song, P., Zhu, Y., Campbell, H., Sheikh, A. and Rudan, I. (2022) Global, Regional, and National Prevalence of, and Risk Factors for, Chronic Obstructive Pulmonary Disease (COPD) in 2019: A Systematic Review and Modelling Analysis. The Lancet Respiratory Medicine, 10, 447-458. https://doi.org/10.1016/s2213-2600(21)00511-7
|
[7]
|
GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, Regional, and National Age-Sex Specific All-Cause and Cause-Specific Mortality for 240 Causes of Death, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. The Lancet (London, England), 385, 117-171. https://doi.org/10.1016/S0140-6736(14)61682-2
|
[8]
|
Xia, J., Zhao, J., Shang, J., Li, M., Zeng, Z., Zhao, J., et al. (2015) Increased IL-33 Expression in Chronic Obstructive Pulmonary Disease. American Journal of Physiology-Lung Cellular and Molecular Physiology, 308, L619-L627. https://doi.org/10.1152/ajplung.00305.2014
|
[9]
|
Barnes, P.J. (2016) Inflammatory Mechanisms in Patients with Chronic Obstructive Pulmonary Disease. Journal of Allergy and Clinical Immunology, 138, 16-27. https://doi.org/10.1016/j.jaci.2016.05.011
|
[10]
|
GOLD (2024) Global Strategy for Prevention, Diagnosis and Management of COPD: 2025 Report.
|
[11]
|
Gandhi, N.A., Pirozzi, G. and Graham, N.M.H. (2017) Commonality of the IL-4/IL-13 Pathway in Atopic Diseases. Expert Review of Clinical Immunology, 13, 425-437. https://doi.org/10.1080/1744666x.2017.1298443
|
[12]
|
Hogg, J.C., Chu, F., Utokaparch, S., Woods, R., Elliott, W.M., Buzatu, L., et al. (2004) The Nature of Small-Airway Obstruction in Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 350, 2645-2653. https://doi.org/10.1056/nejmoa032158
|
[13]
|
Li, A., Chan, H.P., Gan, P.X.L., Liew, M.F., Wong, W.S.F. and Lim, H. (2021) Eosinophilic Endotype of Chronic Obstructive Pulmonary Disease: Similarities and Differences from Asthma. The Korean Journal of Internal Medicine, 36, 1305-1319. https://doi.org/10.3904/kjim.2021.180
|
[14]
|
Singh, D., Kolsum, U., Brightling, C.E., Locantore, N., Agusti, A. and Tal-Singer, R. (2014) Eosinophilic Inflammation in COPD: Prevalence and Clinical Characteristics. European Respiratory Journal, 44, 1697-1700. https://doi.org/10.1183/09031936.00162414
|
[15]
|
Bafadhel, M., McKenna, S., Terry, S., Mistry, V., Reid, C., Haldar, P., et al. (2011) Acute Exacerbations of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 184, 662-671. https://doi.org/10.1164/rccm.201104-0597oc
|
[16]
|
Fieldes, M., Bourguignon, C., Assou, S., Nasri, A., Fort, A., Vachier, I., et al. (2021) Targeted Therapy in Eosinophilic Chronic Obstructive Pulmonary Disease. ERJ Open Research, 7, 00437-02020. https://doi.org/10.1183/23120541.00437-2020
|
[17]
|
Hastie, A.T., Martinez, F.J., Curtis, J.L., et al. (2017) Association of Sputum and Blood Eosinophil Concentrations with Clinical Measures of COPD Severity: An Analysis of the SPIROMICS Cohort. The Lancet Respiratory Medicine, 5, 956-967.
|
[18]
|
Kerkhof, M., Sonnappa, S., Postma, D.S., Brusselle, G., Agustí, A., Anzueto, A., et al. (2017) Blood Eosinophil Count and Exacerbation Risk in Patients with COPD. European Respiratory Journal, 50, Article ID: 1700761. https://doi.org/10.1183/13993003.00761-2017
|
[19]
|
Vedel-Krogh, S., Nielsen, S.F., Lange, P., Vestbo, J. and Nordestgaard, B.G. (2016) Blood Eosinophils and Exacerbations in Chronic Obstructive Pulmonary Disease. The Copenhagen General Population Study. American Journal of Respiratory and Critical Care Medicine, 193, 965-974. https://doi.org/10.1164/rccm.201509-1869oc
|
[20]
|
Pavord, I.D., Lettis, S., Anzueto, A. and Barnes, N. (2016) Blood Eosinophil Count and Pneumonia Risk in Patients with Chronic Obstructive Pulmonary Disease: A Patient-Level Meta-Analysis. The Lancet Respiratory Medicine, 4, 731-741. https://doi.org/10.1016/s2213-2600(16)30148-5
|
[21]
|
Vedel-Krogh, S., Nordestgaard, B.G., Lange, P., Vestbo, J. and Nielsen, S.F. (2018) Blood Eosinophil Count and Risk of Pneumonia Hospitalisations in Individuals with COPD. European Respiratory Journal, 51, Article ID: 1800120. https://doi.org/10.1183/13993003.00120-2018
|
[22]
|
Pavord, I.D., Chanez, P., Criner, G.J., Kerstjens, H.A.M., Korn, S., Lugogo, N., et al. (2017) Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 377, 1613-1629. https://doi.org/10.1056/nejmoa1708208
|
[23]
|
GSK (2024) GSK Announces Positive Results from Phase III Trial of Nucala (Mepolizumab) in COPD.
|
[24]
|
Freeman, C.M., Curtis, J.L. and Hastie, A.T. (2023) Finding the Right Biological: Eosinophil Subset Differences in Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 208, 121-123. https://doi.org/10.1164/rccm.202305-0811ed
|
[25]
|
Kay, A.B. (2001) Allergy and Allergic Diseases. New England Journal of Medicine, 344, 30-37. https://doi.org/10.1056/nejm200101043440106
|
[26]
|
Palm, N.W., Rosenstein, R.K. and Medzhitov, R. (2012) Allergic Host Defences. Nature, 484, 465-472. https://doi.org/10.1038/nature11047
|
[27]
|
Smirnov, D.V., Smirnova, M.G., Korobko, V.G. and Frolova, E.I. (1995) Tandem Arrangement of Human Genes for Interleukin-4 and Interleukin-13: Resemblance in Their Organization. Gene, 155, 277-281. https://doi.org/10.1016/0378-1119(94)00720-d
|
[28]
|
Chomarat, P. and Banchereau, J. (1998) Interleukin-4 and Lnterleukin-13: Their Similarities and Discrepancies. International Reviews of Immunology, 17, 1-52. https://doi.org/10.3109/08830189809084486
|
[29]
|
McCormick, S.M. and Heller, N.M. (2015) Commentary: IL-4 and IL-13 Receptors and Signaling. Cytokine, 75, 38-50. https://doi.org/10.1016/j.cyto.2015.05.023
|
[30]
|
Walter, M.R., Cook, W.J., Zhao, B.G., Cameron, R.P., Ealick, S.E., Walter, R.L., et al. (1992) Crystal Structure of Recombinant Human Interleukin-4. Journal of Biological Chemistry, 267, 20371-20376. https://doi.org/10.1016/s0021-9258(19)88711-2
|
[31]
|
Hershey, G.K.K. (2003) IL-13 Receptors and Signaling Pathways: An Evolving Web. Journal of Allergy and Clinical Immunology, 111, 677-690. https://doi.org/10.1067/mai.2003.1333
|
[32]
|
Eisenmesser, E.Z., Horita, D.A., Altieri, A.S. and Byrd, R.A. (2001) Solution Structure of Interleukin-13 and Insights into Receptor Engagement. Journal of Molecular Biology, 310, 231-241. https://doi.org/10.1006/jmbi.2001.4765
|
[33]
|
Mueller, T.D., Zhang, J., Sebald, W. and Duschl, A. (2002) Structure, Binding, and Antagonists in the IL-4/IL-13 Receptor System. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1592, 237-250. https://doi.org/10.1016/s0167-4889(02)00318-x
|
[34]
|
Gadani, S.P., Cronk, J.C., Norris, G.T. and Kipnis, J. (2012) IL-4 in the Brain: A Cytokine to Remember. The Journal of Immunology, 189, 4213-4219. https://doi.org/10.4049/jimmunol.1202246
|
[35]
|
Junttila, I.S. (2018) Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Frontiers in Immunology, 9, Article 888. https://doi.org/10.3389/fimmu.2018.00888
|
[36]
|
Wills-Karp, M. and Finkelman, F.D. (2008) Untangling the Complex Web of IL-4-and Il-13-Mediated Signaling Pathways. Science Signaling, 1, pe55. https://doi.org/10.1126/scisignal.1.51.pe55
|
[37]
|
Chang, H.Y. and Nadeau, K.C. (2017) IL-4Rα Inhibitor for Atopic Disease. Cell, 170, 222. https://doi.org/10.1016/j.cell.2017.06.046
|
[38]
|
Chen, F., Wang, Y., Chen, X., Yang, N. and Li, L. (2023) Targeting Interleukin 4 and Interleukin 13: A Novel Therapeutic Approach in Bullous Pemphigoid. Annals of Medicine, 55, 1156-1170. https://doi.org/10.1080/07853890.2023.2188487
|
[39]
|
Sun, X.J., Wang, L., Zhang, Y., Yenush, L., Myers Jr, M.G., Glasheen, E., et al. (1995) Role of IRS-2 in Insulin and Cytokine Signalling. Nature, 377, 173-177. https://doi.org/10.1038/377173a0
|
[40]
|
Heller, N.M., Qi, X., Gesbert, F. and Keegan, A.D. (2012) The Extracellular and Transmembrane Domains of the γC and Interleukin (IL)-13 Receptor α1 Chains, Not Their Cytoplasmic Domains, Dictate the Nature of Signaling Responses to IL-4 and IL-13. Journal of Biological Chemistry, 287, 31948-31961. https://doi.org/10.1074/jbc.m112.348896
|
[41]
|
Obiri, N.I., Debinski, W., Leonard, W.J. and Puri, R.K. (1995) Receptor for Interleukin 13: Interaction with Interleukin 4 by a Mechanism that Does Not Involve the Common γ Chain Shared by Receptors for Interleukins 2, 4, 7, 9, and 15. Journal of Biological Chemistry, 270, 8797-8804. https://doi.org/10.1074/jbc.270.15.8797
|
[42]
|
Kapp, U., Yeh, W.-C, Patterson, B., Elia, A.J., Kägi, D., Ho, A., et al. (1999) Interleukin 13 Is Secreted by and Stimulates the Growth of Hodgkin and Reed-Sternberg Cells. The Journal of Experimental Medicine, 189, 1939-1946. https://doi.org/10.1084/jem.189.12.1939
|
[43]
|
Zheng, T., Zhu, Z., Wang, Z., Homer, R.J., Ma, B., Riese, R.J., et al. (2000) Inducible Targeting of IL-13 to the Adult Lung Causes Matrix Metalloproteinase-and Cathepsin-Dependent Emphysema. Journal of Clinical Investigation, 106, 1081-1093. https://doi.org/10.1172/jci10458
|
[44]
|
Rabe, K.F., Rennard, S., Martinez, F.J., Celli, B.R., Singh, D., Papi, A., et al. (2023) Targeting Type 2 Inflammation and Epithelial Alarmins in Chronic Obstructive Pulmonary Disease: A Biologics Outlook. American Journal of Respiratory and Critical Care Medicine, 208, 395-405. https://doi.org/10.1164/rccm.202303-0455ci
|
[45]
|
Cooper, P.R., Poll, C.T., Barnes, P.J. and Sturton, R.G. (2010) Involvement of IL-13 in Tobacco Smoke-Induced Changes in the Structure and Function of Rat Intrapulmonary Airways. American Journal of Respiratory Cell and Molecular Biology, 43, 220-226. https://doi.org/10.1165/rcmb.2009-0117oc
|
[46]
|
Kolsum, U., Damera, G., Pham, T., Southworth, T., Mason, S., Karur, P., et al. (2017) Pulmonary Inflammation in Patients with Chronic Obstructive Pulmonary Disease with Higher Blood Eosinophil Counts. Journal of Allergy and Clinical Immunology, 140, 1181-1184.E7. https://doi.org/10.1016/j.jaci.2017.04.027
|
[47]
|
Simpson, E.L., Bieber, T., Guttman-Yassky, E., Beck, L.A., Blauvelt, A., Cork, M.J., et al. (2016) Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. New England Journal of Medicine, 375, 2335-2348. https://doi.org/10.1056/nejmoa1610020
|
[48]
|
Beck, L.A., Thaçi, D., Hamilton, J.D., Graham, N.M., Bieber, T., Rocklin, R., et al. (2014) Dupilumab Treatment in Adults with Moderate-to-Severe Atopic Dermatitis. New England Journal of Medicine, 371, 130-139. https://doi.org/10.1056/nejmoa1314768
|
[49]
|
Thaçi, D., Simpson, E.L., Beck, L.A., Bieber, T., Blauvelt, A., Papp, K., et al. (2016) Efficacy and Safety of Dupilumab in Adults with Moderate-to-Severe Atopic Dermatitis Inadequately Controlled by Topical Treatments: A Randomised, Placebo-Controlled, Dose-Ranging Phase 2b Trial. The Lancet, 387, 40-52. https://doi.org/10.1016/s0140-6736(15)00388-8
|
[50]
|
Kuo, A.M., Gu, S., Stoll, J., Moy, A.P., Dusza, S.W., Gordon, A., et al. (2023) Management of Immune-Related Cutaneous Adverse Events with Dupilumab. Journal for ImmunoTherapy of Cancer, 11, e007324. https://doi.org/10.1136/jitc-2023-007324
|
[51]
|
Beck, L.A., Deleuran, M., Bissonnette, R., de Bruin-Weller, M., Galus, R., Nakahara, T., et al. (2022) Dupilumab Provides Acceptable Safety and Sustained Efficacy for up to 4 Years in an Open-Label Study of Adults with Moderate-to-Severe Atopic Dermatitis. American Journal of Clinical Dermatology, 23, 393-408. https://doi.org/10.1007/s40257-022-00685-0
|
[52]
|
Wenzel, S., Ford, L., Pearlman, D., Spector, S., Sher, L., Skobieranda, F., et al. (2013) Dupilumab in Persistent Asthma with Elevated Eosinophil Levels. New England Journal of Medicine, 368, 2455-2466. https://doi.org/10.1056/nejmoa1304048
|
[53]
|
Bridgewood, C., Wittmann, M., Macleod, T., Watad, A., Newton, D., Bhan, K., et al. (2022) T Helper 2 IL-4/IL-13 Dual Blockade with Dupilumab Is Linked to Some Emergent T Helper 17-Type Diseases, Including Seronegative Arthritis and Enthesitis/Enthesopathy, but Not to Humoral Autoimmune Diseases. Journal of Investigative Dermatology, 142, 2660-2667. https://doi.org/10.1016/j.jid.2022.03.013
|
[54]
|
Olaguibel, J., Sastre, J., Rodríguez, J. and del Pozo, V. (2022) Eosinophilia Induced by Blocking the IL-4/IL-13 Pathway: Potential Mechanisms and Clinical Outcomes. Journal of Investigational Allergy and Clinical Immunology, 32, 165-180. https://doi.org/10.18176/jiaci.0823
|
[55]
|
Li, Y., Deng, Z., Wen, J., Ou, C., Cen, X., Liao, Y., et al. (2024) Efficacy of Dupilumab and Risk Factors for Dupilumab-Induced Hypereosinophilia in Severe Asthma: A Preliminary Study from China. Annals of Medicine, 56, Article 2311843. https://doi.org/10.1080/07853890.2024.2311843
|
[56]
|
Li, S.H., Nehme, K.F., Moshkovich, A., et al. (2024) Eosinophilia and Adverse Effects of Dupilumab for Respiratory Indications: A Real-World Setting. The Journal of Allergy and Clinical Immunology: In Practice, 13, 121-131. https://doi.org/10.1016/j.jaip.2024.09.013
|
[57]
|
Yamazaki, K., Nomizo, T., Hatanaka, K., Hayama, N., Oguma, T. and Asano, K. (2022) Eosinophilic Granulomatosis with Polyangiitis after Treatment with Dupilumab. Journal of Allergy and Clinical Immunology: Global, 1, 180-182. https://doi.org/10.1016/j.jacig.2022.03.006
|
[58]
|
Menzella, F., Montanari, G., Patricelli, G., Cavazza, A., Galeone, C., Ruggiero, P., et al. (2019) A Case of Chronic Eosinophilic Pneumonia in a Patient Treated with Dupilumab. Therapeutics and Clinical Risk Management, 15, 869-875. https://doi.org/10.2147/tcrm.s207402
|
[59]
|
De Groot, A.E., Myers, K.V., Krueger, T.E.G., Brennen, W.N., Amend, S.R. and Pienta, K.J. (2022) Targeting Interleukin 4 Receptor Alpha on Tumor-Associated Macrophages Reduces the Pro-Tumor Macrophage Phenotype. Neoplasia, 32, Article ID: 100830. https://doi.org/10.1016/j.neo.2022.100830
|
[60]
|
Jaén, M., Martín-Regalado, Á., Bartolomé, R.A., Robles, J. and Casal, J.I. (2022) Interleukin 13 Receptor Alpha 2 (IL13Rα2): Expression, Signaling Pathways and Therapeutic Applications in Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1877, Article ID: 188802. https://doi.org/10.1016/j.bbcan.2022.188802
|
[61]
|
LaMarche, N.M., Hegde, S., Park, M.D., Maier, B.B., Troncoso, L., Le Berichel, J., et al. (2023) An IL-4 Signalling Axis in Bone Marrow Drives Pro-Tumorigenic Myelopoiesis. Nature, 625, 166-174. https://doi.org/10.1038/s41586-023-06797-9
|
[62]
|
Macagno, N., Mastorino, L., Siliquini, N., Santaniello, U., Gelato, F., Cavaliere, G., et al. (2024) Safety of Dupilumab in Patients with Cancer. Journal of the European Academy of Dermatology and Venereology, 38, e764-e766. https://doi.org/10.1111/jdv.19873
|
[63]
|
Owji, S., Ungar, B., Dubin, D.P., Poplausky, D., Young, J.N., Ghalili, S., et al. (2023) No Association between Dupilumab Use and Short-Term Cancer Development in Atopic Dermatitis Patients. The Journal of Allergy and Clinical Immunology: In Practice, 11, 1548-1551. https://doi.org/10.1016/j.jaip.2022.12.018
|
[64]
|
Hamp, A., Hanson, J., Schwartz, R.A., Lambert, W.C. and Alhatem, A. (2023) Dupilumab-Associated Mycosis Fungoides: A Cross-Sectional Study. Archives of Dermatological Research, 315, 2561-2569. https://doi.org/10.1007/s00403-023-02652-z
|
[65]
|
Hasan, I., Parsons, L., Duran, S. and Zinn, Z. (2024) Dupilumab Therapy for Atopic Dermatitis Is Associated with Increased Risk of Cutaneous T Cell Lymphoma: A Retrospective Cohort Study. Journal of the American Academy of Dermatology, 91, 255-258. https://doi.org/10.1016/j.jaad.2024.03.039
|
[66]
|
Eichenfield, L.F., Bieber, T., Beck, L.A., Simpson, E.L., Thaçi, D., de Bruin-Weller, M., et al. (2019) Infections in Dupilumab Clinical Trials in Atopic Dermatitis: A Comprehensive Pooled Analysis. American Journal of Clinical Dermatology, 20, 443-456. https://doi.org/10.1007/s40257-019-00445-7
|
[67]
|
Blauvelt, A., Simpson, E.L., Tyring, S.K., Purcell, L.A., Shumel, B., Petro, C.D., et al. (2019) Dupilumab Does Not Affect Correlates of Vaccine-Induced Immunity: A Randomized, Placebo-Controlled Trial in Adults with Moderate-to-Severe Atopic Dermatitis. Journal of the American Academy of Dermatology, 80, 158-167.E1. https://doi.org/10.1016/j.jaad.2018.07.048
|
[68]
|
Braddock, M., Hanania, N.A., Sharafkhaneh, A., Colice, G. and Carlsson, M. (2018) Potential Risks Related to Modulating Interleukin-13 and Interleukin-4 Signalling: A Systematic Review. Drug Safety, 41, 489-509. https://doi.org/10.1007/s40264-017-0636-9
|