度普利尤单抗在慢性阻塞性肺疾病治疗中的研究进展
Research Progress of Dupilumab in the Treatment of Chronic Obstructive Pulmonary Disease
DOI: 10.12677/acm.2025.153840, PDF, HTML, XML,   
作者: 刘 燕*:新乡医学院第一附属医院呼吸与危重症医学科,河南 新乡;钟 飞:深圳市龙华区人民医院民强社区健康服务中心,广东 深圳
关键词: 度普利尤单抗生物制剂慢性阻塞性肺疾病治疗不良反应Dupilumab Biological Agents Chronic Obstructive Pulmonary Disease Treatment Adverse Reactions
摘要: 慢性阻塞性肺疾病是一种常见的慢性呼吸系统疾病,以慢性呼吸道症状及持续性气流受限为特征,常表现为反复咳嗽、咳痰、进行性加重的呼吸困难等症状。慢阻肺为目前全球前三大死亡原因之一,许多患者长年遭受疾病的折磨,造成重大并逐年攀升的经济和社会负担。2024年9月27日,度普利尤单抗被中国国家药品监督管理局(NMPA)批准,用于血嗜酸性粒细胞升高且控制不佳的慢性阻塞性肺疾病成人患者。目前关于度普利尤单抗用于治疗慢阻肺的研究报道较少,对于度普利尤单抗的安全性认识不足。本文针对度普利尤单抗在慢性阻塞性肺疾病治疗中的机制及安全性进行综述,以期为临床提供治疗参考及慢阻肺治疗开发提供新的途径。
Abstract: Chronic obstructive pulmonary disease is a common chronic respiratory disease characterized by chronic respiratory symptoms and persistent airflow limitation, often manifested as recurrent coughing, sputum production, progressively worsening dyspnea and other symptoms. Chronic obstructive pulmonary disease (COPD) is currently one of the top three causes of death worldwide, and many patients suffer from the disease for years, causing significant and increasing economic and social burdens. On September 27, 2024, dupilumab was approved by the National Medical Products Administration (NMPA) of China for use in adult patients with chronic obstructive pulmonary disease who have elevated blood eosinophils and poor control. At present, there are few research reports on the use of dupilumab for the treatment of chronic obstructive pulmonary disease, and there is insufficient understanding of the safety of dupilumab. This article reviews the mechanism and safety of dupilumab in the treatment of chronic obstructive pulmonary disease, aiming to provide clinical references and new approaches for the development of COPD treatment.
文章引用:刘燕, 钟飞. 度普利尤单抗在慢性阻塞性肺疾病治疗中的研究进展[J]. 临床医学进展, 2025, 15(3): 2082-2090. https://doi.org/10.12677/acm.2025.153840

1. 引言

慢性阻塞性肺疾病(COPD,简称“慢阻肺”)是一种异质性肺部病况,以慢性呼吸道症状(如呼吸困难、咳嗽、痰液生成和/或加重)为特征,这些症状是由于气道异常(支气管炎、细支气管炎)和/或肺泡异常(肺气肿)所产生,并导致的持续性(常为进展性)气流阻塞[1]。慢阻肺患者通常主诉呼吸困难、活动受限和/或咳嗽,伴或不伴咳痰,可能反复发生急性加重,即以呼吸道症状加剧为特征的急性呼吸事件,需要采取特定的预防和治疗措施[2]。慢阻肺是全球发病和死亡的主要原因之一,造成重大并逐年攀升的经济和社会负担[3] [4]。基于阻塞性肺疾病负担(BOLD)项目和其他大规模流行病学研究,估计慢阻肺的全球患病率为10.3% [5] [6]。全球每年约有300万人因慢阻肺死亡[7]。慢阻肺的治疗目标是降低发病率和死亡率。慢阻肺稳定期的治疗主要是吸入药物。尽管规律标准治疗,急性加重人群仍比较多,而既往急性加重是再次加重的高风险因素,肺功能进行性下降,生存周期短。对于慢阻肺表型特征的研究越来越多。生物靶向治疗是慢阻肺治疗的新突破。目前可以用于治疗慢阻肺的是抗白细胞介素-4 (interleukin-4, IL-4)受体单克隆抗体度普利尤单抗。现关于度普利尤单抗治疗慢阻肺的报道较少。本文旨在将近5年国内外对度普利尤单抗治疗慢阻肺的机制及安全性的研究进行综述。

2. 慢性阻塞性肺疾病的治疗现状

慢性阻塞性肺疾病(COPD)是一种以炎症细胞活化和炎症介质释放为特征的炎症性肺部疾病[8],主要影响肺实质和外周气道,导致进行性气流受限[9]。2025年,GOLD依旧推荐COPD初始药物治疗为吸入药物的使用[10]。有些患者即使规范使用吸入药物,仍有反复急性加重。糖皮质激素是慢性阻塞性肺疾病急性加重期的治疗药物,但由于其作用机制广泛,反复和长期使用可能会出现显著的不良反应,如高血糖、胃肠道症状、高血压、增加感染的易感性、丘脑下部–垂体–肾上腺轴的抑制、液体潴留及骨质疏松等[11]。而且对于严重的COPD只能短暂地缓解症状,亟待找到对慢阻肺更安全更有效的治疗方法。这促使人们寻找新靶点和治疗方法。COPD的表型研究越来越受到关注,两项III期临床试验(BOREAS和NOTUS)验证了度普利尤单抗在吸烟或有吸烟史、目前正在接受最佳标准三联吸入疗法但仍未控制的伴有2型炎症(血嗜酸性粒细胞计数至少为300个/微升)的COPD患者中的有效性和安全性,两项试验均证明接受达必妥的患者急性加重次数更少,肺功能和生活质量更好[12] [13]。2024年9月27日,度普利尤单抗被中国国家药品监督管理局(NMPA)批准,用于血嗜酸性粒细胞升高且控制不佳的慢性阻塞性肺疾病成人患者。2025年,GOLD中度普利尤单抗被推荐用于三联吸入治疗后仍有急性加重,嗜酸性粒细胞 ≥ 300个/μl且有慢性支气管炎症状者[10]

COPD具有不同的炎症模式——最常见的是1型和3型免疫——以巨噬细胞和中性粒细胞为主。COPD的进展与炎症性粘液渗出物在腔内的积累和固有及适应性炎症免疫细胞形成淋巴滤泡的壁浸润有关[12]。目前对于1型和3型免疫方面的研究未取得重大突破。尽管大多数COPD患者以中性粒细胞炎症为主,但也有一些患者嗜酸性粒细胞计数增加,这可能是由TH2细胞和2型固有淋巴细胞通过上皮细胞释放IL-33来协调的[9]。大约25%~40%的COPD患者具有嗜酸性粒细胞内型[13] [14]。28%的COPD急性加重与气道嗜酸性粒细胞增多有关[15]。多项研究提示,嗜酸性粒细胞增多在肺功能下降和COPD加重中发挥重要作用[16]。嗜酸性粒细胞(BEC)较高的COPD患者往往症状更严重,肺气肿和空气潴留进展更快[17]。这些患者复发性加重的风险通常增加[18] [19]。有研究提示,较高的BEC可降低肺炎风险[20] [21]。美泊利珠单抗是白细胞介素-5抑制剂,主要作用于嗜酸性粒细胞,已获批用于治疗重度嗜酸粒细胞性哮喘。截至目前,美泊利珠单抗已开展3项COPD III期研究。METREO III期研究中,100 mg和300 mg美泊利珠单抗剂量组的患者和安慰剂组相比均无显著性差异,未显著降低COPD年恶化率。在METREX III期研究中,100 mg美泊利单抗组患者与安慰剂组相比COPD年恶化率无显著性差异;于嗜酸性粒细胞水平升高的亚组人群,100 mg美泊利珠单抗组患者的COPD年恶化率低于安慰剂组[22]。MATINEE研究中,美泊利珠单抗组年急性加重率显著低于安慰剂组[23]。METREO和METREX研究在嗜酸性粒细胞升高人群未取得预期结果,只在嗜酸性粒细胞升高特定亚群中有差异。目前MATINEE研究未搜到正式文献发表。使用美泊利珠单抗治疗COPD和哮喘的差异,有研究发现可能是由于COPD与哮喘患者嗜酸性粒细胞亚型存在差异,并表示外周血可能无法准确反映气道嗜酸性粒细胞亚群的差异,这些亚群未进行研究分析[24]。未来,需结合血嗜酸性粒细胞、呼出气一氧化氮、诱导痰细胞学等多项标记物筛选潜在获益人群,需要通过精准医学策略优化适用人群,并探索联合治疗方案。开发关于识别治疗表型的生物标志物可能是一个研究热点。

3. 2型免疫及度普利尤单抗在慢阻肺中的作用机制

3.1. 2型免疫

2型免疫组成包括CD4+ T细胞的2型辅助性T细胞(TH2)表型、2组先天淋巴细胞(ILC2)、粒细胞(包括嗜酸性粒细胞、嗜碱性粒细胞和肥大细胞)、相关的2型细胞因子(白细胞介素IL-4、IL-5、IL-9和IL-13)和免疫球蛋白-E (IgE)等[11]。2型炎症诱导的生理反应有:粘液产生、支气管收缩、咳嗽、打喷嚏、角质形成细胞增生、瘙痒、呕吐和腹泻等[25] [26]。研究发现,第2组先天淋巴细胞(ILC2)是IL-13的重要来源,而滤泡辅助性T细胞(Tfh)是IL-4的来源[11] [12]。IL-4和IL-13是2型炎症的关键驱动因素。它们通过共享受体IL-4Rα发出信号,该受体由气道上皮细胞以及先天和适应性免疫细胞表达。

IL-4和IL-13是细胞因子辅助性T (Th) 2家族的成员。该组还包括IL-3、IL-5和IL-9。产生IL-4和IL-13 (与IL-5一起)的基因组位点称为Th2细胞因子位点,它位于人类的5号染色体和小鼠的11号染色体上,并受Rad 50的基因座控制区(LCR)的控制基因[12] [13]编码人类IL-4和IL-13的基因位于第5染色体q23-31段[27],位于Th2相关细胞因子基因簇(包括IL-3、IL-5和IL-9)中。IL-4和IL-13在氨基酸水平上具有25%的相似性,并且具有重叠的功能[28]。IL-4和IL-13是短的四个α-螺旋束分泌的糖蛋白,序列相似性约为25%,由相邻基因编码,共享几个顺式反激活调控区[29]。人IL-4的cDNA编码153个氨基酸的蛋白质,含有一个129个氨基酸的序列,该序列从前体蛋白裂解后分泌为15.4-kD的非糖基化成熟蛋白[28]。IL-4结构同样基于一个四螺旋束,包含3个二硫键桥[30]。编码IL-13的基因由4个外显子和3个内含子组成,位于染色体5q31上编码IL-4基因的上游12 kb处,2个基因位于同一方向[31]。IL-13是具有两个二硫键桥的四螺旋束细胞因子[32]。IL-13有一个由132个氨基酸组成的单开放阅读框,有20个氨基酸的序列被剪切并分泌为10-kD的非糖基化成熟蛋白[33]。IL-4和IL-13是结构和功能相关的细胞因子,不仅参与免疫功能,还参与妊娠、胎儿发育、乳腺发育和哺乳,以及记忆、学习等高级脑功能[34]。也许更广为人知的是IL-4和IL-13在特应性皮炎、哮喘、肺纤维化和癌症的发病机制中的作用[29]。在免疫系统中,IL-4和IL-13触发Th2 T细胞分化、M2巨噬细胞极化、MHCII表达、B细胞和浆细胞分化、抗体同型转换等。IL-4是淋巴细胞功能调节因子(Th2分化和B细胞IgG1和IgE类别转换),而IL-13是一种效应细胞因子,调节平滑细胞收缩和气道上皮细胞粘液的产生[35]

由于具有抑制1型炎症(IFN-γ, IL-12, NO)的能力,IL-4和IL-13通常被认为是“抗炎”细胞因子,它们不会引发免疫性衰老,相反,它们会启动有效的2型炎症过程[29]

IL-4和IL-13通过两个不同但重叠的受体发出信号,每个受体都含有一个IL-4受体的α亚基。I型受体仅受IL-4激活,主要位于淋巴细胞上,控制Th2细胞分化。II型受体由IL-4和IL-13激活,在常驻细胞和髓细胞中广泛表达[36]。IL-4可以与两种受体结合,即I型受体和II型受体。I型受体主要分布在淋巴细胞和骨髓细胞上,而II型受体存在于骨髓细胞和所有非造血细胞上[35]。I型受体由IL-4Rαγc组成,而II型受体由IL-4Rα和IL-13Rα1组成[37]。IL-13Rα1不仅作为结合IL-4的II型受体的亚基,而且还是IL-13的受体[38]。STAT6和IRS是IL-4/13信号转导的两条主要通路。STAT6可以与dNA序列结合以启动基因转录,而IRS-2通路不会易位到细胞核,而是激活PI3-K等信号分子来启动基因转录[39] [40]。STAT6通路在哮喘中已得到充分研究,它负责Th2分化和嗜酸性粒细胞迁移。然而,据推测,IRS通路对癌症增殖和转移至关重要[29]

3.2. 度普利尤单抗在慢阻肺中的作用机制

IL-13促进粘液的过量产生和气道重塑。我们现在将回顾IL-13激活的信号通路:JAK/STAT通路、IRS-1/IRS-2通路。IL-13受体在多种肿瘤细胞系上也有表达[41],和IL-13参与了恶性肿瘤的发病机制,如霍奇金病,其中IL-13作为Reed-Sternberg肿瘤细胞的自分泌生长因子[42],因此IL-13拮抗剂也可能用于恶性肿瘤的治疗[31]。研究表明,IL-13是肺中MMP和组织蛋白酶蛋白水解途径的有效刺激物。他们还证明IL-13通过MMP和组织蛋白酶依赖机制导致肺气肿,并强调了可能成为COPD和哮喘基础的常见机制。总之,这些研究表明,IL-13在成人肺中的靶向表达导致肺气肿、粘液化生和炎症,在许多方面与人类COPD的病变相似。他们还证明这种肺气肿反应是通过基质金属蛋白酶和组织蛋白酶依赖途径介导的。IL-13可能在COPD的发病机制中发挥重要作用,特别是在具有哮喘样特征(包括AHR和嗜酸性粒细胞增多)的患者中[43]。一项相关研究表明,肺中IL-13的过表达导致了一种类似于人类COPD的表型,包括肺气肿、肺肿大、粘液化生和混合炎症浸润,这是典型的COPD [44]。临床前研究表明,除了协调2型炎症反应外,IL-4和IL-13还可以促进气道重塑和肺实质破坏,并促进粘液细胞增生[43] [45] [46]。度普利尤单抗(dupilumab)是一种针对白细胞介素-4受体α的人单克隆抗体,可抑制IL-4和IL-13的信号传导[47],从而改善肺功能、减少气道粘液分泌等作用。

4. 度普利尤单抗的临床安全性

4.1. 度普利尤单抗的不良反应

度普利尤单抗最常见的不良事件是注射部位的反应、上呼吸道感染、结膜炎、鼻咽炎、口咽痛、特应性皮炎加重、口腔疱疹、鼻衄、恶心、头痛和头晕[48]-[51]。临床试验编号NCT01859988中,轻中度疱疹病毒感染多数为口周局部病变[49]。临床试验编号NCT01312961中,度普利尤单抗组的3个不良事件:双相情感障碍恶化、血管性水肿和哮喘症状增加。血管性水肿发生在一名42岁的女性接受第九剂研究药物后,表现为进行性丘疹、荨麻疹和水肿,在注射部位和远处;它持续了1周,并在非紧急对症治疗(强的松和苯海拉明)和早期停药后消退[52]。肌肉骨骼和结缔组织是第三大受影响的系统(报告不良反应3452例,占9.12%) [53],主要为关节肿胀和疼痛、背痛。一些具有Th17免疫遗传学和免疫学的疾病与达必妥的使用有关。在这些疾病中,血清阴性关节炎、银屑病、附着点炎/附着点病和虹膜睫状体炎、痤疮和结节性红斑、结膜刺激征、主动脉瘤风险显著增加[53]

在dupilumab治疗期间,约4%~25%的患者发生嗜酸性粒细胞增多症[54]。dupilumab诱导的嗜酸性粒细胞增多是短暂的,通常与临床症状或疗效效果无关[55]。持续性嗜酸性粒细胞增多症或与嗜酸性粒细胞相关的不良反应是罕见的[56]。dupilumab治疗后偶尔会出现严重并发症,例如嗜酸性粒细胞性肺炎和嗜酸性肉芽肿性多血管炎[57] [58]

4.2. 度普利尤单抗与肿瘤

肿瘤相关巨噬细胞(TAM)是肿瘤微环境(TME)中一种丰富的促肿瘤细胞类型。大多数TAM为支持肿瘤生长、免疫逃逸和转移的促肿瘤M2样表型。IL-4和IL-13是M2极化的主要驱动因素。用dupilumab阻断IL-4Rα会使巨噬细胞远离促肿瘤亚型[59]。阻断TME中IL-4和IL-13的活性可能是一种很有希望的降低肿瘤生长的策略。白细胞介素13受体α2 (IL13Rα2)越来越被认为是癌症侵袭和转移的相关参与者[60]。我们前期将IL-4与免疫抑制mregDC程序控制相结合,发现阻断IL-4显著降低了原位KrasG12DTp53-/-(KP)肺腺癌小鼠的肺肿瘤负荷在B16黑色素瘤肺转移模型中[61]。达必妥可能是未来许多肿瘤类型的有效联合治疗方法[61]。目前国际湿疹理事会建议将dupilumab用作有恶性肿瘤病史的患者特应性皮炎(AD)的一线治疗[62]。一项为期5年的回顾性研究表明,接受dupilumab治疗的特应性皮炎患者发生原发性或复发性恶性肿瘤的风险没有显著增加[63]。一项对2019年1月至2023年7月在都灵大学医院皮肤科门诊使用达必妥治疗的有癌症病史和中重度AD患者的回顾性分析显示,对于有肿瘤病史的AD患者是更安全的选择[62]。度普利单抗治疗的持续时间与蕈样肉芽肿(皮肤T细胞淋巴瘤)的诊断之间存在相关性,具体是不是不良反应需要进一步研究[64]。dupilumab的使用与AD患者皮肤T细胞淋巴瘤风险增加相关[65]

4.3. 度普利尤单抗与感染

一项汇总了7项针对成人中度至重度AD的随机、安慰剂对照dupilumab试验的数据显示,dupilumab与降低严重/重度感染和非疱疹性皮肤感染的风险有关,与安慰剂相比,不会增加中度至重度AD患者的总体感染率[66]。理论上对寄生虫感染风险的增加以及肥胖和代谢功能障碍的潜在增加存在担忧。使用针对该途径的治疗药物将被视为禁忌于活动性蠕虫感染患者。

4.4. 度普利尤单抗与疫苗接种

在一项使用两种非活疫苗(破伤风类毒素、减毒白喉类毒素和无细胞百日咳疫苗,以及四价脑膜炎球菌多糖疫苗)的临床试验中,度普利尤单抗对T细胞和B细胞介导的(或非T细胞介导的)抗体反应没有影响,与安慰剂相比,dupilumab不影响疫苗应答[67]。尚无直接证据支持对接受dupilumab治疗的患者接种活疫苗的安全性。

除了预期的证据表明抑制IL-4和IL-13会损害宿主对蠕虫感染的反应外,我们没有发现其他临床前证据表明与感染、恶性肿瘤或心血管事件相关的安全性风险。在临床试验中没有发现证据表明存在严重的安全性问题,即单纯调节IL-13途径或联合调节IL-13/IL-4途径会增加感染、恶性肿瘤或心血管事件的风险[68]。Adam等3个共识表明,基于作用机制和专家意见,生物制剂是首选方案。

总之,度普利尤单抗治疗COPD安全性良好,常见不良反应较轻,严重不良反应较少。

5. 小结

COPD的表型研究越来越受到关注,度普利尤单抗是慢阻肺治疗的新突破。未来,识别对更特异性治疗具有最佳反应的患者的表型将非常重要,而识别治疗表型的生物标志物的开发很有发展潜力。度普利尤单抗治疗COPD总体安全性良好。

NOTES

*通讯作者。

参考文献

[1] Celli, B., Fabbri, L., Criner, G., Martinez, F.J., Mannino, D., Vogelmeier, C., et al. (2022) Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. American Journal of Respiratory and Critical Care Medicine, 206, 1317-1325.
https://doi.org/10.1164/rccm.202204-0671pp
[2] GOLD (2023) Global Strategy for Prevention, Diagnosis and Management of COPD: 2024 Report.
[3] Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012) Global and Regional Mortality from 235 Causes of Death for 20 Age Groups in 1990 and 2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2095-2128.
https://doi.org/10.1016/s0140-6736(12)61728-0
[4] Vos, T., Flaxman, A.D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., et al. (2012) Years Lived with Disability (YLDs) for 1160 Sequelae of 289 Diseases and Injuries 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2163-2196.
https://doi.org/10.1016/s0140-6736(12)61729-2
[5] Adeloye, D., Chua, S., Lee, C., Basquill, C., Papana, A., Theodoratou, E., et al. (2015) Global and Regional Estimates of COPD Prevalence: Systematic Review and Meta-Analysis. Journal of Global Health, 5, Article ID: 020415.
https://doi.org/10.7189/jogh.05.020415
[6] Adeloye, D., Song, P., Zhu, Y., Campbell, H., Sheikh, A. and Rudan, I. (2022) Global, Regional, and National Prevalence of, and Risk Factors for, Chronic Obstructive Pulmonary Disease (COPD) in 2019: A Systematic Review and Modelling Analysis. The Lancet Respiratory Medicine, 10, 447-458.
https://doi.org/10.1016/s2213-2600(21)00511-7
[7] GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, Regional, and National Age-Sex Specific All-Cause and Cause-Specific Mortality for 240 Causes of Death, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. The Lancet (London, England), 385, 117-171.
https://doi.org/10.1016/S0140-6736(14)61682-2
[8] Xia, J., Zhao, J., Shang, J., Li, M., Zeng, Z., Zhao, J., et al. (2015) Increased IL-33 Expression in Chronic Obstructive Pulmonary Disease. American Journal of Physiology-Lung Cellular and Molecular Physiology, 308, L619-L627.
https://doi.org/10.1152/ajplung.00305.2014
[9] Barnes, P.J. (2016) Inflammatory Mechanisms in Patients with Chronic Obstructive Pulmonary Disease. Journal of Allergy and Clinical Immunology, 138, 16-27.
https://doi.org/10.1016/j.jaci.2016.05.011
[10] GOLD (2024) Global Strategy for Prevention, Diagnosis and Management of COPD: 2025 Report.
[11] Gandhi, N.A., Pirozzi, G. and Graham, N.M.H. (2017) Commonality of the IL-4/IL-13 Pathway in Atopic Diseases. Expert Review of Clinical Immunology, 13, 425-437.
https://doi.org/10.1080/1744666x.2017.1298443
[12] Hogg, J.C., Chu, F., Utokaparch, S., Woods, R., Elliott, W.M., Buzatu, L., et al. (2004) The Nature of Small-Airway Obstruction in Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 350, 2645-2653.
https://doi.org/10.1056/nejmoa032158
[13] Li, A., Chan, H.P., Gan, P.X.L., Liew, M.F., Wong, W.S.F. and Lim, H. (2021) Eosinophilic Endotype of Chronic Obstructive Pulmonary Disease: Similarities and Differences from Asthma. The Korean Journal of Internal Medicine, 36, 1305-1319.
https://doi.org/10.3904/kjim.2021.180
[14] Singh, D., Kolsum, U., Brightling, C.E., Locantore, N., Agusti, A. and Tal-Singer, R. (2014) Eosinophilic Inflammation in COPD: Prevalence and Clinical Characteristics. European Respiratory Journal, 44, 1697-1700.
https://doi.org/10.1183/09031936.00162414
[15] Bafadhel, M., McKenna, S., Terry, S., Mistry, V., Reid, C., Haldar, P., et al. (2011) Acute Exacerbations of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 184, 662-671.
https://doi.org/10.1164/rccm.201104-0597oc
[16] Fieldes, M., Bourguignon, C., Assou, S., Nasri, A., Fort, A., Vachier, I., et al. (2021) Targeted Therapy in Eosinophilic Chronic Obstructive Pulmonary Disease. ERJ Open Research, 7, 00437-02020.
https://doi.org/10.1183/23120541.00437-2020
[17] Hastie, A.T., Martinez, F.J., Curtis, J.L., et al. (2017) Association of Sputum and Blood Eosinophil Concentrations with Clinical Measures of COPD Severity: An Analysis of the SPIROMICS Cohort. The Lancet Respiratory Medicine, 5, 956-967.
[18] Kerkhof, M., Sonnappa, S., Postma, D.S., Brusselle, G., Agustí, A., Anzueto, A., et al. (2017) Blood Eosinophil Count and Exacerbation Risk in Patients with COPD. European Respiratory Journal, 50, Article ID: 1700761.
https://doi.org/10.1183/13993003.00761-2017
[19] Vedel-Krogh, S., Nielsen, S.F., Lange, P., Vestbo, J. and Nordestgaard, B.G. (2016) Blood Eosinophils and Exacerbations in Chronic Obstructive Pulmonary Disease. The Copenhagen General Population Study. American Journal of Respiratory and Critical Care Medicine, 193, 965-974.
https://doi.org/10.1164/rccm.201509-1869oc
[20] Pavord, I.D., Lettis, S., Anzueto, A. and Barnes, N. (2016) Blood Eosinophil Count and Pneumonia Risk in Patients with Chronic Obstructive Pulmonary Disease: A Patient-Level Meta-Analysis. The Lancet Respiratory Medicine, 4, 731-741.
https://doi.org/10.1016/s2213-2600(16)30148-5
[21] Vedel-Krogh, S., Nordestgaard, B.G., Lange, P., Vestbo, J. and Nielsen, S.F. (2018) Blood Eosinophil Count and Risk of Pneumonia Hospitalisations in Individuals with COPD. European Respiratory Journal, 51, Article ID: 1800120.
https://doi.org/10.1183/13993003.00120-2018
[22] Pavord, I.D., Chanez, P., Criner, G.J., Kerstjens, H.A.M., Korn, S., Lugogo, N., et al. (2017) Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 377, 1613-1629.
https://doi.org/10.1056/nejmoa1708208
[23] GSK (2024) GSK Announces Positive Results from Phase III Trial of Nucala (Mepolizumab) in COPD.
[24] Freeman, C.M., Curtis, J.L. and Hastie, A.T. (2023) Finding the Right Biological: Eosinophil Subset Differences in Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 208, 121-123.
https://doi.org/10.1164/rccm.202305-0811ed
[25] Kay, A.B. (2001) Allergy and Allergic Diseases. New England Journal of Medicine, 344, 30-37.
https://doi.org/10.1056/nejm200101043440106
[26] Palm, N.W., Rosenstein, R.K. and Medzhitov, R. (2012) Allergic Host Defences. Nature, 484, 465-472.
https://doi.org/10.1038/nature11047
[27] Smirnov, D.V., Smirnova, M.G., Korobko, V.G. and Frolova, E.I. (1995) Tandem Arrangement of Human Genes for Interleukin-4 and Interleukin-13: Resemblance in Their Organization. Gene, 155, 277-281.
https://doi.org/10.1016/0378-1119(94)00720-d
[28] Chomarat, P. and Banchereau, J. (1998) Interleukin-4 and Lnterleukin-13: Their Similarities and Discrepancies. International Reviews of Immunology, 17, 1-52.
https://doi.org/10.3109/08830189809084486
[29] McCormick, S.M. and Heller, N.M. (2015) Commentary: IL-4 and IL-13 Receptors and Signaling. Cytokine, 75, 38-50.
https://doi.org/10.1016/j.cyto.2015.05.023
[30] Walter, M.R., Cook, W.J., Zhao, B.G., Cameron, R.P., Ealick, S.E., Walter, R.L., et al. (1992) Crystal Structure of Recombinant Human Interleukin-4. Journal of Biological Chemistry, 267, 20371-20376.
https://doi.org/10.1016/s0021-9258(19)88711-2
[31] Hershey, G.K.K. (2003) IL-13 Receptors and Signaling Pathways: An Evolving Web. Journal of Allergy and Clinical Immunology, 111, 677-690.
https://doi.org/10.1067/mai.2003.1333
[32] Eisenmesser, E.Z., Horita, D.A., Altieri, A.S. and Byrd, R.A. (2001) Solution Structure of Interleukin-13 and Insights into Receptor Engagement. Journal of Molecular Biology, 310, 231-241.
https://doi.org/10.1006/jmbi.2001.4765
[33] Mueller, T.D., Zhang, J., Sebald, W. and Duschl, A. (2002) Structure, Binding, and Antagonists in the IL-4/IL-13 Receptor System. Biochimica et Biophysica Acta (BBA)Molecular Cell Research, 1592, 237-250.
https://doi.org/10.1016/s0167-4889(02)00318-x
[34] Gadani, S.P., Cronk, J.C., Norris, G.T. and Kipnis, J. (2012) IL-4 in the Brain: A Cytokine to Remember. The Journal of Immunology, 189, 4213-4219.
https://doi.org/10.4049/jimmunol.1202246
[35] Junttila, I.S. (2018) Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Frontiers in Immunology, 9, Article 888.
https://doi.org/10.3389/fimmu.2018.00888
[36] Wills-Karp, M. and Finkelman, F.D. (2008) Untangling the Complex Web of IL-4-and Il-13-Mediated Signaling Pathways. Science Signaling, 1, pe55.
https://doi.org/10.1126/scisignal.1.51.pe55
[37] Chang, H.Y. and Nadeau, K.C. (2017) IL-4Rα Inhibitor for Atopic Disease. Cell, 170, 222.
https://doi.org/10.1016/j.cell.2017.06.046
[38] Chen, F., Wang, Y., Chen, X., Yang, N. and Li, L. (2023) Targeting Interleukin 4 and Interleukin 13: A Novel Therapeutic Approach in Bullous Pemphigoid. Annals of Medicine, 55, 1156-1170.
https://doi.org/10.1080/07853890.2023.2188487
[39] Sun, X.J., Wang, L., Zhang, Y., Yenush, L., Myers Jr, M.G., Glasheen, E., et al. (1995) Role of IRS-2 in Insulin and Cytokine Signalling. Nature, 377, 173-177.
https://doi.org/10.1038/377173a0
[40] Heller, N.M., Qi, X., Gesbert, F. and Keegan, A.D. (2012) The Extracellular and Transmembrane Domains of the γC and Interleukin (IL)-13 Receptor α1 Chains, Not Their Cytoplasmic Domains, Dictate the Nature of Signaling Responses to IL-4 and IL-13. Journal of Biological Chemistry, 287, 31948-31961.
https://doi.org/10.1074/jbc.m112.348896
[41] Obiri, N.I., Debinski, W., Leonard, W.J. and Puri, R.K. (1995) Receptor for Interleukin 13: Interaction with Interleukin 4 by a Mechanism that Does Not Involve the Common γ Chain Shared by Receptors for Interleukins 2, 4, 7, 9, and 15. Journal of Biological Chemistry, 270, 8797-8804.
https://doi.org/10.1074/jbc.270.15.8797
[42] Kapp, U., Yeh, W.-C, Patterson, B., Elia, A.J., Kägi, D., Ho, A., et al. (1999) Interleukin 13 Is Secreted by and Stimulates the Growth of Hodgkin and Reed-Sternberg Cells. The Journal of Experimental Medicine, 189, 1939-1946.
https://doi.org/10.1084/jem.189.12.1939
[43] Zheng, T., Zhu, Z., Wang, Z., Homer, R.J., Ma, B., Riese, R.J., et al. (2000) Inducible Targeting of IL-13 to the Adult Lung Causes Matrix Metalloproteinase-and Cathepsin-Dependent Emphysema. Journal of Clinical Investigation, 106, 1081-1093.
https://doi.org/10.1172/jci10458
[44] Rabe, K.F., Rennard, S., Martinez, F.J., Celli, B.R., Singh, D., Papi, A., et al. (2023) Targeting Type 2 Inflammation and Epithelial Alarmins in Chronic Obstructive Pulmonary Disease: A Biologics Outlook. American Journal of Respiratory and Critical Care Medicine, 208, 395-405.
https://doi.org/10.1164/rccm.202303-0455ci
[45] Cooper, P.R., Poll, C.T., Barnes, P.J. and Sturton, R.G. (2010) Involvement of IL-13 in Tobacco Smoke-Induced Changes in the Structure and Function of Rat Intrapulmonary Airways. American Journal of Respiratory Cell and Molecular Biology, 43, 220-226.
https://doi.org/10.1165/rcmb.2009-0117oc
[46] Kolsum, U., Damera, G., Pham, T., Southworth, T., Mason, S., Karur, P., et al. (2017) Pulmonary Inflammation in Patients with Chronic Obstructive Pulmonary Disease with Higher Blood Eosinophil Counts. Journal of Allergy and Clinical Immunology, 140, 1181-1184.E7.
https://doi.org/10.1016/j.jaci.2017.04.027
[47] Simpson, E.L., Bieber, T., Guttman-Yassky, E., Beck, L.A., Blauvelt, A., Cork, M.J., et al. (2016) Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. New England Journal of Medicine, 375, 2335-2348.
https://doi.org/10.1056/nejmoa1610020
[48] Beck, L.A., Thaçi, D., Hamilton, J.D., Graham, N.M., Bieber, T., Rocklin, R., et al. (2014) Dupilumab Treatment in Adults with Moderate-to-Severe Atopic Dermatitis. New England Journal of Medicine, 371, 130-139.
https://doi.org/10.1056/nejmoa1314768
[49] Thaçi, D., Simpson, E.L., Beck, L.A., Bieber, T., Blauvelt, A., Papp, K., et al. (2016) Efficacy and Safety of Dupilumab in Adults with Moderate-to-Severe Atopic Dermatitis Inadequately Controlled by Topical Treatments: A Randomised, Placebo-Controlled, Dose-Ranging Phase 2b Trial. The Lancet, 387, 40-52.
https://doi.org/10.1016/s0140-6736(15)00388-8
[50] Kuo, A.M., Gu, S., Stoll, J., Moy, A.P., Dusza, S.W., Gordon, A., et al. (2023) Management of Immune-Related Cutaneous Adverse Events with Dupilumab. Journal for ImmunoTherapy of Cancer, 11, e007324.
https://doi.org/10.1136/jitc-2023-007324
[51] Beck, L.A., Deleuran, M., Bissonnette, R., de Bruin-Weller, M., Galus, R., Nakahara, T., et al. (2022) Dupilumab Provides Acceptable Safety and Sustained Efficacy for up to 4 Years in an Open-Label Study of Adults with Moderate-to-Severe Atopic Dermatitis. American Journal of Clinical Dermatology, 23, 393-408.
https://doi.org/10.1007/s40257-022-00685-0
[52] Wenzel, S., Ford, L., Pearlman, D., Spector, S., Sher, L., Skobieranda, F., et al. (2013) Dupilumab in Persistent Asthma with Elevated Eosinophil Levels. New England Journal of Medicine, 368, 2455-2466.
https://doi.org/10.1056/nejmoa1304048
[53] Bridgewood, C., Wittmann, M., Macleod, T., Watad, A., Newton, D., Bhan, K., et al. (2022) T Helper 2 IL-4/IL-13 Dual Blockade with Dupilumab Is Linked to Some Emergent T Helper 17-Type Diseases, Including Seronegative Arthritis and Enthesitis/Enthesopathy, but Not to Humoral Autoimmune Diseases. Journal of Investigative Dermatology, 142, 2660-2667.
https://doi.org/10.1016/j.jid.2022.03.013
[54] Olaguibel, J., Sastre, J., Rodríguez, J. and del Pozo, V. (2022) Eosinophilia Induced by Blocking the IL-4/IL-13 Pathway: Potential Mechanisms and Clinical Outcomes. Journal of Investigational Allergy and Clinical Immunology, 32, 165-180.
https://doi.org/10.18176/jiaci.0823
[55] Li, Y., Deng, Z., Wen, J., Ou, C., Cen, X., Liao, Y., et al. (2024) Efficacy of Dupilumab and Risk Factors for Dupilumab-Induced Hypereosinophilia in Severe Asthma: A Preliminary Study from China. Annals of Medicine, 56, Article 2311843.
https://doi.org/10.1080/07853890.2024.2311843
[56] Li, S.H., Nehme, K.F., Moshkovich, A., et al. (2024) Eosinophilia and Adverse Effects of Dupilumab for Respiratory Indications: A Real-World Setting. The Journal of Allergy and Clinical Immunology: In Practice, 13, 121-131.
https://doi.org/10.1016/j.jaip.2024.09.013
[57] Yamazaki, K., Nomizo, T., Hatanaka, K., Hayama, N., Oguma, T. and Asano, K. (2022) Eosinophilic Granulomatosis with Polyangiitis after Treatment with Dupilumab. Journal of Allergy and Clinical Immunology: Global, 1, 180-182.
https://doi.org/10.1016/j.jacig.2022.03.006
[58] Menzella, F., Montanari, G., Patricelli, G., Cavazza, A., Galeone, C., Ruggiero, P., et al. (2019) A Case of Chronic Eosinophilic Pneumonia in a Patient Treated with Dupilumab. Therapeutics and Clinical Risk Management, 15, 869-875.
https://doi.org/10.2147/tcrm.s207402
[59] De Groot, A.E., Myers, K.V., Krueger, T.E.G., Brennen, W.N., Amend, S.R. and Pienta, K.J. (2022) Targeting Interleukin 4 Receptor Alpha on Tumor-Associated Macrophages Reduces the Pro-Tumor Macrophage Phenotype. Neoplasia, 32, Article ID: 100830.
https://doi.org/10.1016/j.neo.2022.100830
[60] Jaén, M., Martín-Regalado, Á., Bartolomé, R.A., Robles, J. and Casal, J.I. (2022) Interleukin 13 Receptor Alpha 2 (IL13Rα2): Expression, Signaling Pathways and Therapeutic Applications in Cancer. Biochimica et Biophysica Acta (BBA)Reviews on Cancer, 1877, Article ID: 188802.
https://doi.org/10.1016/j.bbcan.2022.188802
[61] LaMarche, N.M., Hegde, S., Park, M.D., Maier, B.B., Troncoso, L., Le Berichel, J., et al. (2023) An IL-4 Signalling Axis in Bone Marrow Drives Pro-Tumorigenic Myelopoiesis. Nature, 625, 166-174.
https://doi.org/10.1038/s41586-023-06797-9
[62] Macagno, N., Mastorino, L., Siliquini, N., Santaniello, U., Gelato, F., Cavaliere, G., et al. (2024) Safety of Dupilumab in Patients with Cancer. Journal of the European Academy of Dermatology and Venereology, 38, e764-e766.
https://doi.org/10.1111/jdv.19873
[63] Owji, S., Ungar, B., Dubin, D.P., Poplausky, D., Young, J.N., Ghalili, S., et al. (2023) No Association between Dupilumab Use and Short-Term Cancer Development in Atopic Dermatitis Patients. The Journal of Allergy and Clinical Immunology: In Practice, 11, 1548-1551.
https://doi.org/10.1016/j.jaip.2022.12.018
[64] Hamp, A., Hanson, J., Schwartz, R.A., Lambert, W.C. and Alhatem, A. (2023) Dupilumab-Associated Mycosis Fungoides: A Cross-Sectional Study. Archives of Dermatological Research, 315, 2561-2569.
https://doi.org/10.1007/s00403-023-02652-z
[65] Hasan, I., Parsons, L., Duran, S. and Zinn, Z. (2024) Dupilumab Therapy for Atopic Dermatitis Is Associated with Increased Risk of Cutaneous T Cell Lymphoma: A Retrospective Cohort Study. Journal of the American Academy of Dermatology, 91, 255-258.
https://doi.org/10.1016/j.jaad.2024.03.039
[66] Eichenfield, L.F., Bieber, T., Beck, L.A., Simpson, E.L., Thaçi, D., de Bruin-Weller, M., et al. (2019) Infections in Dupilumab Clinical Trials in Atopic Dermatitis: A Comprehensive Pooled Analysis. American Journal of Clinical Dermatology, 20, 443-456.
https://doi.org/10.1007/s40257-019-00445-7
[67] Blauvelt, A., Simpson, E.L., Tyring, S.K., Purcell, L.A., Shumel, B., Petro, C.D., et al. (2019) Dupilumab Does Not Affect Correlates of Vaccine-Induced Immunity: A Randomized, Placebo-Controlled Trial in Adults with Moderate-to-Severe Atopic Dermatitis. Journal of the American Academy of Dermatology, 80, 158-167.E1.
https://doi.org/10.1016/j.jaad.2018.07.048
[68] Braddock, M., Hanania, N.A., Sharafkhaneh, A., Colice, G. and Carlsson, M. (2018) Potential Risks Related to Modulating Interleukin-13 and Interleukin-4 Signalling: A Systematic Review. Drug Safety, 41, 489-509.
https://doi.org/10.1007/s40264-017-0636-9