[1]
|
Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. https://doi.org/10.1016/s0140-6736(19)32989-7
|
[2]
|
李笑男, 李文雯. 如何看待Sepsis 3.0 [J]. 中国医师进修杂志, 2017, 40(1): 89-92.
|
[3]
|
喻坤. 基于细胞因子的炎症反应分型对脓毒症患儿病情及预后的评价作用[D]: [硕士学位论文]. 衡阳: 南华大学, 2021.
|
[4]
|
Yin, J., Chen, Y., Huang, J., Yan, L., Kuang, Z., Xue, M., et al. (2021) Prognosis-Related Classification and Dynamic Monitoring of Immune Status in Patients with Sepsis: A Prospective Observational Study. World Journal of Emergency Medicine, 12, 185-191. https://doi.org/10.5847/wjem.j.1920-8642.2021.03.004
|
[5]
|
Sinha, P., He, J., Delucchi, K., Zhuo, H., Abbott, J., Jones, C., et al. (2022) Latent Class Analysis-Derived Hypoinflammatory and Hyperinflammatory Phenotypes Are Generalisable to Sepsis Patients Requiring Intensive Care. American Journal of Respiratory and Critical Care Medicine, 205, A3431. https://doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a3431
|
[6]
|
Prosniak, R., Yang, Q., Wijerathne, H., Marchetti, N., Kiani, M. and Kilpatrick, L. (2021) Identification of Sepsis Patient Immune Phenotypes Using a Microfluidic Assay. American Journal of Respiratory and Critical Care Medicine, 203, A2725. https://doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a2725
|
[7]
|
Carcillo, J.A., Halstead, E.S., Hall, M.W., Nguyen, T.C., Reeder, R., Aneja, R., et al. (2017) Three Hypothetical Inflammation Pathobiology Phenotypes and Pediatric Sepsis-Induced Multiple Organ Failure Outcome. Pediatric Critical Care Medicine, 18, 513-523. https://doi.org/10.1097/pcc.0000000000001122
|
[8]
|
周贤, 许涛. 新型脓毒症分类方法在临床中的应用价值[J]. 广东医学, 2016, 37(18): 2808-2810.
|
[9]
|
Swenson, K.E., Dziura, J.D., Aydin, A., Reynolds, J. and Wira, C.R. (2017) Evaluation of a Novel 5-Group Classification System of Sepsis by Vasopressor Use and Initial Serum Lactate in the Emergency Department. Internal and Emergency Medicine, 13, 257-268. https://doi.org/10.1007/s11739-017-1607-y
|
[10]
|
Masson, S., Caironi, P., Spanuth, E., Thomae, R., Panigada, M., Sangiorgi, G., et al. (2014) Presepsin (Soluble CD14 Subtype) and Procalcitonin Levels for Mortality Prediction in Sepsis: Data from the Albumin Italian Outcome Sepsis Trial. Critical Care, 18, R6. https://doi.org/10.1186/cc13183
|
[11]
|
Wu, X., Li, Y. and Tong, H. (2020) Research Advances in the Subtype of Sepsis-Associated Thrombocytopenia. Clinical and Applied Thrombosis/Hemostasis, 26, 1-7.
|
[12]
|
Wong, H.R., Cvijanovich, N.Z., Anas, N., Allen, G.L., Thomas, N.J., Bigham, M.T., et al. (2016) Pediatric Sepsis Biomarker Risk Model-II: Redefining the Pediatric Sepsis Biomarker Risk Model with Septic Shock Phenotype. Critical Care Medicine, 44, 2010-2017. https://doi.org/10.1097/ccm.0000000000001852
|
[13]
|
Guirgis, F.W., Black, L.P., Henson, M., Labilloy, G., Smotherman, C., Hopson, C., et al. (2021) A Hypolipoprotein Sepsis Phenotype Indicates Reduced Lipoprotein Antioxidant Capacity, Increased Endothelial Dysfunction and Organ Failure, and Worse Clinical Outcomes. Critical Care, 25, Article No. 341. https://doi.org/10.1186/s13054-021-03757-5
|
[14]
|
Beutler, B., Du, X. and Hoebe, K. (2003) From Phenomenon to Phenotype and from Phenotype to Gene: Forward Genetics and the Problem of Sepsis. The Journal of Infectious Diseases, 187, S321-S326. https://doi.org/10.1086/374757
|
[15]
|
Seymour, C.W., Kennedy, J.N., Wang, S., Chang, C.H., Elliott, C.F., Xu, Z., et al. (2019) Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. Journal of the American Medical Association, 321, 2003-2017. https://doi.org/10.1001/jama.2019.5791
|
[16]
|
Bruse, N., Kooistra, E.J., Jansen, A., van Amstel, R.B.E., de Keizer, N.F., Kennedy, J.N., et al. (2022) Clinical Sepsis Phenotypes in Critically Ill COVID-19 Patients. Critical Care, 26, Article No. 244. https://doi.org/10.1186/s13054-022-04118-6
|
[17]
|
Powell, R.E., Tai, Y.Y., Kennedy, J.N., Seymour, C.W. and Chan, S.Y. (2022) Circulating Hypoxia-Dependent miR-210 Is Increased in Clinical Sepsis Subtypes: A Cohort Study. Journal of Translational Medicine, 20, Article No. 448. https://doi.org/10.1186/s12967-022-03655-6
|
[18]
|
刘广建, 李晓君, 李庆丰, 等. 临床表型数据和医学知识驱动的儿童脓毒症亚型识别[J]. 中国数字医学, 2019, 14(3): 66-69.
|
[19]
|
Moseley, P.L. and Brunak, S. (2019) Identifying Sepsis Phenotypes. Journal of the American Medical Association, 322, 1416-1417. https://doi.org/10.1001/jama.2019.12591.
|
[20]
|
杨晨, 刘瑜, 陈阳希, 等. FXR基因多态性与脓毒症的相关性研究[J]. 医学研究杂志, 2020, 49(7): 49-53+112.
|
[21]
|
王小青, 葛梅, 王晶晶, 等. IL-1β rs16944位点多态性与严重外伤脓毒症患者感染性休克及死亡的关联性[J]. 中华医院感染学杂志, 2021, 31(20): 3061-3064.
|
[22]
|
Maslove, D.M., Tang, B.M. and McLean, A.S. (2012) Identification of Sepsis Subtypes in Critically Ill Adults Using Gene Expression Profiling. Critical Care, 16, R183. https://doi.org/10.1186/cc11667
|
[23]
|
Scicluna, B.P., van Vught, L.A., Zwinderman, A.H., Wiewel, M.A., Davenport, E.E., Burnham, K.L., et al. (2017) Classification of Patients with Sepsis According to Blood Genomic Endotype: A Prospective Cohort Study. The Lancet Respiratory Medicine, 5, 816-826. https://doi.org/10.1016/s2213-2600(17)30294-1
|