维生素C对糖尿病小鼠视网膜的保护作用
The Protective Effect of Vitamin C on the Retina of Diabetic Mice
DOI: 10.12677/hjo.2025.141008, PDF, HTML, XML,    科研立项经费支持
作者: 胡 彬:石河子大学医学院,新疆 石河子;田艳明*:新疆军区总医院眼科,新疆 乌鲁木齐
关键词: 糖尿病视网膜病变炎症凋亡维生素CDiabetic Retinopathy Inflammation Apoptosis Vitamin C
摘要: 糖尿病视网膜病变(Diabetic Retinopathy, DR)是糖尿病的主要微血管并发症,慢性炎症和细胞凋亡在其发生发展中起关键作用。研究表明,维生素C具有抗氧化和抗炎特性,可能有助于缓解DR相关的视网膜损伤。然而,其在DR体内模型中的保护作用仍不明确。本研究采用链脲佐菌素(Streptozotocin, STZ)诱导糖尿病小鼠模型,检测维生素C干预对视网膜组织结构及炎症因子表达的影响。结果表明,维生素C通过减少TNF-α、IL-1β、IL-6和MCP-1的表达水平,减轻炎症反应,同时抑制视网膜神经细胞凋亡并改善视网膜厚度。研究揭示了维生素C可能通过抗炎和抗凋亡机制对DR产生保护作用,为其作为辅助治疗提供了实验依据。
Abstract: Diabetic retinopathy (DR) is a major microvascular complication of diabetes, with chronic inflammation and cell apoptosis playing key roles in its pathogenesis. Vitamin C has antioxidant and anti-inflammatory properties, and may help alleviate retinal damage associated with DR. However, its protective effects in DR animal models are still unclear. In this study, a STZ-induced diabetic mouse model was used to examine the impact of vitamin C intervention on retinal tissue structure and inflammatory cytokine expression. The results showed that vitamin C significantly reduced the expression levels of TNF-α, IL-1β, IL-6, and MCP-1, alleviating inflammation, while inhibiting retinal neuronal cell apoptosis and improving retinal thickness. The study suggests that vitamin C may exert protective effects on DR through anti-inflammatory and anti-apoptotic mechanisms, providing experimental support for its use as an adjunctive therapy.
文章引用:胡彬, 田艳明. 维生素C对糖尿病小鼠视网膜的保护作用[J]. 眼科学, 2025, 14(1): 57-62. https://doi.org/10.12677/hjo.2025.141008

1. 引言

糖尿病视网膜病变(Diabetic Retinopathy, DR)是糖尿病(Diabetes Mellitus, DM)的主要眼部并发症,预计至2050年,DM患者将超过13.1亿,其中约三分之一糖尿病患者面临DR的威胁[1] [2]。慢性炎症是导致糖尿病视网膜病变进展的关键因素,细胞因子在DM患者及动物模型中表达增强,造成视网膜血管功能障碍和神经元损伤[3]。抑制视网膜炎症是DR预防的关键。目前,DR的主要治疗方法包括视网膜激光光凝、抗VEGF药物和皮质类固醇治疗,但这些方法并非对所有患者有效,且存在副作用。除了药物治疗,体力活动、饮食和膳食补充剂也在DR的预防和治疗中发挥重要作用[4]-[6]。维生素C是一种天然抗氧化剂,可从水果和蔬菜中获取,也可以作为膳食补充剂服用。有证据表明维生素C通过减少氧化应激和抗炎作用有助于控制和预防DR [7]。然而其应用在DR体内的研究仍较少。本研究通过检测体内血清肿瘤坏死因子-α (Tumor necrosis factor-α, TNF-α),白介素-1β (Interleukin-1β 1, IL-1β),白介素-6(Interleukin-6, IL-6),单核细胞趋化蛋白-1 (Monocyte chemoattractant protein-1, MCP-1)的表达,并评估视网膜组织的损伤和凋亡,探讨维生素C补充对糖尿病小鼠视网膜凋亡和炎症的影响。研究结果可能为DR的分子机制提供新的见解,并为未来利用维生素C进行DR治疗提供潜在的策略。

2. 材料与方法

2.1. 动物

36只C57BL/6J小鼠,8周龄,随机分为对照组,DM组,维生素C干预组,每组12只。对于DM小鼠模型,我们按照之前的报道用STZ进行诱导,DM组和维生素C干预组小鼠禁食8 h后,腹腔注射60 mg/kg链脲佐菌素(Streptozotocin, STZ)柠檬酸缓冲液,连续5天,STZ注射1 w及2 w后,测定小鼠空腹血糖,将血糖高于16.7 mmol/L的小鼠判定为DM小鼠。对照组为注射相同剂量柠檬酸缓冲液的正常小鼠。在最后一次注射STZ后的第12 w时,维生素C干预组小鼠在饮用水中额外补充1.5 g/L的维生素C。继续饲养4 w后,摘取眼球并采集血液样本用于以下实验。所有动物购于新疆医科大学动物实验中心,饲养于新疆军区总医院动物实验中心,温度(23 ± 1)℃,相对湿度(47% ± 4%),每日光照12 h,昼夜交替,水食不限。涉及的所有实验均已获得新疆军区总医院实验伦理审查会的审核和批准。

2.2. 主要试剂与仪器

维生素C (Aladdin, S475240),STZ (Sigma, S0130),Tunel细胞凋亡检测试剂盒(servicebio, G1502),Elisa试剂盒(上海优选),共聚焦显微镜(Leica)。

2.3. 组织病理学检测

小鼠眼球固定后进行石蜡包埋,将眼球切成5 μm的切片。然后按照标准流程用苏木精和伊红(H&E)对切片进行染色,最后,以显微镜用400×的放大倍率对切片进行成像。

2.4. TUNEL试剂盒检测细胞凋亡

切片步骤同上,严格依据TUNEL检测试剂盒说明对小鼠视网膜组织染色,使用抗荧光淬灭封片剂封片。以400×的放大倍率对切片进行成像。

2.5. Elisa试剂盒检测糖尿病小鼠体内TNF-α,IL-1β,IL-6,MCP-1表达

根据生产商的说明,使用小鼠酶联免疫吸附试验(ELISA)试剂盒(上海优选)测定小鼠血清IL-6(YX-091206M),IL-1β(YX-E20533),MCP-1(YX-E21034),TNF-α(YX-201407M)。

2.6. 统计学方法

数据以均数±标准差表示,采用SPSS 27.0分析。三组间比较使用单因素方差分析(ANOVA),组间两两比较采用Tukey HSD法;两组间比较采用独立样本t检验。P < 0.05为差异有统计学意义。

3. 结果

3.1. 维生素C减轻DM小鼠视网膜的病理改变和细胞凋亡

为了评估维生素C对视网膜神经元的影响,用H&E和TUNEL试剂盒分别对视网膜进行染色。见图 1A 所示,正常对照组小鼠的视网膜结构完好,从内向外依次为神经节细胞层(Ganglion Cell Layer, GCL)、外丛状层(Outer Plexiform Layer, OPL)、外核层(Outer Nuclear Layer, ONL)、内丛状层(Inner Plexiform Layer, IPL)和内核层(Inner Nuclear Layer, INL)。DM小鼠的视网膜细胞数量减少,细胞间排列变得松散,视网膜厚度变薄。见图1B图1C所示,糖尿病小鼠视网膜INL厚度显著减少,并且神经细胞凋亡显著增多。然而在接受维生素C治疗的糖尿病小鼠中,视网膜INL厚度减少与视神经细胞凋亡都得到了改善。

3.2. 维生素C减轻DM小鼠体内的炎症反应

为了评估维生素C对DM小鼠体内炎症反应的影响,用Elisa试剂盒测量血清TNF-α,IL-1β,IL-6,MCP-1表达。见表1,DM组小鼠体内TNF-α,IL-1β,IL-6,MCP-1表达显著增强,而接受维生素C治疗的DM小鼠体内循环炎症因子表达显著降低。

4. 讨论

维生素C是一种人体必需的营养素,在免疫系统的各种途径中发挥着辅助因子和调节剂的重要作用。有研究证据表明,DR患者体内的维生素C含量明显较低,且血清维生素C与DR的风险及严重程度显著关联[8]。然而,关于维生素C补充剂对DR患者相关影响的信息仍较少,对改善DR的潜在机制仍有待阐明。我们的研究表明,维生素C对糖尿病小鼠的视网膜具有保护作用,这可能是由于抗凋亡与抗炎症的联合作用,这为其在DR患者中的使用提供初步支持。

DR是一种以视网膜微血管病变为特征的神经退行性疾病,其发生发展过程是由多种机制相互作用引起,包括高级糖化终产物形成、山梨醇积累、多元醇通路、己胺通路激活、蛋白激酶C激活和血管内皮生长因子(VEGF)的过度表达[9]。此外,高血糖导致活性氧(ROS)水平升高,加重氧化应激程度及

Figure 1. The effect of vitamin C on retinal damage in diabetic mice

1. 维生素C对DM小鼠视网膜损伤的影响

Table 1. The effect of vitamin C on inflammatory cytokines in diabetic mice (n = 12, x ¯ ±s )

1. 维生素C对DM小鼠血清炎症因子的影响(n = 12, x ¯ ±s )

组别

TNF-α (pg/ml)

IL-1β (pg/ml)

IL-6 (pg/ml)

MCP-1 (pg/ml)

对照组

110.4 ± 4.9

11.0 ± 2.6

14.4 ± 3.3

51.3 ± 3.1

DM组

123.3 ± 5.1**

16.8 ± 3.4*

20.1 ± 2.0**

58.9 ± 4.2*

维生素C干预组

113.4 ± 4.4#

12.3 ± 2.3#

16.9 ± 2.7##

53.9 ± 4.4##

注:对照组相比。*表示与P < 0.05;**表示P < 0.01,与DM组相比#表示P < 0.05;##表示P < 0.01。

视网膜炎症,造成视网膜神经变性与细胞凋亡[10]。越来越多的证据表明,DR在视网膜微血管病变之前,视网膜神经变性就已出现,并导致视网膜层变薄和神经元加速丧失[11] [12]。在本研究中,维生素C抑制了糖尿病导致的视网膜细胞凋亡,减少了视网膜INL厚度的变薄,表明维生素C可保护糖尿病小鼠视网膜神经细胞免受损伤。

在糖尿病视网膜病变的早期阶段,视网膜的炎症反应被认为是关键因素。研究表明,靶向炎症介质是控制糖尿病视网膜病变的一个有前景的策略。TNF-α和IL-1β可通过激活NF-κB,造成视网膜内皮功能障碍和细胞凋亡[13] [14],IL-6通过间接诱导增强血管通透性和血管生成[15]。MCP-1通过招募免疫细胞,加剧炎症和新生血管形成[16]。本研究中,维生素C可以抑制DM血清中的促炎细胞因子的水平,从而抑制视网膜炎症减轻DR发展过程中的视网膜损伤。

总之,在本篇论文中,我们实验结果证实了维生素C可减轻糖尿病小鼠视网膜厚度变薄,改善视网膜神经细胞凋亡,减轻体内TNF-α,IL-1β,IL-6,MCP-1炎症因子的表达,对糖尿病小鼠视网膜可能有保护作用。

基金项目

新疆维吾尔自治区自然科学基金面上项目(2022D01C647)。

NOTES

*通讯作者。

参考文献

[1] Ong, K.L., Stafford, L.K., McLaughlin, S.A., Boyko, E.J., Vollset, S.E., Smith, A.E., et al. (2023) Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet, 402, 203-234.
https://doi.org/10.1016/s0140-6736(23)01301-6
[2] Teo, Z.L., Tham, Y., Yu, M., Chee, M.L., Rim, T.H., Cheung, N., et al. (2021) Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-Analysis. Ophthalmology, 128, 1580-1591.
https://doi.org/10.1016/j.ophtha.2021.04.027
[3] Xu, G., Zhang, J. and Tang, L. (2023) Inflammation in Diabetic Retinopathy: Possible Roles in Pathogenesis and Potential Implications for Therapy. Neural Regeneration Research, 18, 976-982.
https://doi.org/10.4103/1673-5374.355743
[4] Ruamviboonsuk, V. and Grzybowski, A. (2022) The Roles of Vitamins in Diabetic Retinopathy: A Narrative Review. Journal of Clinical Medicine, 11, Article No. 6490.
https://doi.org/10.3390/jcm11216490
[5] Ren, C., Liu, W., Li, J., Cao, Y., Xu, J. and Lu, P. (2019) Physical Activity and Risk of Diabetic Retinopathy: A Systematic Review and Meta-Analysis. Acta Diabetologica, 56, 823-837.
https://doi.org/10.1007/s00592-019-01319-4
[6] Shah, J., Cheong, Z., Tan, B., Wong, D., Liu, X. and Chua, J. (2022) Dietary Intake and Diabetic Retinopathy: A Systematic Review of the Literature. Nutrients, 14, Article No. 5021.
https://doi.org/10.3390/nu14235021
[7] Eshak, E.S., Iso, H., Muraki, I. and Tamakoshi, A. (2019) Among the Water-Soluble Vitamins, Dietary Intakes of Vitamins C, B2 and Folate Are Associated with the Reduced Risk of Diabetes in Japanese Women but Not Men. British Journal of Nutrition, 121, 1357-1364.
https://doi.org/10.1017/s000711451900062x
[8] Xiong, R., Yuan, Y., Zhu, Z., Wu, Y., Ha, J., Han, X., et al. (2022) Micronutrients and Diabetic Retinopathy: Evidence from the National Health and Nutrition Examination Survey and a Meta-Analysis. American Journal of Ophthalmology, 238, 141-156.
https://doi.org/10.1016/j.ajo.2022.01.005
[9] Kowluru, R.A. (2023) Cross Talks between Oxidative Stress, Inflammation and Epigenetics in Diabetic Retinopathy. Cells, 12, Article No. 300.
https://doi.org/10.3390/cells12020300
[10] Chang, K. and Petrash, J.M. (2018) Aldo-Keto Reductases: Multifunctional Proteins as Therapeutic Targets in Diabetes and Inflammatory Disease. In: Vasiliou, V., et al., Eds., Advances in Experimental Medicine and Biology, Springer International Publishing, 173-202.
https://doi.org/10.1007/978-3-319-98788-0_13
[11] Ng, D.S., Chiang, P.P., Tan, G., Cheung, C.G., Cheng, C., Cheung, C.Y., et al. (2016) Retinal Ganglion Cell Neuronal Damage in Diabetes and Diabetic Retinopathy. Clinical & Experimental Ophthalmology, 44, 243-250.
https://doi.org/10.1111/ceo.12724
[12] Vujosevic, S. and Midena, E. (2013) Retinal Layers Changes in Human Preclinical and Early Clinical Diabetic Retinopathy Support Early Retinal Neuronal and Müller Cells Alterations. Journal of Diabetes Research, 2013, Article ID: 905058.
https://doi.org/10.1155/2013/905058
[13] Huang, H., Gandhi, J.K., Zhong, X., Wei, Y., Gong, J., Duh, E.J., et al. (2011) TNFα Is Required for Late BRB Breakdown in Diabetic Retinopathy, and Its Inhibition Prevents Leukostasis and Protects Vessels and Neurons from Apoptosis. Investigative Opthalmology & Visual Science, 52, 1336-1344.
https://doi.org/10.1167/iovs.10-5768
[14] Kowluru, R.A., Mohammad, G., Santos, J.M., Tewari, S. and Zhong, Q. (2011) Interleukin-1β and Mitochondria Damage, and the Development of Diabetic Retinopathy. Journal of Ocular Biology, Diseases, and Informatics, 4, 3-9.
https://doi.org/10.1007/s12177-011-9074-6
[15] Sharma, S. (2021) Interleukin-6 Trans-Signaling: A Pathway with Therapeutic Potential for Diabetic Retinopathy. Frontiers in Physiology, 12, Article ID: 689429.
https://doi.org/10.3389/fphys.2021.689429
[16] Taghavi, Y., Hassanshahi, G., Kounis, N.G., Koniari, I. and Khorramdelazad, H. (2019) Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) in Diabetic Retinopathy: Latest Evidence and Clinical Considerations. Journal of Cell Communication and Signaling, 13, 451-462.
https://doi.org/10.1007/s12079-018-00500-8