[1]
|
赵光洲, 徐海涛. 云南高原湖泊湖区可持续发展模式研究[J]. 未来与发展, 2011, 34(7): 93-96.
|
[2]
|
张涛, 陈丽, 刘晓曦, 等. 云南中部和南部湖泊夏季浮游植物空间分布及其影响因子[J]. 生态学杂志, 2020, 39(10): 3350-3362.
|
[3]
|
Cho, A., Cheong, D., Kim, J.C., Yang, D., Lee, J., Kashima, K., et al. (2018) Holocene Climate and Environmental Changes Inferred from Sediment Characteristics and Diatom Assemblages in a Core from Hwajinpo Lagoon, Korea. Journal of Paleolimnology, 60, 553-570. https://doi.org/10.1007/s10933-018-0040-1
|
[4]
|
Dulias, K., Stoof-Leichsenring, K.R., Pestryakova, L.A., et al. (2017) Sedimentary DNA versus Morphology in the Analysis of Diatom-Environment Relationships. Journal of Paleolimnology, 57, 51-66. https://doi.org/10.1007/s10933-016-9926-y
|
[5]
|
Tilman, D., Isbell, F. and Cowles, J.M. (2014) Biodiversity and Ecosystem Functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493. https://doi.org/10.1146/annurev-ecolsys-120213-091917
|
[6]
|
Blanco, S., Cejudo-Figueiras, C., Tudesque, L., Bécares, E., Hoffmann, L. and Ector, L. (2012) Are Diatom Diversity Indices Reliable Monitoring Metrics? Hydrobiologia, 695, 199-206. https://doi.org/10.1007/s10750-012-1113-1
|
[7]
|
Dornelas, M., Gotelli, N.J., McGill, B. and Magurran, A.E. (2014) Overlooked Local Biodiversity Loss—Response. Science, 344, 1098-1099. https://doi.org/10.1126/science.344.6188.1098-b
|
[8]
|
May, R.M. (2006) Network Structure and the Biology of Populations. Trends in Ecology & Evolution, 21, 394-399. https://doi.org/10.1016/j.tree.2006.03.013
|
[9]
|
Feng, W. and Takemoto, K. (2014) Heterogeneity in Ecological Mutualistic Networks Dominantly Determines Community Stability. Scientific Reports, 4, Article No. 5912. https://doi.org/10.1038/srep05912
|
[10]
|
Wang, R., Dearing, J.A., Doncaster, C.P., Yang, X., Zhang, E., Langdon, P.G., et al. (2019) Network Parameters Quantify Loss of Assemblage Structure in Human‐Impacted Lake Ecosystems. Global Change Biology, 25, 3871-3882. https://doi.org/10.1111/gcb.14776
|
[11]
|
Smith, V. (2016) Effects of Eutrophication on Maximum Algal Biomass in Lake and River Ecosystems. Inland Waters, 6, 147-154. https://doi.org/10.5268/iw-6.2.937
|
[12]
|
Smith, V.H. and Schindler, D.W. (2009) Eutrophication Science: Where Do We Go from Here? Trends in Ecology & Evolution, 24, 201-207. https://doi.org/10.1016/j.tree.2008.11.009
|
[13]
|
Xiao, W., Liu, X., Irwin, A.J., Laws, E.A., Wang, L., Chen, B., et al. (2018) Warming and Eutrophication Combine to Restructure Diatoms and Dinoflagellates. Water Research, 128, 206-216. https://doi.org/10.1016/j.watres.2017.10.051
|
[14]
|
Lotter, A.F. (2001) The Palaeolimnology of Soppensee (Central Switzerland), as Evidenced by Diatom, Pollen, and Fossil-Pigment Analyses. Journal of Paleolimnology, 25, 65-79. https://doi.org/10.1023/A:1008140122230
|
[15]
|
康文刚, 陈光杰, 王教元, 等. 大理西湖流域开发历史与硅藻群落变化的模式识别[J]. 应用生态学报, 2017, 28(3): 1001-1012.
|
[16]
|
邓颖, 陈光杰, 刘术, 等. 基于沉积物与文献记录的茈碧湖水文波动与近现代生态环境变化[J]. 第四纪研究, 2018, 38(4): 912-925.
|
[17]
|
Hötzel, G. and Croome, R. (1996) Population Dynamics of Aulacoseira granulata (EHR.) SIMONSON (Bacillariophyceae, Centrales), the Dominant Alga in the Murray River, Australia. Archiv für Hydrobiologie, 136, 191-215. https://doi.org/10.1127/archiv-hydrobiol/136/1996/191
|
[18]
|
丁腾达, 倪婉敏, 张建英. 硅藻重金属污染生态学研究进展[J]. 应用生态学报, 2012, 23(3): 857-866.
|
[19]
|
Falasco, E., Bona, F., Ginepro, M., Hlúbiková, D., Hoffmann, L. and Ector, L. (2009) Morphological Abnormalities of Diatom Silica Walls in Relation to Heavy Metal Contamination and Artificial Growth Conditions. Water SA, 35, 595-606. https://doi.org/10.4314/wsa.v35i5.49185
|
[20]
|
Hussain, M.M., Wang, J., Bibi, I., Shahid, M., Niazi, N.K., Iqbal, J., et al. (2021) Arsenic Speciation and Biotransformation Pathways in the Aquatic Ecosystem: The Significance of Algae. Journal of Hazardous Materials, 403, Article 124027. https://doi.org/10.1016/j.jhazmat.2020.124027
|
[21]
|
Duong, T.T., Morin, S., Herlory, O., Feurtet-Mazel, A., Coste, M. and Boudou, A. (2008) Seasonal Effects of Cadmium Accumulation in Periphytic Diatom Communities of Freshwater Biofilms. Aquatic Toxicology, 90, 19-28. https://doi.org/10.1016/j.aquatox.2008.07.012
|
[22]
|
刘恩峰, 沈吉, 杨丽原, 等. 南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J]. 环境科学, 2007, 28(6): 1377-1383.
|
[23]
|
陈云增, 杨浩, 张振克, 等. 滇池沉积物金属污染及环境质量评价[J]. 湖泊科学, 2008, 20(4): 492-499.
|
[24]
|
Sarthou, G., Timmermans, K.R., Blain, S. and Tréguer, P. (2005) Growth Physiology and Fate of Diatoms in the Ocean: A Review. Journal of Sea Research, 53, 25-42. https://doi.org/10.1016/j.seares.2004.01.007
|
[25]
|
Montagnes, D.J.S. and Franklin, M. (2001) Effect of Temperature on Diatom Volume, Growth Rate, and Carbon and Nitrogen Content: Reconsidering Some Paradigms. Limnology and Oceanography, 46, 2008-2018. https://doi.org/10.4319/lo.2001.46.8.2008
|
[26]
|
栾卓, 范亚文, 门晓宇. 松花江哈尔滨段水域硅藻植物群落及其水质的初步评价[J]. 湖泊科学, 2015, 22(1): 86-92.
|
[27]
|
Fan, J., Li, F., Hu, S., Gao, K. and Xu, J. (2023) Larger Diatoms Are More Sensitive to Temperature Changes and Prone to Succumb to Warming Stress. Limnology and Oceanography, 68, 2512-2528. https://doi.org/10.1002/lno.12438
|
[28]
|
Battarbee, R.W. (2000) Palaeolimnological Approaches to Climate Change, with Special Regard to the Biological Record. Quaternary Science Reviews, 19, 107-124. https://doi.org/10.1016/s0277-3791(99)00057-8
|
[29]
|
Gerten, D. and Adrian, R. (2002) Species‐Specific Changes in the Phenology and Peak Abundance of Freshwater Copepods in Response to Warm Summers. Freshwater Biology, 47, 2163-2173. https://doi.org/10.1046/j.1365-2427.2002.00970.x
|
[30]
|
Smayda, T.J. (1971) Normal and Accelerated Sinking of Phytoplankton in the Sea. Marine Geology, 11, 105-122. https://doi.org/10.1016/0025-3227(71)90070-3
|
[31]
|
Agbeti, M.D., Kingston, J.C., Smol, J.P. and Watters, C. (1997) Comparison of Phytoplankton Succession in Two Lakes of Different Mixing Regimes Fig: 12 Tab: 4. Fundamental and Applied Limnology, 140, 37-69. https://doi.org/10.1127/archiv-hydrobiol/140/1997/37
|
[32]
|
Rühland, K.M., Paterson, A.M. and Smol, J.P. (2015) Lake Diatom Responses to Warming: Reviewing the Evidence. Journal of Paleolimnology, 54, 1-35. https://doi.org/10.1007/s10933-015-9837-3
|
[33]
|
Rühland, K., Paterson, A.M. and Smol, J.P. (2008) Hemispheric‐Scale Patterns of Climate‐Related Shifts in Planktonic Diatoms from North American and European Lakes. Global Change Biology, 14, 2740-2754. https://doi.org/10.1111/j.1365-2486.2008.01670.x
|
[34]
|
王超, 赖子尼, 李跃飞, 等. 西江颗粒直链藻种群生态特征[J]. 生态学报, 2012, 32(15): 4793-4802.
|
[35]
|
Brugam, R.B. (1983) The Relationship between Fossil Diatom Assemblages and Limnological Conditions. Hydrobiologia, 98, 223-235. https://doi.org/10.1007/bf00021023
|
[36]
|
Chen, B. (2015) Patterns of Thermal Limits of Phytoplankton. Journal of Plankton Research, 37, 285-292. https://doi.org/10.1093/plankt/fbv009
|
[37]
|
Eilers, P.H.C. and Peeters, J.C.H. (1988) A Model for the Relationship between Light Intensity and the Rate of Photosynthesis in Phytoplankton. Ecological Modelling, 42, 199-215. https://doi.org/10.1016/0304-3800(88)90057-9
|
[38]
|
Bennion, H. (1995) Surface-Sediment Diatom Assemblages in Shallow, Artificial, Enriched Ponds, and Implications for Reconstructing Trophic Status. Diatom Research, 10, 1-19. https://doi.org/10.1080/0269249x.1995.9705326
|
[39]
|
廖梦娜, 李艳玲. 东北镜泊湖硅藻对近现代气候变化和人类干扰的响应过程[J]. 生态学报, 2018, 38(4): 1458-1469.
|
[40]
|
Hurlbert, S.H. (1971) The Nonconcept of Species Diversity: A Critique and Alternative Parameters. Ecology, 52, 577-586. https://doi.org/10.2307/1934145
|
[41]
|
代存芳, 易映彤, 刘妍, 等. 扎龙湿地硅藻植物群落季节变化及其对环境的响应[J]. 生态学报, 2017, 37(8): 2818-2827.
|
[42]
|
Wang, R., Hu, Z., Wang, Q., Xu, M., Zheng, W., Zhang, K., et al. (2020) Discrepancy in the Responses of Diatom Diversity to Indirect and Direct Human Activities in Lakes of the Southeastern Tibetan Plateau, China. Anthropocene, 30, Article 100243. https://doi.org/10.1016/j.ancene.2020.100243
|
[43]
|
Zheng, W., Wang, R., Zhang, E., Yang, H. and Xu, M. (2021) Declining Chironomid Diversity in Relation to Human Influences in Southwest China. Anthropocene, 36, Article 100308. https://doi.org/10.1016/j.ancene.2021.100308
|
[44]
|
Rosset, V., Angélibert, S., Arthaud, F., Bornette, G., Robin, J., Wezel, A., et al. (2014) Is Eutrophication Really a Major Impairment for Small Waterbody Biodiversity? Journal of Applied Ecology, 51, 415-425. https://doi.org/10.1111/1365-2664.12201
|
[45]
|
Wang, R., Xu, M., Yang, H., Yang, X., Zhang, K., Zhang, E., et al. (2019) Ordered Diatom Species Loss along a Total Phosphorus Gradient in Eutrophic Lakes of the Lower Yangtze River Basin, China. Science of The Total Environment, 650, 1688-1695. https://doi.org/10.1016/j.scitotenv.2018.09.328
|
[46]
|
Sayer, C., Roberts, N., Sadler, J., David, C. and Wade, P.M. (1999) Biodiversity Changes in a Shallow Lake Ecosystem: A Multi‐Proxy Palaeolimnological Analysis. Journal of Biogeography, 26, 97-114. https://doi.org/10.1111/j.1365-2699.1999.00298.x
|
[47]
|
Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., et al. (2010) Navigating the Multiple Meanings of β Diversity: A Roadmap for the Practicing Ecologist. Ecology Letters, 14, 19-28. https://doi.org/10.1111/j.1461-0248.2010.01552.x
|
[48]
|
Chase, J.M., Kraft, N.J.B., Smith, K.G., Vellend, M. and Inouye, B.D. (2011) Using Null Models to Disentangle Variation in Community Dissimilarity from Variation in Α-Diversity. Ecosphere, 2, art24. https://doi.org/10.1890/es10-00117.1
|
[49]
|
Socolar, J.B., Gilroy, J.J., Kunin, W.E. and Edwards, D.P. (2016) How Should Beta-Diversity Inform Biodiversity Conservation? Trends in Ecology & Evolution, 31, 67-80. https://doi.org/10.1016/j.tree.2015.11.005
|
[50]
|
Salgado, J., Sayer, C.D., Brooks, S.J., Davidson, T.A., Goldsmith, B., Patmore, I.R., et al. (2018) Eutrophication Homogenizes Shallow Lake Macrophyte Assemblages over Space and Time. Ecosphere, 9, e02406. https://doi.org/10.1002/ecs2.2406
|
[51]
|
Xu, M., Wang, R., Dong, X., Zhang, Q. and Yang, X. (2022) Intensive Human Impacts Drive the Declines in Heterogeneity of Diatom Communities in Shallow Lakes of East China. Ecological Indicators, 140, Article 108994. https://doi.org/10.1016/j.ecolind.2022.108994
|
[52]
|
Korhonen, J.J., Soininen, J. and Hillebrand, H. (2010) A Quantitative Analysis of Temporal Turnover in Aquatic Species Assemblages across Ecosystems. Ecology, 91, 508-517. https://doi.org/10.1890/09-0392.1
|
[53]
|
McGill, B.J., Dornelas, M., Gotelli, N.J. and Magurran, A.E. (2015) Fifteen Forms of Biodiversity Trend in the Anthropocene. Trends in Ecology & Evolution, 30, 104-113. https://doi.org/10.1016/j.tree.2014.11.006
|