[1]
|
Thrift, A.P. and El-Serag, H.B. (2020) Burden of Gastric Cancer. Clinical Gastroenterology and Hepatology, 18, 534-542. https://doi.org/10.1016/j.cgh.2019.07.045
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[3]
|
Arnold, M., Abnet, C.C., Neale, R.E., Vignat, J., Giovannucci, E.L., McGlynn, K.A., et al. (2020) Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology, 159, 335-349.e15. https://doi.org/10.1053/j.gastro.2020.02.068
|
[4]
|
Yu, P., Wang, Y., Yuan, D., Sun, Y., Qin, S. and Li, T. (2023) Vascular Normalization: Reshaping the Tumor Microenvironment and Augmenting Antitumor Immunity for Ovarian Cancer. Frontiers in Immunology, 14, Article 1276694. https://doi.org/10.3389/fimmu.2023.1276694
|
[5]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
|
[6]
|
Sherwood, L.M., Parris, E.E. and Folkman, J. (1971) Tumor Angiogenesis: Therapeutic Implications. New England Journal of Medicine, 285, 1182-1186. https://doi.org/10.1056/nejm197111182852108
|
[7]
|
Lugano, R., Ramachandran, M. and Dimberg, A. (2019) Tumor Angiogenesis: Causes, Consequences, Challenges and Opportunities. Cellular and Molecular Life Sciences, 77, 1745-1770. https://doi.org/10.1007/s00018-019-03351-7
|
[8]
|
Teng, F., Zhang, J., Chang, Q., Wu, X., Tang, W., Wang, J., et al. (2020) Correction to: LncRNA MYLK-AS1 Facilitates Tumor Progression and Angiogenesis by Targeting miR-424-5p/E2F7 Axis and Activating VEGFR-2 Signaling Pathway in Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research, 39, Article No. 277. https://doi.org/10.1186/s13046-020-01780-y
|
[9]
|
Zhang, S., Xia, Y., Chen, W., Dong, H., Cui, B., Liu, C., et al. (2024) Regulation and Therapeutic Application of Long Non-Coding RNA in Tumor Angiogenesis. Technology in Cancer Research & Treatment, 23, 1-16. https://doi.org/10.1177/15330338241273239
|
[10]
|
Deng, F., Zhou, R., Lin, C., Yang, S., Wang, H., Li, W., et al. (2019) Tumor-Secreted Dickkopf2 Accelerates Aerobic Glycolysis and Promotes Angiogenesis in Colorectal Cancer. Theranostics, 9, 1001-1014. https://doi.org/10.7150/thno.30056
|
[11]
|
Dakowicz, D., Zajkowska, M. and Mroczko, B. (2022) Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. International Journal of Molecular Sciences, 23, Article 3375. https://doi.org/10.3390/ijms23063375
|
[12]
|
Zhao, J., Du, P., Cui, P., Qin, Y., Hu, C., Wu, J., et al. (2018) LncRNA PVT1 Promotes Angiogenesis via Activating the STAT3/VEGFA Axis in Gastric Cancer. Oncogene, 37, 4094-4109. https://doi.org/10.1038/s41388-018-0250-z
|
[13]
|
Jin, Y., Cao, J., Hu, X. and Cheng, H. (2021) Long Noncoding RNA TUG1 Upregulates VEGFA to Enhance Malignant Behaviors in Stomach Adenocarcinoma by Sponging miR‐29c‐3p. Journal of Clinical Laboratory Analysis, 35, e24106. https://doi.org/10.1002/jcla.24106
|
[14]
|
Zhang, J., Pang, X., Lei, L., Zhang, J., Zhang, X., Chen, Z., et al. (2022) LncRNA CRART16/miR-122-5p/FOS Axis Promotes Angiogenesis of Gastric Cancer by Upregulating VEGFD Expression. Aging, 14, 4137-4157. https://doi.org/10.18632/aging.204078
|
[15]
|
Teng, F., Zhang, J., Chen, Y., Shen, X., Su, C., Guo, Y., et al. (2021) LncRNA NKX2‐1‐AS1 Promotes Tumor Progression and Angiogenesis via Upregulation of SERPINE1 Expression and Activation of the VEGFR‐2 Signaling Pathway in Gastric Cancer. Molecular Oncology, 15, 1234-1255. https://doi.org/10.1002/1878-0261.12911
|
[16]
|
Claesson‐Welsh, L. and Welsh, M. (2013) VEGFA and Tumour Angiogenesis. Journal of Internal Medicine, 273, 114-127. https://doi.org/10.1111/joim.12019
|
[17]
|
Yonemura, Y., Endo, Y., Tabata, K., Kawamura, T., Yun, H., Bandou, E., et al. (2005) Role of VEGF-C and VEGF-D in Lymphangiogenesis in Gastric Cancer. International Journal of Clinical Oncology, 10, 318-327. https://doi.org/10.1007/s10147-005-0508-7
|
[18]
|
Wang, L., Cho, K.B., Li, Y., Tao, G., Xie, Z. and Guo, B. (2019) Long Noncoding RNA (LncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. International Journal of Molecular Sciences, 20, Article 5758. https://doi.org/10.3390/ijms20225758
|
[19]
|
Wu, X., Sui, Z., Zhang, H., Wang, Y. and Yu, Z. (2020) Integrated Analysis of LncRNA-Mediated Cerna Network in Lung Adenocarcinoma. Frontiers in Oncology, 10, Article 554759. https://doi.org/10.3389/fonc.2020.554759
|
[20]
|
Liu, H., Ma, R., Lv, B., Zhang, H., Shi, D., Guo, X., et al. (2020) LncRNA-HNF1A-AS1 Functions as a Competing Endogenous RNA to Activate PI3K/AKT Signalling Pathway by Sponging miR-30b-3p in Gastric Cancer. British Journal of Cancer, 122, 1825-1836. https://doi.org/10.1038/s41416-020-0836-4
|
[21]
|
Xu, Y., Li, Y., Qiu, Y., Sun, F., Zhu, G., Sun, J., et al. (2021) LncRNA NEAT1 Promotes Gastric Cancer Progression through miR-17-5p/TGFβR2Axis Up-Regulated Angiogenesis. Frontiers in Cell and Developmental Biology, 9, Article 705697. https://doi.org/10.3389/fcell.2021.705697
|
[22]
|
Zhu, Y., You, J., Wei, W., Gu, J., Xu, C. and Gu, X. (2021) Downregulated LncRNA RCPCD Promotes Differentiation of Embryonic Stem Cells into Cardiac Pacemaker-Like Cells by Suppressing HCN4 Promoter Methylation. Cell Death & Disease, 12, Article No. 667. https://doi.org/10.1038/s41419-021-03949-5
|
[23]
|
林秀, 孙赛, 毛越苹. 长链非编码RNA在硬皮病表观遗传学发病机制中的研究进展[J]. 广东医学, 2019, 40(S1): 227-229.
|
[24]
|
Guo, X., Wang, Y., Zha, L., Li, H. and Qian, K. (2023) DNA Methylation-Related LncRNAs Predict Prognosis and Immunotherapy Response in Gastric Cancer. Journal of Cancer Research and Clinical Oncology, 149, 14745-14760. https://doi.org/10.1007/s00432-023-05234-8
|
[25]
|
Elimam, H., Abdel Mageed, S.S., Hatawsh, A., Moussa, R., Radwan, A.F., Elfar, N., et al. (2024) Unraveling the Influence of LncRNA in Gastric Cancer Pathogenesis: A Comprehensive Review Focus on Signaling Pathways Interplay. Medical Oncology, 41, Article No. 218. https://doi.org/10.1007/s12032-024-02455-w
|
[26]
|
Dou, R., Han, L., Yang, C., Fang, Y., Zheng, J., Liang, C., et al. (2023) Upregulation of LINC00501 by H3K27 Acetylation Facilitates Gastric Cancer Metastasis through Activating Epithelial‐Mesenchymal Transition and Angiogenesis. Clinical and Translational Medicine, 13, e1432. https://doi.org/10.1002/ctm2.1432
|
[27]
|
Wang, Y., Jiang, R., Wang, Q., Li, Y., Sun, Z. and Zhao, H. (2021) Silencing LINC01021 Inhibits Gastric Cancer through Upregulation of KISS1 Expression by Blocking CDK2-Dependent Phosphorylation of CDX2. Molecular Therapy—Nucleic Acids, 24, 832-844. https://doi.org/10.1016/j.omtn.2021.01.025
|
[28]
|
Maniotis, A.J., Folberg, R., Hess, A., Seftor, E.A., Gardner, L.M.G., Pe’er, J., et al. (1999) Vascular Channel Formation by Human Melanoma Cells in Vivo and in Vitro: Vasculogenic Mimicry. The American Journal of Pathology, 155, 739-752. https://doi.org/10.1016/s0002-9440(10)65173-5
|
[29]
|
Hao, X.S., Sun, B.C., Zhang, S.W., et al. (2003) Correlation between the Expression of Collgen IV, VEGF and Vasculogenic Mimicry. Chinese Journal of Oncology, 25, 524-526.
|
[30]
|
Chen, Y. and Chen, Z. (2014) Vasculogenic Mimicry: A Novel Target for Glioma Therapy. Chinese Journal of Cancer, 33, 74-79. https://doi.org/10.5732/cjc.012.10292
|
[31]
|
Wang, J., Xia, W., Huang, Y., Li, H., Tang, Y., Li, Y., et al. (2022) A Vasculogenic Mimicry Prognostic Signature Associated with Immune Signature in Human Gastric Cancer. Frontiers in Immunology, 13, Article 1016612. https://doi.org/10.3389/fimmu.2022.1016612
|
[32]
|
Lu, Y., Yang, B., Shen, A., Yu, K., Ma, M., Li, Y., et al. (2024) LncRNA UCA1 Promotes Vasculogenic Mimicry by Targeting miR-1-3p in Gastric Cancer. Carcinogenesis, 45, 658-672. https://doi.org/10.1093/carcin/bgae031
|
[33]
|
Zhao, J., Wu, J., Qin, Y., Zhang, W., Huang, G. and Qin, L. (2020) LncRNA PVT1 Induces Aggressive Vasculogenic Mimicry Formation through Activating the STAT3/Slug Axis and Epithelial-to-Mesenchymal Transition in Gastric Cancer. Cellular Oncology, 43, 863-876. https://doi.org/10.1007/s13402-020-00532-6
|
[34]
|
Li, Y., Wu, Z., Yuan, J., Sun, L., Lin, L., Huang, N., et al. (2017) Long Non-Coding RNA MALAT1 Promotes Gastric Cancer Tumorigenicity and Metastasis by Regulating Vasculogenic Mimicry and Angiogenesis. Cancer Letters, 395, 31-44. https://doi.org/10.1016/j.canlet.2017.02.035
|