[1]
|
Zhang, Y., Hopke, P.K. and Mandin, C. (2022) History and Perspective on Indoor Air Quality Research. In: Zhang, Y., Hopke, P.K. and Mandin, C., Eds., Handbook of Indoor Air Quality, Springer.
|
[2]
|
Chen, X. and Chen, Y.F. (2023) Analysis of the Disease Burden of Pneumoconiosis Globally and in China from 1990 to 2019. Chinese Journal of Industrial Hygiene and Occupational Diseases, 41, 417-424.
|
[3]
|
Qi, X.-M., Luo, Y., Song, M.-Y., Liu, Y., Shu, T., Liu, Y., et al. (2021) Pneumoconiosis: Current Status and Future Prospects. Chinese Medical Journal, 134, 898-907. https://doi.org/10.1097/CM9.0000000000001461
|
[4]
|
张云霞. 我国尘肺病治疗药物的临床疗效研究分析[J]. 世界最新医学信息文摘, 2017, 17(9): 133.
|
[5]
|
Li, R., Li, J. and Zhou, X. (2024) Lung Microbiome: New Insights into the Pathogenesis of Respiratory Diseases. Signal Transduction and Targeted Therapy, 9, Article No. 19. https://doi.org/10.1038/s41392-023-01722-y
|
[6]
|
姚梦菲, 王国镇, 侯潇楠, 等. 巨噬细胞在PM2.5暴露肺泡气血屏障损伤过程中的作用研究[J]. 陆军军医大学学报, 2024, 46(8): 849-858.
|
[7]
|
韩笑. JAK2/STAT3信号通路引起炎症反应在煤工尘肺肺组织纤维化中的作用[D]: [硕士学位论文]. 并州: 山西医科大学, 2023.
|
[8]
|
Cthrc1与TGF-β1对成纤维细胞胶原蛋白合成的影响研究[C]//第十一次全国中西医结合变态反应学术会议、宁夏中西医结合学会变态反应分会成立大会、中西医结合诊疗变态反应性疾病提高班资料汇编. 2019: 111-112. https://kns.cnki.net/kcms2/article/abstract?v=mtmIrHeyR2s1sMufBt5krxGbgq5oej_bGpBs3kdxPWK3_SOTiEPZjpYsyUAKQJmM8LlwscTXVeZXmABfKCsiMWHc9d2tEvAbNxVfXXVFY5fBjcYB-CkbnopheLipOeuOdM2RfHCUbv4_TPp_YfFFuHEzV5CM7QgCjaL64pROg7LL6vmKF89WdDsvzI19sO3VYTtdhVVVnbo=&uniplatform=NZKPT&language=CHS
|
[9]
|
Zhang, Z., Zhang, X.R. and Wang, J. (2022) Research Progress on Immune Pathogenesis of Pneumoconiosis. Chinese Journal of Industrial Hygiene and Occupational Diseases, 40, 471-476.
|
[10]
|
杨眉. Lnc-CDKN2B-AS1靶向miR-199a-5p/SESN2/AMPK/mTOR分子轴调控自噬在肺纤维化形成中的作用机制[D]: [博士学位论文]. 昆明: 昆明医科大学, 2022.
|
[11]
|
Ma, H., Dong, Z., Zhang, X., Liu, C., Liu, Z., Zhou, X., et al. (2024) Airway Bacterial Microbiome Signatures Correlate with Occupational Pneumoconiosis Progression. Ecotoxicology and Environmental Safety, 284, Article 116875. https://doi.org/10.1016/j.ecoenv.2024.116875
|
[12]
|
朱胜康, 王静静, 翟荣存, 等. 尘肺病患者肺部感染的菌群结构分布及影像特征研究[J]. 中国病原生物学杂志, 2023, 18(12): 1388-1392.
|
[13]
|
包相华, 邹茹, 杨蓓, 等. 尘肺病合并肺部感染病原菌类型及感染危险因素分析[J]. 中国病原生物学杂志, 2023, 18(1): 77-81.
|
[14]
|
Iliev, I.D., Funari, V.A., Taylor, K.D., Nguyen, Q., Reyes, C.N., Strom, S.P., et al. (2012) Interactions between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis. Science, 336, 1314-1317. https://doi.org/10.1126/science.1221789
|
[15]
|
Marsland, B.J. and Gollwitzer, E.S. (2014) Host-Microorganism Interactions in Lung Diseases. Nature Reviews Immunology, 14, 827-835. https://doi.org/10.1038/nri3769
|
[16]
|
Carmody, L.A., Zhao, J., Schloss, P.D., Petrosino, J.F., Murray, S., Young, V.B., et al. (2013) Changes in Cystic Fibrosis Airway Microbiota at Pulmonary Exacerbation. Annals of the American Thoracic Society, 10, 179-187. https://doi.org/10.1513/annalsats.201211-107oc
|
[17]
|
Delhaes, L., Monchy, S., Fréalle, E., Hubans, C., Salleron, J., Leroy, S., et al. (2012) The Airway Microbiota in Cystic Fibrosis: A Complex Fungal and Bacterial Community—Implications for Therapeutic Management. PLOS ONE, 7, e36313. https://doi.org/10.1371/journal.pone.0036313
|
[18]
|
Ghannoum, M.A., Jurevic, R.J., Mukherjee, P.K., Cui, F., Sikaroodi, M., Naqvi, A., et al. (2010) Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals. PLOS Pathogens, 6, e1000713. https://doi.org/10.1371/journal.ppat.1000713
|
[19]
|
Charlson, E.S., Bittinger, K., Chen, J., Diamond, J.M., Li, H., Collman, R.G., et al. (2012) Assessing Bacterial Populations in the Lung by Replicate Analysis of Samples from the Upper and Lower Respiratory Tracts. PLOS ONE, 7, e42786. https://doi.org/10.1371/journal.pone.0042786
|
[20]
|
Chen, T., Chen, Y., Chen, Y. and Lu, P. (2012) Fluconazole Exposure Rather than Clonal Spreading Is Correlated with the Emergence of candida Glabrata with Cross‐Resistance to Triazole Antifungal Agents. The Kaohsiung Journal of Medical Sciences, 28, 306-315. https://doi.org/10.1016/j.kjms.2011.11.011
|
[21]
|
Bousquet, A., Malfuson, J.-V., Sanmartin, N., Konopacki, J., MacNab, C., Souleau, B., et al. (2014) An 8-Year Survey of Strains Identified in Blood Cultures in a Clinical Haematology Unit. Clinical Microbiology and Infection, 20, O7-O12. https://doi.org/10.1111/1469-0691.12294
|
[22]
|
Huang, Y.J. (2013) Asthma Microbiome Studies and the Potential for New Therapeutic Strategies. Current Allergy and Asthma Reports, 13, 453-461. https://doi.org/10.1007/s11882-013-0355-y
|
[23]
|
Findley, K., Oh, J., Yang, J., Conlan, S., Deming, C., Meyer, J.A., et al. (2013) Topographic Diversity of Fungal and Bacterial Communities in Human Skin. Nature, 498, 367-370. https://doi.org/10.1038/nature12171
|
[24]
|
Lim, Y.W., Evangelista, J.S., Schmieder, R., Bailey, B., Haynes, M., Furlan, M., et al. (2014) Clinical Insights from Metagenomic Analysis of Sputum Samples from Patients with Cystic Fibrosis. Journal of Clinical Microbiology, 52, 425-437. https://doi.org/10.1128/jcm.02204-13
|
[25]
|
Lysholm, F., Wetterbom, A., Lindau, C., Darban, H., Bjerkner, A., Fahlander, K., et al. (2012) Characterization of the Viral Microbiome in Patients with Severe Lower Respiratory Tract Infections, Using Metagenomic Sequencing. PLOS ONE, 7, e30875. https://doi.org/10.1371/journal.pone.0030875
|
[26]
|
MacDuff, D.A., Reese, T.A., Kimmey, J.M., Weiss, L.A., Song, C., Zhang, X., et al. (2015) Phenotypic Complementation of Genetic Immunodeficiency by Chronic Herpesvirus Infection. Elife, 4, e04494. https://doi.org/10.7554/eLife.04494
|
[27]
|
Sun, L., Miyoshi, H., Origanti, S., Nice, T.J., Barger, A.C., Manieri, N.A., et al. (2015) Type I Interferons Link Viral Infection to Enhanced Epithelial Turnover and Repair. Cell Host & Microbe, 17, 85-97. https://doi.org/10.1016/j.chom.2014.11.004
|
[28]
|
吴昊, 寇佳祥, 毕磊, 等. 基于16S rRNA测序技术研究尘肺病患者肠道菌群特征[J]. 中国微生态学杂志, 2024, 36(4): 414-419, 430.
|
[29]
|
Yan, Z., Chen, B., Yang, Y., Yi, X., Wei, M., Ecklu-Mensah, G., et al. (2022) Multi-Omics Analyses of Airway Host-Microbe Interactions in Chronic Obstructive Pulmonary Disease Identify Potential Therapeutic Interventions. Nature Microbiology, 7, 1361-1375. https://doi.org/10.1038/s41564-022-01196-8
|
[30]
|
Bauer, R. and Rauch I. (2020) The NAIP/NLRC4 Inflammasome in Infection and Pathology. Molecular Aspects of Medicine, 76, Article 100863. https://doi.org/10.1016/j.mam.2020.100863
|
[31]
|
陈玉莲, 刘瀚旻. 人体生命早期呼吸系统菌群与肺部微生物组发育特征及早期菌群稳态研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(1): 31-37.
|
[32]
|
Yuan, X., Xie, L., Shi, Z. and Zhou, M. (2023) Application of mNGS in the Study of Pulmonary Microbiome in Pneumoconiosis Complicated with Pulmonary Infection Patients and Exploration of Potential Biomarkers. Frontiers in Cellular and Infection Microbiology, 13, Article 1200157. https://doi.org/10.3389/fcimb.2023.1200157
|
[33]
|
Jine, D., Li, S., Li, S., Zhang, X., Zhang, J., Zhao, S., et al. (2023) Metabolites Characteristics of Lower Respiratory Tract in Patients with Pneumoconiosis. B101. American Journal of Respiratory and Critical Care Medicine, 207, A4272. https://doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a4272
|
[34]
|
Li, X., Zhao, C., Li, C., Zhang, M., Xie, Y., Feng, F., et al. (2023) Detection and Analysis of Lung Microbiota in Mice with Lung Cancer Lacking the NLRP3 Gene. Biochemical and Biophysical Research Communications, 639, 117-125. https://doi.org/10.1016/j.bbrc.2022.11.059
|
[35]
|
Zhong, X., Lyu, C., Lai, D. and Shu, Q. (2024) Advances on Physiology and Pathology of Subpopulations of Macrophages in the Lung Tissue. Journal of Zhejiang University (Medical Sciences), 53, 650-658. https://doi.org/10.3724/zdxbyxb-2024-0129
|
[36]
|
Yang, S. and Ganzhu, F. (2020) Research Progress of Alveolar Macrophages in Pulmonary Homeostasis and Infections. Chinese Journal of Asthma, 40, 465-469.
|
[37]
|
赵显芳, 朱紫陌, 崔白梅, 等. 肠道微生物群对肺部免疫微环境稳态影响的研究进展[J]. 中国微生态学杂志, 2023, 35(9): 1091-1096, 1102.
|
[38]
|
Yan, Z., Chen, B., Yang, Y., Yi, X., Wei, M., Ecklu-Mensah, G., et al. (2022) Multi-omics Analyses of Airway Host-Microbe Interactions in Chronic Obstructive Pulmonary Disease Identify Potential Therapeutic Interventions. Nature Microbiology, 7, 1361-1375. https://doi.org/10.1038/s41564-022-01196-8
|
[39]
|
Feng, X. (2023) The Application of Metabolomics Technology in the Study of Chronic Obstructive Pulmonary Disease. Advances in Clinical Medicine, 13, 13381-13387. https://doi.org/10.12677/acm.2023.1381870
|
[40]
|
刘保连, 郭鼐, 姚汝琳, 等. 肺表面活性物质系统在尘肺发生发展过程中的变化[J]. 山西医学院学报, 1994, 25(2): 140-143.
|
[41]
|
Verma, A., Bhagchandani, T., Rai, A., Nikita, Sardarni, U.K., Bhavesh, N.S., et al. (2024) Short-Chain Fatty Acid (SCFA) as a Connecting Link between Microbiota and Gut-Lung Axis—A Potential Therapeutic Intervention to Improve Lung Health. ACS Omega, 9, 14648-14671. https://doi.org/10.1021/acsomega.3c05846
|
[42]
|
Ashique, S., De Rubis, G., Sirohi, E., Mishra, N., Rihan, M., Garg, A., et al. (2022) Short Chain Fatty Acids: Fundamental Mediators of the Gut-Lung Axis and Their Involvement in Pulmonary Diseases. Chemico-Biological Interactions, 368, Article 110231. https://doi.org/10.1016/j.cbi.2022.110231
|
[43]
|
王林芳, 胡雪峰. 肺表面活性物质与相关呼吸道疾病[J]. 中国细胞生物学学报, 2020, 42(4): 721-728.
|
[44]
|
Wu, Y., Li, Y., Luo, Y., Zhou, Y., Wen, J., Chen, L., et al. (2022) Gut Microbiome and Metabolites: The Potential Key Roles in Pulmonary Fibrosis. Frontiers in Microbiology, 13, Article 943791. https://doi.org/10.3389/fmicb.2022.943791
|
[45]
|
Seok, S., Ma, Z., Feltenberger, J.B., Chen, H., Chen, H., Scarlett, C., et al. (2018) Trace Derivatives of Kynurenine Potently Activate the Aryl Hydrocarbon Receptor (AHR). Journal of Biological Chemistry, 293, 1994-2005. https://doi.org/10.1074/jbc.ra117.000631
|