| [1] | Zhao, Y., Guo, L., Shen, W., An, Q., Xiao, Z., Wang, H., et al. (2020) Function Integrated Chitosan-Based Beads with Throughout Sorption Sites and Inherent Diffusion Network for Efficient Phosphate Removal. Carbohydrate Polymers, 230, Article 115639. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Yu, J., Zeng, Y., Chen, J., Liao, P., Yang, H. and Yin, C. (2022) Organic Phosphorus Regeneration Enhanced since Eutrophication Occurred in the Sub-Deep Reservoir. Environmental Pollution, 306, Article 119350. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Kong, H., Wang, J., Zhang, G., Shen, F., Li, Q. and Huang, Z. (2023) Synthesis of Three-Dimensional Porous Lanthanum Modified Attapulgite Chitosan Hydrogel Bead for Phosphate Removal: Performance, Mechanism, Cost-Benefit Analysis. Separation and Purification Technology, 320, Article 124098. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [4] | Liu, B., Yu, Y., Han, Q., Lou, S., Zhang, L. and Zhang, W. (2020) Fast and Efficient Phosphate Removal on Lanthanum-Chitosan Composite Synthesized by Controlling the Amount of Cross-Linking Agent. International Journal of Biological Macromolecules, 157, 247-258. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Wang, J., Zhang, G., Qiao, S. and Zhou, J. (2021) Magnetic Fe0/Iron Oxide-Coated Diatomite as a Highly Efficient Adsorbent for Recovering Phosphorus from Water. Chemical Engineering Journal, 412, Article 128696. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | Karunarathna, M.H.J.S., Hatten, Z.R., Bailey, K.M., Lewis, E.T., Morris, A.L., Kolk, A.R., et al. (2019) Reclaiming Phosphate from Waste Solutions with Fe(III)-Polysaccharide Hydrogel Beads for Photo-Controlled-Release Fertilizer. Journal of Agricultural and Food Chemistry, 67, 12155-12163. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Feng, W., Cui, H., Zhu, H., Shutes, B., Yan, B. and Hou, S. (2023) Layered Double Hydroxides, an Effective Nanomaterial to Remove Phosphorus from Wastewater: Performance, Mechanism, Factors and Reusability. Science of the Total Environment, 884, Article 163757. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Qiao, W., Bai, H., Tang, T., Miao, J. and Yang, Q. (2019) Recovery and Utilization of Phosphorus in Wastewater by Magnetic Fe3O4/Zn-Al-Fe-La Layered Double Hydroxides (LDHs). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 577, 118-128. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [9] | Ahmed, A.M., Mekonnen, M.L., Jote, B.A., Damte, J.Y., Mengesha, E.T., Lednický, T., et al. (2024) Removal of Phosphate from Wastewater Using Zirconium/Iron Embedded Chitosan/alginate Hydrogel Beads: An Experimental and Computational Perspective. International Journal of Biological Macromolecules, 281, Article 136431. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Beiyuan, J., Wu, X., Ruan, B., Chen, Z., Liu, J., Wang, J., et al. (2024) Highly Efficient Removal of Aqueous Phosphate via Iron-Manganese Fabricated Biochar: Performance and Mechanism. Chemosphere, 364, Article 143207. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Liu, S., Fan, F., Ni, Z., Liu, J. and Wang, S. (2023) Sustainable Lanthanum-Attapulgite/Alginate Hydrogels with Enhanced Mechanical Strength for Selective Phosphate Scavenging. Journal of Cleaner Production, 385, Article 135649. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | 王亚, 杨梦, 刘柏, 等. 磁性载镧水凝胶对低浓度磷的吸附性能[J]. 环境工程学报, 2024, 18(10): 2844-2856. | 
                     
                                
                                    
                                        | [13] | Karasa, J., Ozola-Davidāne, R., Gruškeviča, K., Ozoliņa, K.A., Mikosa, L.I. and Kostjukovs, J. (2024) Phosphorus Removal from Municipal Wastewater Using Calcium/Iron Oxide Composites: Adsorption Efficiency and Impact on Plant Growth. Science of the Total Environment, 955, Article 177227. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Santos, A.F., Lopes, D.V., Alvarenga, P., Gando-Ferreira, L.M. and Quina, M.J. (2024) Phosphorus Removal from Urban Wastewater through Adsorption Using Biogenic Calcium Carbonate. Journal of Environmental Management, 351, Article 119875. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Xu, R., Lyu, T., Zhang, M., Cooper, M. and Pan, G. (2020) Molecular-Level Investigations of Effective Biogenic Phosphorus Adsorption by a Lanthanum/Aluminum-Hydroxide Composite. Science of the Total Environment, 725, Article 138424. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Yin, H., Zhang, M., Huo, L. and Yang, P. (2022) Efficient Removal of Phosphorus from Constructed Wetlands Using Solidified Lanthanum/Aluminum Amended Attapulgite/biochar Composite as a Novel Phosphorus Filter. Science of the Total Environment, 833, Article 155233. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Zhang, F., Yan, J., Fang, J., Yan, Y., Zhang, S. and Benoit, G. (2023) Sediment Phosphorus Immobilization with the Addition of Calcium/Aluminum and Lanthanum/Calcium/Aluminum Composite Materials under Wide Ranges of Ph and Redox Conditions. Science of the Total Environment, 863, Article 160997. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Eltaweil, A.S., Omer, A.M., El-Aqapa, H.G., Gaber, N.M., Attia, N.F., El-Subruiti, G.M., et al. (2021) Chitosan Based Adsorbents for the Removal of Phosphate and Nitrate: A Critical Review. Carbohydrate Polymers, 274, Article 118671. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Peng, J., Wang, B., Song, Y., Yuan, P. and Liu, Z. (2007) Adsorption and Release of Phosphorus in the Surface Sediment of a Wastewater Stabilization Pond. Ecological Engineering, 31, 92-97. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Johnston, A.E. and Richards, I.R. (2003) Effectiveness of Different Precipitated Phosphates as Phosphorus Sources for Plants. Soil Use and Management, 19, 45-49. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [21] | Aliyat, F.Z., Maldani, M., El Guilli, M., Nassiri, L. and Ibijbijen, J. (2022) Phosphate-Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Ability to Solubilize Three Inorganic Phosphate Forms: Calcium, Iron, and Aluminum Phosphates. Microorganisms, 10, Article 980. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Landa, P. (2021) Positive Effects of Metallic Nanoparticles on Plants: Overview of Involved Mechanisms. Plant Physiology and Biochemistry, 161, 12-24. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Zhu, G., Sun, Y., Shakoor, N., Zhao, W., Wang, Q., Wang, Q., et al. (2023) Phosphorus-Based Nanomaterials as a Potential Phosphate Fertilizer for Sustainable Agricultural Development. Plant Physiology and Biochemistry, 205, Article 108172. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Kirkby, E.A. And Pilbeam, D.J. (1984) Calcium as a Plant Nutrient. Plant, Cell & Environment, 7, 397-405. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | Márquez-Quiroz, C., De-la-Cruz-Lázaro, E., Osorio-Osorio, R. and Sánchez-Chávez, E. (2015) Biofortification of Cowpea Beans with Iron: Iron’s Influence on Mineral Content and Yield. Journal of Soil Science and Plant Nutrition, 15, 839-847. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [26] | Huang, G. and Shan, C. (2018) Lanthanum Improves the Antioxidant Capacity in Chloroplast of Tomato Seedlings through Ascorbate-Glutathione Cycle under Salt Stress. Scientia Horticulturae, 232, 264-268. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [27] | Cui, W., Kamran, M., Song, Q., Zuo, B., Jia, Z. and Han, Q. (2019) Lanthanum Chloride Improves Maize Grain Yield by Promoting Photosynthetic Characteristics, Antioxidants Enzymes and Endogenous Hormone at Reproductive Stages. Journal of Rare Earths, 37, 781-790. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [28] | Yamamoto, Y. (2018) Aluminum Toxicity in Plant Cells: Mechanisms of Cell Death and Inhibition of Cell Elongation. Soil Science and Plant Nutrition, 65, 41-55. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [29] | Singh, S., Tripathi, D.K., Singh, S., Sharma, S., Dubey, N.K., Chauhan, D.K., et al. (2017) Toxicity of Aluminium on Various Levels of Plant Cells and Organism: A Review. Environmental and Experimental Botany, 137, 177-193. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [30] | Ur Rahman, S., Han, J., Ahmad, M., Ashraf, M.N., Khaliq, M.A., Yousaf, M., et al. (2024) Aluminum Phytotoxicity in Acidic Environments: A Comprehensive Review of Plant Tolerance and Adaptation Strategies. Ecotoxicology and Environmental Safety, 269, Article 115791. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Zeng, H., Sun, S., Xu, K., Zhao, W., Hao, R., Zhang, J., et al. (2022) Iron-Loaded Magnetic Alginate-Chitosan Double-Gel Interpenetrated Porous Beads for Phosphate Removal from Water: Preparation, Adsorption Behavior and pH Stability. Reactive and Functional Polymers, 177, Article 105328. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [32] | Lan, Z., Lin, Y. and Yang, C. (2022) Lanthanum-Iron Incorporated Chitosan Beads for Adsorption of Phosphate and Cadmium from Aqueous Solutions. Chemical Engineering Journal, 448, Article 137519. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [33] | Zhang, B., Chen, N., Feng, C. and Zhang, Z. (2018) Adsorption for Phosphate by Crosslinked/Non-Crosslinked-Chitosan-Fe(III) Complex Sorbents: Characteristic and Mechanism. Chemical Engineering Journal, 353, 361-372. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [34] | Zhu, B., Yuan, R., Wang, S., Chen, H., Zhou, B., Cui, Z., et al. (2024) Iron-Based Materials for Nitrogen and Phosphorus Removal from Wastewater: A Review. Journal of Water Process Engineering, 59, Article 104952. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [35] | He, Q., Zhao, H., Teng, Z., Wang, Y., Li, M. and Hoffmann, M.R. (2022) Phosphate Removal and Recovery by Lanthanum-Based Adsorbents: A Review for Current Advances. Chemosphere, 303, Article 134987. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Cui, X., Dai, X., Khan, K.Y., Li, T., Yang, X. and He, Z. (2016) Removal of Phosphate from Aqueous Solution Using Magnesium-Alginate/Chitosan Modified Biochar Microspheres Derived from Thalia Dealbata. Bioresource Technology, 218, 1123-1132. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | 付军, 范芳, 李海宁, 等. 铁锰复合氧化物/壳聚糖珠: 一种环境友好型除磷吸附剂[J]. 环境科学, 2016, 37(12): 4882-4890. | 
                     
                                
                                    
                                        | [38] | Li, J., Li, B., Yu, W., Huang, H., Han, J., Huang, Y., et al. (2022) Lanthanum-Based Adsorbents for Phosphate Reutilization: Interference Factors, Adsorbent Regeneration, and Research Gaps. Sustainable Horizons, 1, Article 100011. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [39] | Thomé, A., de Souza, T.O., Thomé, G.C.H. and Reginatto, C. (2020) Phytotoxic Effect on Corn and Soybean Due Addition of Nanoiron to the Soil. Water, Air, & Soil Pollution, 231, Article No. 12. [Google Scholar] [CrossRef] |